|
|
|
@ -20,6 +20,7 @@ |
|
|
|
|
// Jia Haipeng, jiahaipeng95@gmail.com
|
|
|
|
|
// Wu Xinglong, wxl370@126.com
|
|
|
|
|
// Wang Yao, bitwangyaoyao@gmail.com
|
|
|
|
|
// Sen Liu, swjtuls1987@126.com
|
|
|
|
|
//
|
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
@ -843,15 +844,13 @@ static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade |
|
|
|
|
} /* j */ |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemStorage *storage, double scaleFactor, |
|
|
|
|
int minNeighbors, int flags, CvSize minSize, CvSize maxSize) |
|
|
|
|
{ |
|
|
|
|
CvHaarClassifierCascade *cascade = oldCascade; |
|
|
|
|
|
|
|
|
|
//double alltime = (double)cvGetTickCount();
|
|
|
|
|
//double t = (double)cvGetTickCount();
|
|
|
|
|
const double GROUP_EPS = 0.2; |
|
|
|
|
oclMat gtemp, gsum1, gtilted1, gsqsum1, gnormImg, gsumcanny; |
|
|
|
|
CvSeq *result_seq = 0; |
|
|
|
|
cv::Ptr<CvMemStorage> temp_storage; |
|
|
|
|
|
|
|
|
@ -862,7 +861,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
int datasize=0; |
|
|
|
|
int totalclassifier=0; |
|
|
|
|
|
|
|
|
|
//void *out;
|
|
|
|
|
GpuHidHaarClassifierCascade *gcascade; |
|
|
|
|
GpuHidHaarStageClassifier *stage; |
|
|
|
|
GpuHidHaarClassifier *classifier; |
|
|
|
@ -871,11 +869,8 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
int *candidate; |
|
|
|
|
cl_int status; |
|
|
|
|
|
|
|
|
|
// bool doCannyPruning = (flags & CV_HAAR_DO_CANNY_PRUNING) != 0;
|
|
|
|
|
bool findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0; |
|
|
|
|
// bool roughSearch = (flags & CV_HAAR_DO_ROUGH_SEARCH) != 0;
|
|
|
|
|
|
|
|
|
|
//double t = 0;
|
|
|
|
|
if( maxSize.height == 0 || maxSize.width == 0 ) |
|
|
|
|
{ |
|
|
|
|
maxSize.height = gimg.rows; |
|
|
|
@ -897,27 +892,20 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
if( findBiggestObject ) |
|
|
|
|
flags &= ~CV_HAAR_SCALE_IMAGE; |
|
|
|
|
|
|
|
|
|
//gtemp = oclMat( gimg.rows, gimg.cols, CV_8UC1);
|
|
|
|
|
//gsum1 = oclMat( gimg.rows + 1, gimg.cols + 1, CV_32SC1 );
|
|
|
|
|
//gsqsum1 = oclMat( gimg.rows + 1, gimg.cols + 1, CV_32FC1 );
|
|
|
|
|
|
|
|
|
|
if( !cascade->hid_cascade ) |
|
|
|
|
/*out = (void *)*/gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier); |
|
|
|
|
if( cascade->hid_cascade->has_tilted_features ) |
|
|
|
|
gtilted1 = oclMat( gimg.rows + 1, gimg.cols + 1, CV_32SC1 ); |
|
|
|
|
gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier); |
|
|
|
|
|
|
|
|
|
result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage ); |
|
|
|
|
|
|
|
|
|
if( CV_MAT_CN(gimg.type()) > 1 ) |
|
|
|
|
{ |
|
|
|
|
oclMat gtemp; |
|
|
|
|
cvtColor( gimg, gtemp, CV_BGR2GRAY ); |
|
|
|
|
gimg = gtemp; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( findBiggestObject ) |
|
|
|
|
flags &= ~(CV_HAAR_SCALE_IMAGE | CV_HAAR_DO_CANNY_PRUNING); |
|
|
|
|
//t = (double)cvGetTickCount() - t;
|
|
|
|
|
//printf( "before if time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
|
|
|
|
|
|
|
|
|
if( gimg.cols < minSize.width || gimg.rows < minSize.height ) |
|
|
|
|
CV_Error(CV_StsError, "Image too small"); |
|
|
|
@ -925,12 +913,9 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
if( (flags & CV_HAAR_SCALE_IMAGE) ) |
|
|
|
|
{ |
|
|
|
|
CvSize winSize0 = cascade->orig_window_size; |
|
|
|
|
//float scalefactor = 1.1f;
|
|
|
|
|
//float factor = 1.f;
|
|
|
|
|
int totalheight = 0; |
|
|
|
|
int indexy = 0; |
|
|
|
|
CvSize sz; |
|
|
|
|
//t = (double)cvGetTickCount();
|
|
|
|
|
vector<CvSize> sizev; |
|
|
|
|
vector<float> scalev; |
|
|
|
|
for(factor = 1.f;; factor *= scaleFactor) |
|
|
|
@ -951,20 +936,15 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
sizev.push_back(sz); |
|
|
|
|
scalev.push_back(factor); |
|
|
|
|
} |
|
|
|
|
//int flag = 0;
|
|
|
|
|
|
|
|
|
|
oclMat gimg1(gimg.rows, gimg.cols, CV_8UC1); |
|
|
|
|
oclMat gsum(totalheight + 4, gimg.cols + 1, CV_32SC1); |
