Rename remaining float16_t for future proof #25387
Resolves comment: https://github.com/opencv/opencv/pull/25217#discussion_r1547733187.
`std::float16_t` and `std::bfloat16_t` are introduced since c++23: https://en.cppreference.com/w/cpp/types/floating-point.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
core: persistence: output reals as human-friendly expression. #25351Close#25073
Related https://github.com/opencv/opencv/pull/25087
This patch is need to merge same time with https://github.com/opencv/opencv_contrib/pull/3714
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
imgproc: fix unaligned memory access in filters and Gaussian blur #25364
* filter/SIMD: removed parts which casted 8u pointers to int causing unaligned memory access on RISC-V platform.
* GaussianBlur/fixed_point: replaced casts from s16 to u32 with union operations
Performance comparison:
- [x] check performance on x86_64 - (4 threads, `-DCPU_BASELINE=AVX2`, GCC 11.4, Ubuntu 22) - [report_imgproc_x86_64.ods](https://github.com/opencv/opencv/files/14904702/report_x86_64.ods)
- [x] check performance on AArch64 - (4 cores of RK3588, GCC 11.4 aarch64, Raspbian) - [report_imgproc_aarch64.ods](https://github.com/opencv/opencv/files/14908437/report_aarch64.ods)
Note: for some reason my performance results are quite unstable, unaffected functions show speedups and slowdowns in many cases. Filter2D and GaussianBlur seem to be OK.
Slightly related PR: https://github.com/opencv/ci-gha-workflow/pull/165
Added and tested yolov8m model. #25357
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [X] The feature is well documented and sample code can be built with the project CMake
Below is evidence of the test:
![yolov8m](https://github.com/opencv/opencv/assets/675645/f9bfe2c6-fe4a-42fc-93a6-17e4da5c9bb5)
Reworked findContours to reduce C-API usage #25146
What is done:
* rewritten `findContours` and `icvApproximateChainTC89` using C++ data structures
* extracted LINK_RUNS mode to separate new public functions - `findContoursLinkRuns` (it uses completely different algorithm)
* ~added new public `cv::approximateChainTC89`~ - **❌ decided to hide it**
* enabled chain code output (method = 0, no public enum value for this in C++ yet)
* kept old function as `findContours_old` (exported, but not exposed to user)
* added more tests for findContours (`test_contours_new.cpp`), some tests compare results of old function with new one. Following tests have been added:
* contours of random rectangle
* contours of many small (1-2px) blobs
* contours of random noise
* backport of old accuracy test
* separate test for LINK RUNS variant
What is left to be done (can be done now or later):
* improve tests:
* some tests have limited verification (e.g. only verify contour sizes)
* perhaps reference data can be collected and stored
* maybe more test variants can be added (?)
* add enum value for chain code output and a method of returning starting points (e.g. first 8 elements of returned `vector<uchar>` can represent 2 int point coordinates)
* add documentation for new functions - **✔️ DONE**
* check and improve performance (my experiment showed 0.7x-1.1x some time ago)
* remove old functions completely (?)
* change contour return order (BFS) or allow to select it (?)
* return result tree as-is (?) (new data structures should be exposed, bindings should adapt)
core: doc: add note for countNonZero, hasNonZero and findNonZero #25356Close#25345
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
[BugFix] dnn (ONNX): Foce dropping constant inputs in parseClip if they are shared #25319
Resolves https://github.com/opencv/opencv/issues/25278
Merge with https://github.com/opencv/opencv_extra/pull/1165
In Gold-YOLO ,`Div` has a constant input `B=6` which is then parsed into a `Const` layer in the ONNX importer, but `Clip` also has the shared constant input `max=6` which is already a `Const` layer and then connected to `Elementwise` layer. This should not happen because in the `forward()` of `Elementwise` layer, the legacy code goes through and apply activation to each input. More details on https://github.com/opencv/opencv/issues/25278#issuecomment-2032199630.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Ownership check in TFLite importer #25312
### Pull Request Readiness Checklist
resolves https://github.com/opencv/opencv/issues/25310
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Optimize int8 layers in DNN modules by using RISC-V Vector intrinsic. #25230
This patch optimize 3 functions in the int8 layer by using RVV Native Intrinsic.
This patch was tested on QEMU using VLEN=128 and VLEN=256 on `./bin/opencv_test_dnn --gtest_filter="*Int8*"`;
On the real device (k230, VLEN=128), `EfficientDet_int8` in `opencv_perf_dnn` showed a performance improvement of 1.46x.
| Name of Test | Original | optimized | Speed-up |
| ------------------------------------------ | -------- | ---------- | -------- |
| EfficientDet_int8::DNNTestNetwork::OCV/CPU | 2843.467 | 1947.013 | 1.46 |
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake