mirror of https://github.com/opencv/opencv.git
Tag:
Branch:
Tree:
291689a178
2.4
3.4
4.x
5.x
master
next
2.2
2.3.0
2.3.1
2.4.0
2.4.1
2.4.10
2.4.10.1
2.4.10.2
2.4.10.3
2.4.10.4
2.4.11
2.4.12
2.4.12.1
2.4.12.2
2.4.12.3
2.4.13
2.4.13.1
2.4.13.2
2.4.13.3
2.4.13.4
2.4.13.5
2.4.13.6
2.4.13.7
2.4.2
2.4.3
2.4.3-rc
2.4.3.1
2.4.3.2
2.4.4
2.4.4-beta
2.4.5
2.4.6
2.4.6.1
2.4.6.2
2.4.6.2-rc1
2.4.6.2r2
2.4.6.2r3
2.4.7
2.4.7-rc1
2.4.7.1
2.4.7.2
2.4.8
2.4.8.1
2.4.8.2
2.4.8.3
2.4.9
2.4.9.1
3.0-ocl-tech-preview
3.0-ocl-tp2
3.0.0
3.0.0-alpha
3.0.0-beta
3.0.0-rc1
3.1.0
3.2.0
3.2.0-rc
3.3.0
3.3.0-cvsdk
3.3.0-rc
3.3.1
3.3.1-cvsdk
3.4.0
3.4.0-rc
3.4.1
3.4.1-cvsdk
3.4.10
3.4.11
3.4.12
3.4.13
3.4.14
3.4.15
3.4.16
3.4.17
3.4.18
3.4.19
3.4.2
3.4.2-openvino
3.4.20
3.4.3
3.4.3-openvino
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
4.0.0
4.0.0-alpha
4.0.0-beta
4.0.0-openvino
4.0.0-rc
4.0.1
4.0.1-openvino
4.1.0
4.1.0-openvino
4.1.1
4.1.1-openvino
4.1.2
4.1.2-openvino
4.10.0
4.10.0-kleidicv
4.2.0
4.2.0-openvino
4.3.0
4.3.0-openvino
4.3.0-openvino-2020.3.0
4.4.0
4.4.0-openvino
4.5.0
4.5.0-openvino
4.5.1
4.5.1-openvino
4.5.2
4.5.2-openvino
4.5.3
4.5.3-openvino
4.5.3-openvino-2021.4.1
4.5.3-openvino-2021.4.2
4.5.4
4.5.5
4.5.5-openvino-2022.1.0
4.6.0
4.7.0
4.8.0
4.8.1
4.9.0
5.0.0-alpha
${ noResults }
23637 Commits (291689a17834bb9f59abd979baf9934b0411ad27)
Author | SHA1 | Message | Date |
---|---|---|---|
Maksim Shabunin |
463cd09811
|
Merge pull request #23666 from mshabunin:barcode-move
Moved barcode from opencv_contrib #23666 Merge with https://github.com/opencv/opencv_contrib/pull/3497 ##### TODO - [x] Documentation (bib) - [x] Tutorial (references) - [x] Sample app (refactored) - [x] Java (test passes) - [x] Python (test passes) - [x] Build without DNN |
2 years ago |
Vadim Levin | 8e8638431d |
feat: provide cv2.typing aliases at runtime
|
2 years ago |
Wang Kai | fc2d933224 |
removing unreachable code and fixing a typo
|
2 years ago |
Damiano Falcioni |
19f4f2eb92
|
Merge pull request #23785 from damianofalcioni:4.x
added Aruco MIP dictionaries #23785 added Aruco MIP dictionaries: DICT_ARUCO_MIP_16h3, DICT_ARUCO_MIP_25h7, DICT_ARUCO_MIP_36h12 from [Aruco.js](https://github.com/damianofalcioni/js-aruco2), converted in opencv format using https://github.com/damianofalcioni/js-aruco2/blob/master/src/dictionaries/utils/dic2opencv.js ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [ ] I agree to contribute to the project under Apache 2 License. - [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [ ] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake |
2 years ago |
Anatoliy Talamanov |
b854d4ecd8
|
Merge pull request #23786 from TolyaTalamanov:at/expose-preprocessing-to-ie-backend
G-API: Expose explicit preprocessing for IE Backend #23786 ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [ ] I agree to contribute to the project under Apache 2 License. - [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [ ] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake |
2 years ago |
Anatoliy Talamanov |
a371bdac9d
|
Merge pull request #23766 from TolyaTalamanov:at/segmentation-demo-desync
G-API: Refine Semantic Segmentation Demo #23766 ### Overview * Supported demo working with camera id (e.g `--input=0`) * Supported 3d output segmentation models (e.g `deeplabv3`) * Supported `desync` execution * Supported higher camera resolution * Changed the color map to pascal voc (https://cloud.githubusercontent.com/assets/4503207/17803328/1006ca80-65f6-11e6-9ff6-36b7ef5b9ac6.png) ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [ ] I agree to contribute to the project under Apache 2 License. - [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [ ] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake |
2 years ago |
Alexander Smorkalov | 3af6001a75 |
JS bindings for Aruco-based QR code detector.
