Added to the tutorials the "Support Vector Machines for Non-Linearly Separable Data" contributed by Fernando Iglesias García. Corrected a mistake in the gpu-basics-similarity.rst file.
parent
a51a8ad577
commit
fec995391f
9 changed files with 256 additions and 30 deletions
File diff suppressed because one or more lines are too long
After Width: | Height: | Size: 14 KiB |
After Width: | Height: | Size: 10 KiB |
File diff suppressed because one or more lines are too long
After Width: | Height: | Size: 5.1 KiB |
@ -0,0 +1,130 @@ |
||||
#include <iostream> |
||||
#include <opencv2/core/core.hpp> |
||||
#include <opencv2/highgui/highgui.hpp> |
||||
#include <opencv2/ml/ml.hpp> |
||||
|
||||
#define NTRAINING_SAMPLES 100 // Number of training samples per class
|
||||
#define FRAC_LINEAR_SEP 0.9f // Fraction of samples which compose the linear separable part
|
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
void help() |
||||
{ |
||||
cout<< "\n--------------------------------------------------------------------------" << endl |
||||
<< "This program shows Support Vector Machines for Non-Linearly Separable Data. " << endl |
||||
<< "Usage:" << endl |
||||
<< "./non_linear_svms" << endl |
||||
<< "--------------------------------------------------------------------------" << endl |
||||
<< endl; |
||||
} |
||||
|
||||
int main() |
||||
{ |
||||
help(); |
||||
|
||||
// Data for visual representation
|
||||
const int WIDTH = 512, HEIGHT = 512; |
||||
Mat I = Mat::zeros(HEIGHT, WIDTH, CV_8UC3); |
||||
|
||||
//--------------------- 1. Set up training data randomly ---------------------------------------
|
||||
Mat trainData(2*NTRAINING_SAMPLES, 2, CV_32FC1); |
||||
Mat labels (2*NTRAINING_SAMPLES, 1, CV_32FC1); |
||||
|
||||
RNG rng(100); // Random value generation class
|
||||
|
||||
// Set up the linearly separable part of the training data
|
||||
int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES); |
||||
|
||||
// Generate random points for the class 1
|
||||
Mat trainClass = trainData.rowRange(0, nLinearSamples); |
||||
// The x coordinate of the points is in [0, 0.4)
|
||||
Mat c = trainClass.colRange(0, 1); |
||||
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(0.4 * WIDTH)); |
||||
// The y coordinate of the points is in [0, 1)
|
||||
c = trainClass.colRange(1,2); |
||||
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); |
||||
|
||||
// Generate random points for the class 2
|
||||
trainClass = trainData.rowRange(2*NTRAINING_SAMPLES-nLinearSamples, 2*NTRAINING_SAMPLES); |
||||
// The x coordinate of the points is in [0.6, 1]
|
||||
c = trainClass.colRange(0 , 1);
|
||||
rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH)); |
||||
// The y coordinate of the points is in [0, 1)
|
||||
c = trainClass.colRange(1,2); |
||||
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); |
||||
|
||||
//------------------ Set up the non-linearly separable part of the training data ---------------
|
||||
|
||||
// Generate random points for the classes 1 and 2
|
||||
trainClass = trainData.rowRange( nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples); |
||||
// The x coordinate of the points is in [0.4, 0.6)
|
||||
c = trainClass.colRange(0,1); |
||||
rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH));
|
||||
// The y coordinate of the points is in [0, 1)
|
||||
c = trainClass.colRange(1,2); |
||||
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); |
||||
|
||||
//------------------------- Set up the labels for the classes ---------------------------------
|
||||
labels.rowRange( 0, NTRAINING_SAMPLES).setTo(1); // Class 1
|
||||
labels.rowRange(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES).setTo(2); // Class 2
|
||||
|
||||
//------------------------ 2. Set up the support vector machines parameters --------------------
|
||||
CvSVMParams params; |
||||
params.svm_type = SVM::C_SVC; |
||||
params.C = 0.1; |
||||
params.kernel_type = SVM::LINEAR; |
||||
params.term_crit = TermCriteria(CV_TERMCRIT_ITER, (int)1e7, 1e-6); |
||||
|
||||
//------------------------ 3. Train the svm ----------------------------------------------------
|
||||
cout << "Starting training process" << endl; |
||||
CvSVM svm; |
||||
svm.train(trainData, labels, Mat(), Mat(), params); |
||||
cout << "Finished training process" << endl; |
||||
|
||||
//------------------------ 4. Show the decision regions ----------------------------------------
|
||||
Vec3b green(0,100,0), blue (100,0,0); |
||||
for (int i = 0; i < I.rows; ++i) |
||||
for (int j = 0; j < I.cols; ++j) |
||||
{ |
||||
Mat sampleMat = (Mat_<float>(1,2) << i, j); |
||||
float response = svm.predict(sampleMat); |
||||
|
||||
if (response == 1) I.at<Vec3b>(j, i) = green; |
||||
else if (response == 2) I.at<Vec3b>(j, i) = blue; |
||||
} |
||||
|
||||
//----------------------- 5. Show the training data --------------------------------------------
|
||||
int thick = -1; |
||||
int lineType = 8; |
||||
float px, py; |
||||
// Class 1
|
||||
for (int i = 0; i < NTRAINING_SAMPLES; ++i) |
||||
{ |
||||
px = trainData.at<float>(i,0); |
||||
py = trainData.at<float>(i,1); |
||||
circle(I, Point( (int) px, (int) py ), 3, Scalar(0, 255, 0), thick, lineType); |
||||
} |
||||
// Class 2
|
||||
for (int i = NTRAINING_SAMPLES; i <2*NTRAINING_SAMPLES; ++i) |
||||
{ |
||||
px = trainData.at<float>(i,0); |
||||
py = trainData.at<float>(i,1); |
||||
circle(I, Point( (int) px, (int) py ), 3, Scalar(255, 0, 0), thick, lineType); |
||||
} |
||||
|
||||
//------------------------- 6. Show support vectors --------------------------------------------
|
||||
thick = 2; |
||||
lineType = 8; |
||||
int x = svm.get_support_vector_count(); |
||||
|
||||
for (int i = 0; i < x; ++i) |
||||
{ |
||||
const float* v = svm.get_support_vector(i); |
||||
circle( I, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thick, lineType); |
||||
} |
||||
|
||||
imwrite("result.png", I); // save the Image
|
||||
imshow("SVM for Non-Linear Training Data", I); // show it to the user
|
||||
waitKey(0); |
||||
} |
Loading…
Reference in new issue