moved crossCorr (as NPP_Staging wrapper) into public GPU module part from the internal matchTemplate files

pull/13383/head
Alexey Spizhevoy 14 years ago
parent f9bcef9003
commit fef06c25b5
  1. 5
      modules/gpu/include/opencv2/gpu/gpu.hpp
  2. 28
      modules/gpu/src/cuda/imgproc.cu
  3. 24
      modules/gpu/src/cuda/match_template.cu
  4. 131
      modules/gpu/src/imgproc_gpu.cpp
  5. 117
      modules/gpu/src/match_template.cpp

@ -628,6 +628,11 @@ namespace cv
//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria
CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType=BORDER_REFLECT101);
//! computes cross-correlation of two images using FFT
//! supports source images of 32FC1 type only
//! result matrix will have 32FC1 type
CV_EXPORTS void crossCorr(const GpuMat& image, const GpuMat& templ, GpuMat& result);
//! computes the proximity map for the raster template and the image where the template is searched for
CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method);

@ -40,6 +40,7 @@
//
//M*/
#include <cufft.h>
#include "internal_shared.hpp"
#include "opencv2/gpu/device/border_interpolate.hpp"
@ -749,5 +750,32 @@ namespace cv { namespace gpu { namespace imgproc
cudaSafeCall(cudaThreadSynchronize());
}
//////////////////////////////////////////////////////////////////////////
// multiplyAndNormalizeSpects
__global__ void multiplyAndNormalizeSpectsKernel(
int n, float scale, const cufftComplex* a,
const cufftComplex* b, cufftComplex* c)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
if (x < n)
{
cufftComplex v = cuCmulf(a[x], cuConjf(b[x]));
c[x] = make_cuFloatComplex(cuCrealf(v) * scale, cuCimagf(v) * scale);
}
}
// Performs per-element multiplication and normalization of two spectrums
void multiplyAndNormalizeSpects(int n, float scale, const cufftComplex* a,
const cufftComplex* b, cufftComplex* c)
{
dim3 threads(256);
dim3 grid(divUp(n, threads.x));
multiplyAndNormalizeSpectsKernel<<<grid, threads>>>(n, scale, a, b, c);
cudaSafeCall(cudaThreadSynchronize());
}
}}}

@ -40,7 +40,6 @@
//
//M*/
#include <cufft.h>
#include "internal_shared.hpp"
#include "opencv2/gpu/device/vecmath.hpp"
@ -256,29 +255,6 @@ void matchTemplateNaive_SQDIFF_8U(const DevMem2D image, const DevMem2D templ,
}
__global__ void multiplyAndNormalizeSpectsKernel(
int n, float scale, const cufftComplex* a,
const cufftComplex* b, cufftComplex* c)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
if (x < n)
{
cufftComplex v = cuCmulf(a[x], cuConjf(b[x]));
c[x] = make_cuFloatComplex(cuCrealf(v) * scale, cuCimagf(v) * scale);
}
}
void multiplyAndNormalizeSpects(int n, float scale, const cufftComplex* a,
const cufftComplex* b, cufftComplex* c)
{
dim3 threads(256);
dim3 grid(divUp(n, threads.x));
multiplyAndNormalizeSpectsKernel<<<grid, threads>>>(n, scale, a, b, c);
cudaSafeCall(cudaThreadSynchronize());
}
template <int cn>
__global__ void matchTemplatePreparedKernel_SQDIFF_8U(
int w, int h, const PtrStep_<unsigned long long> image_sqsum,