|
2 years ago |
Alexander Smorkalov | 843daca26e |
JS bingings fix for QR code detector.
|
2 years ago |
Dmitry Kurtaev | f9d7f47e28 |
Change Scalar assignment in Python from single value
|
2 years ago |
zihaomu | 37459f89c9 |
remove unsupported unsupported unicode
|
2 years ago |
Wang Kai | 4622f1e89b |
fixing typo of a variable name in dnn::runFastConv
|
2 years ago |
Alexander Smorkalov | 61488885b5 |
Refreshed JavaScript bindings for Aruco related algorithms.
|
2 years ago |
Vincent Rabaud |
472aad46a6
|
Merge pull request #23596 from vrabaud:libavif
Add AVIF support through libavif. #23596 This is to fix https://github.com/opencv/opencv/issues/19271 Extra: https://github.com/opencv/opencv_extra/pull/1069 ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake |
2 years ago |
Pierre Chatelier |
60b806f9b8
|
Merge pull request #22947 from chacha21:hasNonZero
Added cv::hasNonZero() #22947 `cv::hasNonZero()` is semantically equivalent to (`cv::countNonZero()>0`) but stops parsing the image when a non-zero value is found, for a performance gain - [X] I agree to contribute to the project under Apache 2 License. - [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [X] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake This pull request might be refused, but I submit it to know if further work is needed or if I just stop working on it. The idea is only a performance gain vs `countNonZero()>0` at the cost of more code. Reasons why it might be refused : - this is just more code - the execution time is "unfair"/"unpredictable" since it depends on the position of the first non-zero value - the user must be aware that default search is from first row/col to last row/col and has no way to customize that, even if his use case lets him know where a non zero could be found - the PR in its current state is using, for the ocl implementation, a mere `countNonZero()>0` ; there is not much sense in trying to break early the ocl kernel call when non-zero is encountered. So the ocl implementation does not bring any improvement. - there is no IPP function that can help (`countNonZero()` is based in `ippCountInRange`) - the PR in its current state might be slower than a call to `countNonZero()>0` in some cases (see "challenges" below) Reasons why it might be accepted : - the performance gain is huge on average, if we consider that "on average" means "non zero in the middle of the image" - the "missing" IPP implementation is replaced by an "Open-CV universal intrinsics" implementation - the PR in its current state is almost always faster than a call to `countNonZero()>0`, is only slightly slower in the worst cases, and not even for all matrices **Challenges** The worst case is either an all-zero matrix, or a non-zero at the very last position. In such a case, the `hasNonZero()` implementation will parse the whole matrix like `countNonZero()` would do. But we expect the performance to be the same in this case. And `ippCountInRange` is hard to beat ! There is also the case of very small matrices (<=32x32...) in 8b, where the SIMD can be hard to feed. For all cases but the worse, my custom `hasNonZero()` performs better than `ippCountInRange()` For the worst case, my custom `hasNonZero()` performs better than `ippCountInRange()` *except for large matrices of type CV_32S or CV_64F* (but surprisingly, not CV_32F). The difference is small, but it exists (and I don't understand why). For very small CV_8U matrices `ippCountInRange()` seems unbeatable. Here is the code that I use to check timings ``` //test cv::hasNonZero() vs (cv::countNonZero()>0) for different matrices sizes, types, strides... { cv::setRNGSeed(1234); const std::vector<cv::Size> sizes = {{32, 32}, {64, 64}, {128, 128}, {320, 240}, {512, 512}, {640, 480}, {1024, 768}, {2048, 2048}, {1031, 1000}}; const std::vector<int> types = {CV_8U, CV_16U, CV_32S, CV_32F, CV_64F}; const size_t iterations = 1000; for(const cv::Size& size : sizes) { for(const int type : types) { for(int c = 0 ; c<2 ; ++c) { const bool continuous = !c; for(int i = 0 ; i<4 ; ++i) { cv::Mat m = continuous ? cv::Mat::zeros(size, type) : cv::Mat(cv::Mat::zeros(cv::Size(2*size.width, size.height), type), cv::Rect(cv::Point(0, 0), size)); const bool nz = (i <= 2); const unsigned int nzOffsetRange = 10; const unsigned int nzOffset = cv::randu<unsigned int>()%nzOffsetRange; const cv::Point pos = (i == 0) ? cv::Point(nzOffset, 0) : (i == 1) ? cv::Point(size.width/2-nzOffsetRange/2+nzOffset, size.height/2) : (i == 2) ? cv::Point(size.width-1-nzOffset, size.height-1) : cv::Point(0, 0); std::cout << "============================================================" << std::endl; std::cout << "size:" << size << " type:" << type << " continuous = " << (continuous ? "true" : "false") << " iterations:" << iterations << " nz=" << (nz ? "true" : "false"); std::cout << " pos=" << ((i == 0) ? "begin" : (i == 1) ? "middle" : (i == 2) ? "end" : "none"); std::cout << std::endl; cv::Mat mask = cv::Mat::zeros(size, CV_8UC1); mask.at<unsigned char>(pos) = 0xFF; m.setTo(cv::Scalar::all(0)); m.setTo(cv::Scalar::all(nz ? 1 : 0), mask); std::vector<bool> results; std::vector<double> timings; { bool res = false; auto ref = cv::getTickCount(); for(size_t k = 0 ; k<iterations ; ++k) res = cv::hasNonZero(m); auto now = cv::getTickCount(); const bool error = (res != nz); if (error) printf("!!ERROR!!\r\n"); results.push_back(res); timings.push_back(1000.*(now-ref)/cv::getTickFrequency()); } { bool res = false; auto ref = cv::getTickCount(); for(size_t k = 0 ; k<iterations ; ++k) res = (cv::countNonZero(m)>0); auto now = cv::getTickCount(); const bool error = (res != nz); if (error) printf("!!ERROR!!\r\n"); results.push_back(res); timings.push_back(1000.*(now-ref)/cv::getTickFrequency()); } const size_t bestTimingIndex = (std::min_element(timings.begin(), timings.end())-timings.begin()); if ((bestTimingIndex != 0) || (std::find_if_not(results.begin(), results.end(), [&](bool r) {return (r == nz);}) != results.end())) { std::cout << "cv::hasNonZero\t\t=>" << results[0] << ((results[0] != nz) ? " ERROR" : "") << " perf:" << timings[0] << "ms => " << (iterations/timings[0]*1000) << " im/s" << ((bestTimingIndex == 0) ? " * " : "") << std::endl; std::cout << "cv::countNonZero\t=>" << results[1] << ((results[1] != nz) ? " ERROR" : "") << " perf:" << timings[1] << "ms => " << (iterations/timings[1]*1000) << " im/s" << ((bestTimingIndex == 1) ? " * " : "") << std::endl; } } } } } } ``` Here is a report of this benchmark (it only reports timings when `cv::countNonZero()` is faster) My CPU is an Intel Core I7 4790 @ 3.60Ghz ``` ============================================================ size:[32 x 32] type:0 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[32 x 32] type:0 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[32 x 32] type:0 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[32 x 32] type:0 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[32 x 32] type:0 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[32 x 32] type:0 continuous = false iterations:1000 nz=true pos=middle cv::hasNonZero =>1 perf:0.353764ms => 2.82674e+06 im/s cv::countNonZero =>1 perf:0.282044ms => 3.54555e+06 im/s * ============================================================ size:[32 x 32] type:0 continuous = false iterations:1000 nz=true pos=end cv::hasNonZero =>1 perf:0.610478ms => 1.63806e+06 im/s cv::countNonZero =>1 perf:0.283182ms => 3.5313e+06 im/s * ============================================================ size:[32 x 32] type:0 continuous = false iterations:1000 nz=false pos=none cv::hasNonZero =>0 perf:0.630115ms => 1.58701e+06 im/s cv::countNonZero =>0 perf:0.282044ms => 3.54555e+06 im/s * ============================================================ size:[32 x 32] type:2 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[32 x 32] type:2 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[32 x 32] type:2 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[32 x 32] type:2 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[32 x 32] type:2 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[32 x 32] type:2 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[32 x 32] type:2 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[32 x 32] type:2 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[32 x 32] type:4 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[32 x 32] type:4 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[32 x 32] type:4 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[32 x 32] type:4 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[32 x 32] type:4 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[32 x 32] type:4 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[32 x 32] type:4 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[32 x 32] type:4 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[32 x 32] type:5 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[32 x 32] type:5 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[32 x 32] type:5 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[32 x 32] type:5 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[32 x 32] type:5 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[32 x 32] type:5 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[32 x 32] type:5 continuous = false iterations:1000 nz=true pos=end cv::hasNonZero =>1 perf:0.607347ms => 1.64651e+06 im/s cv::countNonZero =>1 perf:0.467037ms => 2.14116e+06 im/s * ============================================================ size:[32 x 32] type:5 continuous = false iterations:1000 nz=false pos=none cv::hasNonZero =>0 perf:0.618162ms => 1.6177e+06 im/s cv::countNonZero =>0 perf:0.468175ms => 2.13595e+06 im/s * ============================================================ size:[32 x 32] type:6 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[32 x 32] type:6 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[32 x 32] type:6 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[32 x 32] type:6 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[32 x 32] type:6 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[32 x 32] type:6 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[32 x 32] type:6 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[32 x 32] type:6 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[64 x 64] type:0 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[64 x 64] type:0 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[64 x 64] type:0 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[64 x 64] type:0 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[64 x 64] type:0 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[64 x 64] type:0 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[64 x 64] type:0 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[64 x 64] type:0 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[64 x 64] type:2 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[64 x 64] type:2 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[64 x 64] type:2 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[64 x 64] type:2 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[64 x 64] type:2 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[64 x 64] type:2 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[64 x 64] type:2 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[64 x 64] type:2 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[64 x 64] type:4 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[64 x 64] type:4 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[64 x 64] type:4 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[64 x 64] type:4 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[64 x 64] type:4 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[64 x 64] type:4 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[64 x 64] type:4 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[64 x 64] type:4 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[64 x 64] type:5 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[64 x 64] type:5 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[64 x 64] type:5 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[64 x 64] type:5 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[64 x 64] type:5 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[64 x 64] type:5 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[64 x 64] type:5 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[64 x 64] type:5 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[64 x 64] type:6 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[64 x 64] type:6 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[64 x 64] type:6 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[64 x 64] type:6 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[64 x 64] type:6 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[64 x 64] type:6 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[64 x 64] type:6 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[64 x 64] type:6 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[128 x 128] type:0 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[128 x 128] type:0 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[128 x 128] type:0 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[128 x 128] type:0 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[128 x 128] type:0 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[128 x 128] type:0 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[128 x 128] type:0 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[128 x 128] type:0 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[128 x 128] type:2 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[128 x 128] type:2 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[128 x 128] type:2 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[128 x 128] type:2 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[128 x 128] type:2 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[128 x 128] type:2 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[128 x 128] type:2 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[128 x 128] type:2 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[128 x 128] type:4 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[128 x 128] type:4 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[128 x 128] type:4 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[128 x 128] type:4 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[128 x 128] type:4 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[128 x 128] type:4 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[128 x 128] type:4 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[128 x 128] type:4 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[128 x 128] type:5 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[128 x 128] type:5 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[128 x 128] type:5 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[128 x 128] type:5 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[128 x 128] type:5 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[128 x 128] type:5 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[128 x 128] type:5 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[128 x 128] type:5 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[128 x 128] type:6 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[128 