Updated integrations for:
cv::split
cv::merge
cv::insertChannel
cv::extractChannel
cv::Mat::convertTo - now with scaled conversions support
cv::LUT - disabled due to performance issues
Mat::copyTo
Mat::setTo
cv::flip
cv::copyMakeBorder - currently disabled
cv::polarToCart
cv::pow - ipp pow function was removed due to performance issues
cv::hal::magnitude32f/64f - disabled for <= SSE42, poor performance
cv::countNonZero
cv::minMaxIdx
cv::norm
cv::canny - new integration. Disabled for threaded;
cv::cornerHarris
cv::boxFilter
cv::bilateralFilter
cv::integral
Warping a matrix with more than 4 channels using BORDER_CONSTANT and
INTER_NEAREST, INTER_CUBIC or INTER_LANCZOS4 interpolation led to
undefined behaviour. This commit changes the behavior of these methods
to be similar to that of INTER_LINEAR. Changed the scope of some of the
variables to more local. Modified some tests to be able to detect the
error described.
Add new 5x5 gaussian blur kernel for CV_8UC1 format,
it is 50% ~ 70% faster than current ocl kernel in the perf test.
Signed-off-by: Li Peng <peng.li@intel.com>
Add new OpenCL kernels for bicubic interploation, it is 20% faster
than current warp image kernel with bicubic interploation.
Signed-off-by: Li Peng <peng.li@intel.com>
Add new ocl kernels for warpAffine and warpPerspective,
The average performance improvemnt is about 30%. The new
ocl kernels require CV_8UC1 format and support nearest
neighbor and bilinear interpolation.
Signed-off-by: Li Peng <peng.li@intel.com>
This ocl kernel is 46%~171% faster than current laplacian 3x3
ocl kernel in the perf test, with image format "CV_8UC1".
Signed-off-by: Li Peng <peng.li@intel.com>
Change contour test images to be very wide (#7464)
* Change contour test images to be very wide (#7409, #7458)
Unfortunately, slows down the tests.
* Decrease the number of contour test cases, in order to (at least partially) offset the test run duration increase caused by making the test images wider
* Don't test with very wide images on 32-bit architectures
This ocl kernel is for 3x3 kernel size and CV_8UC1 format
It is 115% ~ 300% faster than current ocl path in perf test
python ./modules/ts/misc/run.py -t imgproc --gtest_filter=OCL_GaussianBlurFixture*
Signed-off-by: Li Peng <peng.li@intel.com>
This kernel is for CV_8UC1 format and 3x3 kernel size,
It is about 33% ~ 55% faster than current ocl kernel with below perf test
python ./modules/ts/misc/run.py -t imgproc --gtest_filter=OCL_ErodeFixture*
python ./modules/ts/misc/run.py -t imgproc --gtest_filter=OCL_DilateFixture*
Also add accuracy test cases for this kernel, the test command is
./bin/opencv_test_imgproc --gtest_filter=OCL_Filter/MorphFilter3x3*
Signed-off-by: Li Peng <peng.li@intel.com>
The optimization is for CV_8UC1 format and 3x3 box filter,
it is 15%~87% faster than current ocl kernel with below perf test
./modules/ts/misc/run.py -t imgproc --gtest_filter=OCL_BlurFixture*
Also add test cases for this ocl kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add Grana's connected components algorithm for 8-way connectivity. That algorithm is faster than Wu's one (currently implemented in opencv). For more details see https://github.com/prittt/YACCLAB.
* New functions signature and distance transform compatibility
* Add tests to imgproc/test/test_connectedcomponents.cpp
* Change of test_connectedcomponents.cpp for c++98 support
IPP_VERSION_MAJOR * 100 + IPP_VERSION_MINOR*10 + IPP_VERSION_UPDATE
to manage changes between updates more easily.
IPP_DISABLE_BLOCK was added to ease tracking of disabled IPP functions;