Merge pull request #19976 from jiangjiajun:master
* Added PaddlePaddle classification model conversion case * Modify cv2 import as cv * Modify documents in dnn_conversion/paddlepaddle * Modify documents in dnn_conversion/paddlepaddlepull/20082/head
parent
aadbebf9d8
commit
fea45c6911
5 changed files with 1078 additions and 0 deletions
@ -0,0 +1,13 @@ |
|||||||
|
# Run PaddlePaddle model by OpenCV |
||||||
|
|
||||||
|
This tutorial shows how to run PaddlePaddle model by opencv, run the example code as below, |
||||||
|
|
||||||
|
```shell |
||||||
|
python paddle_resnet50.py |
||||||
|
``` |
||||||
|
|
||||||
|
there are 3 part of this execution |
||||||
|
|
||||||
|
- 1. Export PaddlePaddle ResNet50 model to onnx format |
||||||
|
- 2. Use `cv2.dnn.readNetFromONNX` load model file |
||||||
|
- 3. Preprocess image file and do inference |
After Width: | Height: | Size: 126 KiB |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,61 @@ |
|||||||
|
import paddle |
||||||
|
import paddlehub as hub |
||||||
|
import paddlehub.vision.transforms as T |
||||||
|
import cv2 as cv |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
|
||||||
|
def preprocess(image_path): |
||||||
|
''' preprocess input image file to np.ndarray |
||||||
|
|
||||||
|
Args: |
||||||
|
image_path(str): Path of input image file |
||||||
|
|
||||||
|
Returns: |
||||||
|
ProcessedImage(numpy.ndarray): A numpy.ndarray |
||||||
|
variable which shape is (1, 3, 224, 224) |
||||||
|
''' |
||||||
|
transforms = T.Compose([ |
||||||
|
T.Resize((256, 256)), |
||||||
|
T.CenterCrop(224), |
||||||
|
T.Normalize(mean=[0.485, 0.456, 0.406], |
||||||
|
std=[0.229, 0.224, 0.225])], |
||||||
|
to_rgb=True) |
||||||
|
return np.expand_dims(transforms(image_path), axis=0) |
||||||
|
|
||||||
|
|
||||||
|
def export_onnx_mobilenetv2(save_path): |
||||||
|
''' export PaddlePaddle model to ONNX format |
||||||
|
|
||||||
|
Args: |
||||||
|
save_path(str): Path to save exported ONNX model |
||||||
|
|
||||||
|
Returns: |
||||||
|
None |
||||||
|
''' |
||||||
|
model = hub.Module(name="resnet50_vd_imagenet_ssld") |
||||||
|
input_spec = paddle.static.InputSpec( |
||||||
|
[1, 3, 224, 224], "float32", "image") |
||||||
|
paddle.onnx.export(model, save_path, |
||||||
|
input_spec=[input_spec], |
||||||
|
opset_version=10) |
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__': |
||||||
|
save_path = './resnet50' |
||||||
|
image_file = './data/cat.jpg' |
||||||
|
labels = open('./data/labels.txt').read().strip().split('\n') |
||||||
|
model = export_onnx_mobilenetv2(save_path) |
||||||
|
|
||||||
|
# load mobilenetv2 use cv.dnn |
||||||
|
net = cv.dnn.readNetFromONNX(save_path + '.onnx') |
||||||
|
# read and preprocess image file |
||||||
|
im = preprocess(image_file) |
||||||
|
# inference |
||||||
|
net.setInput(im) |
||||||
|
result = net.forward(['save_infer_model/scale_0.tmp_0']) |
||||||
|
# post process |
||||||
|
class_id = np.argmax(result[0]) |
||||||
|
label = labels[class_id] |
||||||
|
print("Image: {}".format(image_file)) |
||||||
|
print("Predict Category: {}".format(label)) |
Loading…
Reference in new issue