x 128] type:6 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[128 x 128] type:6 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[128 x 128] type:6 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[128 x 128] type:6 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[128 x 128] type:6 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[128 x 128] type:6 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[128 x 128] type:6 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[320 x 240] type:0 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[320 x 240] type:0 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[320 x 240] type:0 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[320 x 240] type:0 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[320 x 240] type:0 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[320 x 240] type:0 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[320 x 240] type:0 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[320 x 240] type:0 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[320 x 240] type:2 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[320 x 240] type:2 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[320 x 240] type:2 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[320 x 240] type:2 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[320 x 240] type:2 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[320 x 240] type:2 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[320 x 240] type:2 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[320 x 240] type:2 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[320 x 240] type:4 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[320 x 240] type:4 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[320 x 240] type:4 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[320 x 240] type:4 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[320 x 240] type:4 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[320 x 240] type:4 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[320 x 240] type:4 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[320 x 240] type:4 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[320 x 240] type:5 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[320 x 240] type:5 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[320 x 240] type:5 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[320 x 240] type:5 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[320 x 240] type:5 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[320 x 240] type:5 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[320 x 240] type:5 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[320 x 240] type:5 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[320 x 240] type:6 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[320 x 240] type:6 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[320 x 240] type:6 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[320 x 240] type:6 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[320 x 240] type:6 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[320 x 240] type:6 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[320 x 240] type:6 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[320 x 240] type:6 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[512 x 512] type:0 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[512 x 512] type:0 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[512 x 512] type:0 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[512 x 512] type:0 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[512 x 512] type:0 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[512 x 512] type:0 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[512 x 512] type:0 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[512 x 512] type:0 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[512 x 512] type:2 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[512 x 512] type:2 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[512 x 512] type:2 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[512 x 512] type:2 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[512 x 512] type:2 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[512 x 512] type:2 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[512 x 512] type:2 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[512 x 512] type:2 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[512 x 512] type:4 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[512 x 512] type:4 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[512 x 512] type:4 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[512 x 512] type:4 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[512 x 512] type:4 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[512 x 512] type:4 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[512 x 512] type:4 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[512 x 512] type:4 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[512 x 512] type:5 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[512 x 512] type:5 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[512 x 512] type:5 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[512 x 512] type:5 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[512 x 512] type:5 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[512 x 512] type:5 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[512 x 512] type:5 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[512 x 512] type:5 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[512 x 512] type:6 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[512 x 512] type:6 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[512 x 512] type:6 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[512 x 512] type:6 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[512 x 512] type:6 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[512 x 512] type:6 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[512 x 512] type:6 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[512 x 512] type:6 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[640 x 480] type:0 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[640 x 480] type:0 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[640 x 480] type:0 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[640 x 480] type:0 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[640 x 480] type:0 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[640 x 480] type:0 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[640 x 480] type:0 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[640 x 480] type:0 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[640 x 480] type:2 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[640 x 480] type:2 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[640 x 480] type:2 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[640 x 480] type:2 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[640 x 480] type:2 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[640 x 480] type:2 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[640 x 480] type:2 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[640 x 480] type:2 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[640 x 480] type:4 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[640 x 480] type:4 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[640 x 480] type:4 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[640 x 480] type:4 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[640 x 480] type:4 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[640 