@ -41,6 +41,7 @@
//M*/
#include "precomp.hpp"
#include <utility>
using namespace cv;
using namespace cv::gpu;
@ -73,6 +74,7 @@ void cv::gpu::histRange(const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu();
void cv::gpu::histRange(const GpuMat&, GpuMat*, const GpuMat*) { throw_nogpu(); }
void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, int, int, double, int) { throw_nogpu(); }
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, int, int, int) { throw_nogpu(); }
void cv::gpu::crossCorr(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
@ -1062,6 +1064,135 @@ void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, i
imgproc::cornerMinEigenVal_caller(blockSize, Dx, Dy, dst, gpuBorderType);
}
//////////////////////////////////////////////////////////////////////////////
// crossCorr
namespace
{
// Estimates optimal block size
void crossCorrOptBlockSize(int w, int h, int tw, int th, int& bw, int& bh)
{
int major, minor;
getComputeCapability(getDevice(), major, minor);
int scale = 40;
int bh_min = 1024;
int bw_min = 1024;
// Check whether we use Fermi generation or newer GPU
if (major >= 2)
{
bh_min = 2048;
bw_min = 2048;
}
bw = std::max(tw * scale, bw_min);
bh = std::max(th * scale, bh_min);
bw = std::min(bw, w);
bh = std::min(bh, h);
}
}
namespace cv { namespace gpu { namespace imgproc
{
void multiplyAndNormalizeSpects(int n, float scale, const cufftComplex* a,
const cufftComplex* b, cufftComplex* c);
}}}
void cv::gpu::crossCorr(const GpuMat& image, const GpuMat& templ, GpuMat& result)
{
CV_Assert(image.type() == CV_32F);
CV_Assert(templ.type() == CV_32F);
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
Size block_size;
crossCorrOptBlockSize(result.cols, result.rows, templ.cols, templ.rows,
block_size.width, block_size.height);
Size dft_size;
dft_size.width = getOptimalDFTSize(block_size.width + templ.cols - 1);
dft_size.height = getOptimalDFTSize(block_size.width + templ.rows - 1);
block_size.width = std::min(dft_size.width - templ.cols + 1, result.cols);
block_size.height = std::min(dft_size.height - templ.rows + 1, result.rows);
cufftReal* image_data;
cufftReal* templ_data;
cufftReal* result_data;
cudaSafeCall(cudaMalloc((void**)&image_data, sizeof(cufftReal) * dft_size.area()));
cudaSafeCall(cudaMalloc((void**)&templ_data, sizeof(cufftReal) * dft_size.area()));
cudaSafeCall(cudaMalloc((void**)&result_data, sizeof(cufftReal) * dft_size.area()));
int spect_len = dft_size.height * (dft_size.width / 2 + 1);
cufftComplex* image_spect;
cufftComplex* templ_spect;
cufftComplex* result_spect;
cudaSafeCall(cudaMalloc((void**)&image_spect, sizeof(cufftComplex) * spect_len));
cudaSafeCall(cudaMalloc((void**)&templ_spect, sizeof(cufftComplex) * spect_len));
cudaSafeCall(cudaMalloc((void**)&result_spect, sizeof(cufftComplex) * spect_len));
cufftHandle planR2C, planC2R;
cufftSafeCall(cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R));
cufftSafeCall(cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C));
GpuMat templ_roi(templ.size(), CV_32S, templ.data, templ.step);
GpuMat templ_block(dft_size, CV_32S, templ_data, dft_size.width * sizeof(cufftReal));
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
templ_block.cols - templ_roi.cols, 0);
cufftSafeCall(cufftExecR2C(planR2C, templ_data, templ_spect));
GpuMat image_block(dft_size, CV_32S, image_data, dft_size.width * sizeof(cufftReal));
// Process all blocks of the result matrix
for (int y = 0; y < result.rows; y += block_size.height)
{
for (int x = 0; x < result.cols; x += block_size.width)
{
// Locate ROI in the source matrix
Size image_roi_size;
image_roi_size.width = std::min(x + dft_size.width, image.cols) - x;
image_roi_size.height = std::min(y + dft_size.height, image.rows) - y;
GpuMat image_roi(image_roi_size, CV_32S, (void*)(image.ptr<float>(y) + x), image.step);
// Make source image block continous
copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows, 0,
image_block.cols - image_roi.cols, 0);
cufftSafeCall(cufftExecR2C(planR2C, image_data, image_spect));
imgproc::multiplyAndNormalizeSpects(spect_len, 1.f / dft_size.area(),
image_spect, templ_spect, result_spect);
cufftSafeCall(cufftExecC2R(planC2R, result_spect, result_data));
// Copy result block into appropriate part of the result matrix.
// We can't compute it inplace as the result of the CUFFT transforms
// is always continous, while the result matrix and its blocks can have gaps.
Size result_roi_size;
result_roi_size.width = std::min(x + block_size.width, result.cols) - x;
result_roi_size.height = std::min(y + block_size.height, result.rows) - y;
GpuMat result_roi(result_roi_size, CV_32F, (void*)(result.ptr<float>(y) + x), result.step);
GpuMat result_block(result_roi_size, CV_32F, result_data, dft_size.width * sizeof(cufftReal));
result_block.copyTo(result_roi);
}
}
cufftSafeCall(cufftDestroy(planR2C));
cufftSafeCall(cufftDestroy(planC2R));
cudaSafeCall(cudaFree(image_spect));
cudaSafeCall(cudaFree(templ_spect));
cudaSafeCall(cudaFree(result_spect));
cudaSafeCall(cudaFree(image_data));
cudaSafeCall(cudaFree(templ_data));
cudaSafeCall(cudaFree(result_data));
}
#endif /* !defined (HAVE_CUDA) */