x 480] type:4 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[640 x 480] type:4 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[640 x 480] type:4 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[640 x 480] type:5 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[640 x 480] type:5 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[640 x 480] type:5 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[640 x 480] type:5 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[640 x 480] type:5 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[640 x 480] type:5 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[640 x 480] type:5 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[640 x 480] type:5 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[640 x 480] type:6 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[640 x 480] type:6 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[640 x 480] type:6 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[640 x 480] type:6 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[640 x 480] type:6 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[640 x 480] type:6 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[640 x 480] type:6 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[640 x 480] type:6 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[1024 x 768] type:0 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[1024 x 768] type:0 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[1024 x 768] type:0 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[1024 x 768] type:0 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[1024 x 768] type:0 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[1024 x 768] type:0 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[1024 x 768] type:0 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[1024 x 768] type:0 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[1024 x 768] type:2 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[1024 x 768] type:2 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[1024 x 768] type:2 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[1024 x 768] type:2 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[1024 x 768] type:2 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[1024 x 768] type:2 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[1024 x 768] type:2 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[1024 x 768] type:2 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[1024 x 768] type:4 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[1024 x 768] type:4 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[1024 x 768] type:4 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[1024 x 768] type:4 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[1024 x 768] type:4 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[1024 x 768] type:4 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[1024 x 768] type:4 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[1024 x 768] type:4 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[1024 x 768] type:5 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[1024 x 768] type:5 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[1024 x 768] type:5 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[1024 x 768] type:5 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[1024 x 768] type:5 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[1024 x 768] type:5 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[1024 x 768] type:5 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[1024 x 768] type:5 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[1024 x 768] type:6 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[1024 x 768] type:6 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[1024 x 768] type:6 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[1024 x 768] type:6 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[1024 x 768] type:6 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[1024 x 768] type:6 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[1024 x 768] type:6 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[1024 x 768] type:6 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[2048 x 2048] type:0 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[2048 x 2048] type:0 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[2048 x 2048] type:0 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[2048 x 2048] type:0 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[2048 x 2048] type:0 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[2048 x 2048] type:0 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[2048 x 2048] type:0 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[2048 x 2048] type:0 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[2048 x 2048] type:2 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[2048 x 2048] type:2 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[2048 x 2048] type:2 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[2048 x 2048] type:2 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[2048 x 2048] type:2 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[2048 x 2048] type:2 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[2048 x 2048] type:2 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[2048 x 2048] type:2 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[2048 x 2048] type:4 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[2048 x 2048] type:4 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[2048 x 2048] type:4 continuous = true iterations:1000 nz=true pos=end cv::hasNonZero =>1 perf:895.381ms => 1116.84 im/s cv::countNonZero =>1 perf:882.569ms => 1133.06 im/s * ============================================================ size:[2048 x 2048] type:4 continuous = true iterations:1000 nz=false pos=none cv::hasNonZero =>0 perf:899.53ms => 1111.69 im/s cv::countNonZero =>0 perf:870.894ms => 1148.24 im/s * ============================================================ size:[2048 x 2048] type:4 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[2048 x 2048] type:4 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[2048 x 2048] type:4 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[2048 x 2048] type:4 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[2048 x 2048] type:5 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[2048 x 2048] type:5 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[2048 x 2048] type:5 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[2048 x 2048] type:5 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[2048 x 2048] type:5 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[2048 x 2048] type:5 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[2048 x 2048] type:5 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[2048 x 2048] type:5 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[2048 x 2048] type:6 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[2048 x 2048] type:6 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[2048 x 2048] type:6 continuous = true iterations:1000 nz=true pos=end cv::hasNonZero =>1 perf:2018.92ms => 495.313 im/s cv::countNonZero =>1 perf:1966.37ms => 508.552 im/s * ============================================================ size:[2048 x 2048] type:6 continuous = true iterations:1000 nz=false pos=none cv::hasNonZero =>0 perf:2005.87ms => 498.537 im/s cv::countNonZero =>0 perf:1992.78ms => 501.812 im/s * ============================================================ size:[2048 x 2048] type:6 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[2048 x 2048] type:6 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[2048 x 2048] type:6 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[2048 x 2048] type:6 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[1031 x 1000] type:0 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[1031 x 1000] type:0 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[1031 x 1000] type:0 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[1031 x 1000] type:0 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[1031 x 1000] type:0 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[1031 x 1000] type:0 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[1031 x 1000] type:0 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[1031 x 1000] type:0 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[1031 x 1000] type:2 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[1031 x 1000] type:2 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[1031 x 1000] type:2 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[1031 x 1000] type:2 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[1031 x 1000] type:2 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[1031 x 1000] type:2 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[1031 x 1000] type:2 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[1031 x 1000] type:2 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[1031 x 1000] type:4 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[1031 x 1000] type:4 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[1031 x 1000] type:4 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[1031 x 1000] type:4 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[1031 x 1000] type:4 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[1031 x 1000] type:4 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[1031 x 1000] type:4 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[1031 x 1000] type:4 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[1031 x 1000] type:5 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[1031 x 1000] type:5 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[1031 x 1000] type:5 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[1031 x 1000] type:5 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[1031 x 1000] type:5 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[1031 x 1000] type:5 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[1031 x 1000] type:5 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[1031 x 1000] type:5 continuous = false iterations:1000 nz=false pos=none ============================================================ size:[1031 x 1000] type:6 continuous = true iterations:1000 nz=true pos=begin ============================================================ size:[1031 x 1000] type:6 continuous = true iterations:1000 nz=true pos=middle ============================================================ size:[1031 x 1000] type:6 continuous = true iterations:1000 nz=true pos=end ============================================================ size:[1031 x 1000] type:6 continuous = true iterations:1000 nz=false pos=none ============================================================ size:[1031 x 1000] type:6 continuous = false iterations:1000 nz=true pos=begin ============================================================ size:[1031 x 1000] type:6 continuous = false iterations:1000 nz=true pos=middle ============================================================ size:[1031 x 1000] type:6 continuous = false iterations:1000 nz=true pos=end ============================================================ size:[1031 x 1000] type:6 continuous = false iterations:1000 nz=false pos=none done ``` |
2 years ago |
Zihao Mu |
eec8a20c33
|
Merge pull request #23763 from zihaomu:add_runtime_check
DNN: fix bug for X86 Winograd #23763 Address https://github.com/opencv/opencv/issues/23760 The patch aims to add a runtime check for X86 platform without AVX(2). ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake |
2 years ago |
Alex | b729d8e821 |
added graphicalCodeDetector, remove QRCodeDetectorBase
|
2 years ago |
Christine Poerschke | f597838685 |
imgproc: optimise local cost computation in IntelligentScissorsMB::buildMap
|
2 years ago |
TolyaTalamanov | af95395fe7 |
Fix ifdef condition
|
2 years ago |
unknown | 5f8e43da85 |
checktype in blobFromImages and blobFromImagesWithParams
|
2 years ago |
Abduragim Shtanchaev |
6b53fe8f7b
|
Merge pull request #23746 from Abdurrahheem:ash/graph_simplifier
Assertion Fix in Split Layer #23746 ### Pull Request Readiness Checklist This PR fixes issue mentioned in [#23663](https://github.com/opencv/opencv/issues/23663) Merge with https://github.com/opencv/opencv_extra/pull/1067 See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake |
2 years ago |
Christine Poerschke |
d3e7968927
|
Merge pull request #23688 from cpoerschke:4.x-pr-21959-prep
imgproc: add contour values check to IntelligentScissorsMB tests Preparation for the #21959 changes as per @asmorkalov's https://github.com/opencv/opencv/pull/21959#issuecomment-1560511500 suggestion. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [X] I agree to contribute to the project under Apache 2 License. - [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [X] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake |
2 years ago |
Maksim Shabunin | adab462e42 |
imgproc/cvtColor: fixed invalid read in BGR2HLS
|
2 years ago |
Alex | b5ac7ef2f2 |
fix cornerRefinementMethod binding
|
2 years ago |
Wang Kai | 983925c685 |
fixing typo
|
2 years ago |
Jaakko Rantala |
385003e9fe
|
Update blenders.cpp
Removed passing try_gpu parameter to FeatherBlender constructor because it only has sharpness parameter. |
2 years ago |
Alexander Panov |
9fa014edcd
|
Merge pull request #23264 from AleksandrPanov:add_detect_qr_with_aruco
Add detect qr with aruco #23264 Using Aruco to detect finder patterns to search QR codes. TODO (in next PR): - add single QR detect (update `detect()` and `detectAndDecode()`) - need reduce full enumeration of finder patterns - need add finder pattern info to `decode` step - need to merge the pipeline of the old and new algorithm [Current results:](https://docs.google.com/spreadsheets/d/1ufKyR-Zs-IGXwvqPgftssmTlceVjiQX364sbrjr2QU8/edit#gid=1192415584) +20% total detect, +8% total decode in OpenCV [QR benchmark](https://github.com/opencv/opencv_benchmarks/tree/develop/python_benchmarks/qr_codes) ![res1](https://user-images.githubusercontent.com/22337800/231228556-191d3eae-a318-44e1-af99-e7d420bf6248.png) 78.4% detect, 58.7% decode vs 58.5 detect, 50.5% decode in default [main.py.txt](https://github.com/opencv/opencv/files/10762369/main.py.txt) ![res2](https://user-images.githubusercontent.com/22337800/231229123-ed7f1eda-159a-444b-a3ff-f107d8eb4a20.png) add new info to [google docs](https://docs.google.com/spreadsheets/d/1ufKyR-Zs-IGXwvqPgftssmTlceVjiQX364sbrjr2QU8/edit?usp=sharing) ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake |
2 years ago |
Anatoliy Talamanov |
5330112f05
|
Merge pull request #23595 from TolyaTalamanov:at/implement-openvino-backend
[G-API] Implement OpenVINO 2.0 backend #23595 ### Pull Request Readiness Checklist Implemented basic functionality for `OpenVINO` 2.0 G-API backend. #### Overview - [x] Implement `Infer` kernel with some of essential configurable parameters + IR/Blob models format support. - [ ] Implement the rest of kernels: `InferList`, `InferROI`, `Infer2` + other configurable params (e.g reshape) - [x] Asyncrhonous execution support - [ ] Remote context support See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [ ] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake |
2 years ago |
Alexander Smorkalov | 0787c31f41 |
Python package classifiers sync with OpenCV-Python repo.