@ -41,7 +41,6 @@
//M*/
#include "precomp.hpp"
#include <utility>
using namespace cv;
using namespace cv::gpu;
@ -54,9 +53,6 @@ void cv::gpu::matchTemplate(const GpuMat&, const GpuMat&, GpuMat&, int) { throw_
namespace cv { namespace gpu { namespace imgproc
{
void multiplyAndNormalizeSpects(int n, float scale, const cufftComplex* a,
const cufftComplex* b, cufftComplex* c);
void matchTemplateNaive_CCORR_8U(
const DevMem2D image, const DevMem2D templ, DevMem2Df result, int cn);
@ -155,11 +151,6 @@ namespace cv { namespace gpu { namespace imgproc
namespace
{
// Estimates optimal blocks size for FFT method
void estimateBlockSize(int w, int h, int tw, int th, int& bw, int& bh);
// Performs FFT-based cross-correlation
void crossCorr_32F(const GpuMat& image, const GpuMat& templ, GpuMat& result);
// Evaluates optimal template's area threshold. If
// template's area is less than the threshold, we use naive match
@ -178,110 +169,6 @@ namespace
void matchTemplate_CCOFF_NORMED_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result);
void estimateBlockSize(int w, int h, int tw, int th, int& bw, int& bh)
{
int major, minor;
getComputeCapability(getDevice(), major, minor);
int scale = 40;
int bh_min = 1024;
int bw_min = 1024;
if (major >= 2) // Fermi generation or newer
{
bh_min = 2048;
bw_min = 2048;
}
bw = std::max(tw * scale, bw_min);
bh = std::max(th * scale, bh_min);
bw = std::min(bw, w);
bh = std::min(bh, h);
}
void crossCorr_32F(const GpuMat& image, const GpuMat& templ, GpuMat& result)
{
CV_Assert(image.type() == CV_32F);
CV_Assert(templ.type() == CV_32F);
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
Size block_size;
estimateBlockSize(result.cols, result.rows, templ.cols, templ.rows,
block_size.width, block_size.height);
Size dft_size;
dft_size.width = getOptimalDFTSize(block_size.width + templ.cols - 1);
dft_size.height = getOptimalDFTSize(block_size.width + templ.rows - 1);
block_size.width = std::min(dft_size.width - templ.cols + 1, result.cols);
block_size.height = std::min(dft_size.height - templ.rows + 1, result.rows);
cufftReal* image_data;
cufftReal* templ_data;
cufftReal* result_data;
cudaSafeCall(cudaMalloc((void**)&image_data, sizeof(cufftReal) * dft_size.area()));
cudaSafeCall(cudaMalloc((void**)&templ_data, sizeof(cufftReal) * dft_size.area()));
cudaSafeCall(cudaMalloc((void**)&result_data, sizeof(cufftReal) * dft_size.area()));
int spect_len = dft_size.height * (dft_size.width / 2 + 1);
cufftComplex* image_spect;
cufftComplex* templ_spect;
cufftComplex* result_spect;
cudaSafeCall(cudaMalloc((void**)&image_spect, sizeof(cufftComplex) * spect_len));
cudaSafeCall(cudaMalloc((void**)&templ_spect, sizeof(cufftComplex) * spect_len));
cudaSafeCall(cudaMalloc((void**)&result_spect, sizeof(cufftComplex) * spect_len));
cufftHandle planR2C, planC2R;
cufftSafeCall(cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R));
cufftSafeCall(cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C));
GpuMat templ_roi(templ.size(), CV_32S, templ.data, templ.step);
GpuMat templ_block(dft_size, CV_32S, templ_data, dft_size.width * sizeof(cufftReal));
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
templ_block.cols - templ_roi.cols, 0);
cufftSafeCall(cufftExecR2C(planR2C, templ_data, templ_spect));
GpuMat image_block(dft_size, CV_32S, image_data, dft_size.width * sizeof(cufftReal));
for (int y = 0; y < result.rows; y += block_size.height)
{
for (int x = 0; x < result.cols; x += block_size.width)
{
Size image_roi_size;
image_roi_size.width = min(x + dft_size.width, image.cols) - x;
image_roi_size.height = min(y + dft_size.height, image.rows) - y;
GpuMat image_roi(image_roi_size, CV_32S, (void*)(image.ptr<float>(y) + x), image.step);
copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows, 0,
image_block.cols - image_roi.cols, 0);
cufftSafeCall(cufftExecR2C(planR2C, image_data, image_spect));
imgproc::multiplyAndNormalizeSpects(spect_len, 1.f / dft_size.area(),
image_spect, templ_spect, result_spect);
cufftSafeCall(cufftExecC2R(planC2R, result_spect, result_data));
Size result_roi_size;
result_roi_size.width = min(x + block_size.width, result.cols) - x;
result_roi_size.height = min(y + block_size.height, result.rows) - y;
GpuMat result_roi(result_roi_size, CV_32F, (void*)(result.ptr<float>(y) + x), result.step);
GpuMat result_block(result_roi_size, CV_32F, result_data, dft_size.width * sizeof(cufftReal));
result_block.copyTo(result_roi);
}
}
cufftSafeCall(cufftDestroy(planR2C));
cufftSafeCall(cufftDestroy(planC2R));
cudaSafeCall(cudaFree(image_spect));
cudaSafeCall(cudaFree(templ_spect));
cudaSafeCall(cudaFree(result_spect));
cudaSafeCall(cudaFree(image_data));
cudaSafeCall(cudaFree(templ_data));
cudaSafeCall(cudaFree(result_data));
}
int getTemplateThreshold(int method, int depth)
{
switch (method)
@ -309,7 +196,7 @@ namespace
}
GpuMat result_;
crossCorr_32F(image.reshape(1), templ.reshape(1), result_);
crossCorr(image.reshape(1), templ.reshape(1), result_);
imgproc::extractFirstChannel_32F(result_, result, image.channels());
}
@ -541,5 +428,3 @@ void cv::gpu::matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& re
}
#endif

Loading…
Cancel
Save