|
2 years ago |
Anna Khakimova |
6d3dd24622
|
Merge pull request #21797 from anna-khakimova:ak/merge3_extend_supported_types
GAPI Fluid SIMD:Add support of new several types for the Merge3 - Support of the new several types was added. - Fixes for the Split/Merge and ConvertTo issues. |
2 years ago |
Dmitry Matveev |
fc5d412ba7
|
Merge pull request #23597 from dmatveev:dm/gapi_onnx_py_integration
G-API: Integration branch for ONNX & Python-related changes #23597 # Changes overview ## 1. Expose ONNX backend's Normalization and Mean-value parameters in Python * Since Python G-API bindings rely on `Generic` infer to express Inference, the `Generic` specialization of `onnx::Params` was extended with new methods to control normalization (`/255`) and mean-value; these methods were exposed in the Python bindings * Found some questionable parts in the existing API which I'd like to review/discuss (see comments) UPD: 1. Thanks to @TolyaTalamanov normalization inconsistencies have been identified with `squeezenet1.0-9` ONNX model itself; tests using these model were updated to DISABLE normalization and NOT using mean/value. 2. Questionable parts were removed and tests still pass. ### Details (taken from @TolyaTalamanov's comment): `squeezenet1.0.*onnx` - doesn't require scaling to [0,1] and mean/std because the weights of the first convolution already scaled. ONNX documentation is broken. So the correct approach to use this models is: 1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44 but without normalization step: ``` # DON'T DO IT: # mean_vec = np.array([0.485, 0.456, 0.406]) # stddev_vec = np.array([0.229, 0.224, 0.225]) # norm_img_data = np.zeros(img_data.shape).astype('float32') # for i in range(img_data.shape[0]): # norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i] # # add batch channel # norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32') # return norm_img_data # INSTEAD return img_data.reshape(1, 3, 224, 224) ``` 2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters: ``` net = cv.gapi.onnx.params('squeezenet', model_filename) net.cfgNormalize('data_0', False) ``` **Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution. --- `squeezenet1.1.*onnx` - requires scaling to [0,1] and mean/std - onnx documentation is correct. 1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44 2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters: ``` net = cv.gapi.onnx.params('squeezenet', model_filename) net.cfgNormalize('data_0', True) // default net.cfgMeanStd('data_0', [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ``` **Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution. ## 2. Expose Fluid & kernel package-related functionality in Python * `cv::gapi::combine()` * `cv::GKernelPackage::size()` (mainly for testing purposes) * `cv::gapi::imgproc::fluid::kernels()` Added a test for the above. ## 3. Fixed issues with Python stateful kernel handling Fixed error message when `outMeta()` of custom python operation fails. ## 4. Fixed various issues in Python tests 1. `test_gapi_streaming.py` - fixed behavior of Desync test to avoid sporadic issues 2. `test_gapi_infer_onnx.py` - fixed model lookup (it was still using the ONNX Zoo layout but was NOT using the proper env var we use to point to one). ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake |
2 years ago |
Pierre Chatelier |
93d490213f
|
Merge pull request #23690 from chacha21:rotatedRectangleIntersection_precision
better accuracy for _rotatedRectangleIntersection() (proposal for #23546) #23690 _rotatedRectangleIntersection() can be (statically) customized to use double instead of float for better accuracy this is a proposal for experimentation around #23546 for better accuracy, _rotatedRectangleIntersection() could use double. It will still return cv::Point2f list for backward compatibility, but the inner computations are controlled by a typedef - [X] I agree to contribute to the project under Apache 2 License. - [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [X] The PR is proposed to the proper branch - [X] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake |
2 years ago |
Olivier Hotel | 0442c6fa81 |
Addition of normalize_axis to ONNXImporter::parseSqueeze to support negative values for the axes attribut.
Negative values are part of the ONNX optset>=11. Signed-off-by: Olivier Hotel <olivier.hotel@orange.com> |
2 years ago |
Abduragim Shtanchaev | ecd2e8ff47 |
added index that check all inputs of nodes that
match |
2 years ago |
Christine Poerschke |
b5e9eb742c
|
Merge pull request #23698 from cpoerschke:4.x-pr-21959-perf
imgproc: add basic IntelligentScissorsMB performance test #23698 Adding basic performance test that can be used before and after the #21959 changes etc. as per @asmorkalov's https://github.com/opencv/opencv/pull/21959#issuecomment-1565240926 comment. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [X] I agree to contribute to the project under Apache 2 License. - [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [X] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake |
2 years ago |
triple Mu |
1bffe170e1
|
Update setup.py
Fix error: UnboundLocalError: local variable 'typing_stub_files' referenced before assignment |
2 years ago |
Sean McBride | 2083fdc9c0 |
Fixed UBSan warning about undefined pointer arithmetic overflow
Pointer arithmetic overflow is always undefined, whether signed or unsigned. It warned here: `Addition of unsigned offset to 0x00017fd31b97 overflowed to 0x00017fd30c97` Convert the offset to a signed number, so that we can offset either forward or backwards. In my own use of OpenCV at least, this is the only case of pointer arithmetic overflow. |
2 years ago |
Dmitry Kurtaev |
380caa1a87
|
Merge pull request #23691 from dkurt:pycv_float16_fixes
Import and export np.float16 in Python #23691 ### Pull Request Readiness Checklist * Also, fixes `cv::norm` with `NORM_INF` and `CV_16F` resolves https://github.com/opencv/opencv/issues/23687 See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake |
2 years ago |
Dmitry Kurtaev | c97942cf78 |
Fix mask thresholding
|
2 years ago |
captain-n3m0 | 6157db6462 |
Fixed matchTemplate function. #23585
|
2 years ago |
Duong Dac |
a9424868a1
|
Merge pull request #20370 from ddacw:stub-gen-next
Python typing stub generation #20370 Add stub generation to `gen2.py`, addressing #14590. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or other license that is incompatible with OpenCV - [x] The PR is proposed to proper branch - [x] There is reference to original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake |
2 years ago |
Dmitry Kurtaev |
4823285b55
|
Merge pull request #23679 from dkurt:py_cv_type_macro
Python bindings for CV_8UC(n) and other types macros #23679 ### Pull Request Readiness Checklist resolves https://github.com/opencv/opencv/issues/23628#issuecomment-1562468327 See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake |
2 years ago |
Yuantao Feng |
f07b01cc34
|
Merge pull request #23655 from fengyuentau:qlinearsoftmax
Support ONNX operator QLinearSoftmax in dnn #23655 Resolves https://github.com/opencv/opencv/issues/23636. Merge with https://github.com/opencv/opencv_extra/pull/1064. This PR maps the QLinearSoftmax (from com.microsoft domain) to SoftmaxInt8 in dnn along with some speed optimization. Todo: - [x] support QLinearSoftmax with opset = 13 - [x] add model and test data for QLinearSoftmax with opset = 13 - [x] ensure all models have dims >= 3. - [x] add the script to generate model and test data ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake |
2 years ago |
Alexander Smorkalov | bbda6f4c57 |
Backport 5.x: Support for module names that start from digit in ObjC bindings generator.
|
2 years ago |
Dmitry Kurtaev |
29b2f77b5f
|
Merge pull request #23674 from dkurt:py_cv_maketype
CV_MAKETYPE Python binding #23674 ### Pull Request Readiness Checklist resolves https://github.com/opencv/opencv/issues/23628 ```python import cv2 as cv t = cv.CV_MAKETYPE(cv.CV_32F, 4) ``` See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake |
2 years ago |
Maksim Shabunin |
537060d96f
|
Merge pull request #23672 from mshabunin:fix-javadoc17
|
2 years ago |
zihaomu | 4384e77bd1 |
when stride ==0, it should be bug
|
2 years ago |
TolyaTalamanov | dc714c1181 |
Change logic for applying resize
|
2 years ago |
Akshat Chauhan |
c07145fe28
|
Merge pull request #23662 from akormous:docfix
Fix truncated sentenced in boxPoints documentation #22975 #23662 Resolves #22975 Completed the sentence as per the suggestion given in the issue #22975 ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake |
2 years ago |
Alexander Smorkalov | 98d678c2d2 |
Added check that YUYV input of cvtColor has even width.
|
2 years ago |
Christine Poerschke |
d00a96315e
|
Merge pull request #23612 from cpoerschke:3.4-issue-21532
QRCodeDetector: don't floodFill with outside-of-image seedPoint #23612 Fixes #21532. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [X] I agree to contribute to the project under Apache 2 License. - [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [X] The PR is proposed to the proper branch - [X] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake |
2 years ago |