|
|
|
|
oclMat gsqsum(totalheight + 4, gimg.cols + 1, CV_32FC1); |
|
|
|
|
|
|
|
|
|
//cl_mem cascadebuffer;
|
|
|
|
|
cl_mem stagebuffer; |
|
|
|
|
//cl_mem classifierbuffer;
|
|
|
|
|
cl_mem nodebuffer; |
|
|
|
|
cl_mem candidatebuffer; |
|
|
|
|
cl_mem scaleinfobuffer; |
|
|
|
|
//cl_kernel kernel;
|
|
|
|
|
//kernel = openCLGetKernelFromSource(gimg.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade");
|
|
|
|
|
cv::Rect roi, roi2; |
|
|
|
|
cv::Mat imgroi, imgroisq; |
|
|
|
|
cv::ocl::oclMat resizeroi, gimgroi, gimgroisq; |
|
|
|
@ -972,18 +952,13 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
|
|
|
|
|
size_t blocksize = 8; |
|
|
|
|
size_t localThreads[3] = { blocksize, blocksize , 1 }; |
|
|
|
|
size_t globalThreads[3] = { grp_per_CU *((gsum.clCxt)->computeUnits()) *localThreads[0], |
|
|
|
|
size_t globalThreads[3] = { grp_per_CU * gsum.clCxt->computeUnits() *localThreads[0], |
|
|
|
|
localThreads[1], 1 |
|
|
|
|
}; |
|
|
|
|
int outputsz = 256 * globalThreads[0] / localThreads[0]; |
|
|
|
|
int loopcount = sizev.size(); |
|
|
|
|
detect_piramid_info *scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount); |
|
|
|
|
|
|
|
|
|
//t = (double)cvGetTickCount() - t;
|
|
|
|
|
// printf( "pre time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
|
|
|
|
//int *it =scaleinfo;
|
|
|
|
|
// t = (double)cvGetTickCount();
|
|
|
|
|
|
|
|
|
|
for( int i = 0; i < loopcount; i++ ) |
|
|
|
|
{ |
|
|
|
|
sz = sizev[i]; |
|
|
|
@ -993,7 +968,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
resizeroi = gimg1(roi2); |
|
|
|
|
gimgroi = gsum(roi); |
|
|
|
|
gimgroisq = gsqsum(roi); |
|
|
|
|
//scaleinfo[i].rows = gimgroi.rows;
|
|
|
|
|
int width = gimgroi.cols - 1 - cascade->orig_window_size.width; |
|
|
|
|
int height = gimgroi.rows - 1 - cascade->orig_window_size.height; |
|
|
|
|
scaleinfo[i].width_height = (width << 16) | height; |
|
|
|
@ -1001,76 +975,40 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
|
|
|
|
|
int grpnumperline = (width + localThreads[0] - 1) / localThreads[0]; |
|
|
|
|
int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline; |
|
|
|
|
//outputsz +=width*height;
|
|
|
|
|
|
|
|
|
|
scaleinfo[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp; |
|
|
|
|
scaleinfo[i].imgoff = gimgroi.offset >> 2; |
|
|
|
|
scaleinfo[i].factor = factor; |
|
|
|
|
//printf("rows = %d,ystep = %d,width = %d,height = %d,grpnumperline = %d,totalgrp = %d,imgoff = %d,factor = %f\n",
|
|
|
|
|
// scaleinfo[i].rows,scaleinfo[i].ystep,scaleinfo[i].width,scaleinfo[i].height,scaleinfo[i].grpnumperline,
|
|
|
|
|
// scaleinfo[i].totalgrp,scaleinfo[i].imgoff,scaleinfo[i].factor);
|
|
|
|
|
cv::ocl::resize(gimg, resizeroi, Size(sz.width - 1, sz.height - 1), 0, 0, INTER_LINEAR); |
|
|
|
|
//cv::imwrite("D:\\1.jpg",gimg1);
|
|
|
|
|
cv::ocl::integral(resizeroi, gimgroi, gimgroisq); |
|
|
|
|
//cv::ocl::oclMat chk(sz.height,sz.width,CV_32SC1),chksq(sz.height,sz.width,CV_32FC1);
|
|
|
|
|
//cv::ocl::integral(gimg1, chk, chksq);
|
|
|
|
|
//double r = cv::norm(chk,gimgroi,NORM_INF);
|
|
|
|
|
//if(r > std::numeric_limits<double>::epsilon())
|
|
|
|
|
//{
|
|
|
|
|
// printf("failed");
|
|
|
|
|
//}
|
|
|
|
|
indexy += sz.height; |
|
|
|
|
} |
|
|
|
|
//int ystep = factor > 2 ? 1 : 2;
|
|
|
|
|
// t = (double)cvGetTickCount() - t;
|
|
|
|
|
//printf( "resize integral time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
|
|
|
|
//t = (double)cvGetTickCount();
|
|
|
|
|
|
|
|
|
|
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; |
|
|
|
|
stage = (GpuHidHaarStageClassifier *)(gcascade + 1); |
|
|
|
|
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); |
|
|
|
|
node = (GpuHidHaarTreeNode *)(classifier->node); |
|
|
|
|
|
|
|
|
|
//int m,n;
|
|
|
|
|
//m = (gsum.cols - 1 - cascade->orig_window_size.width + ystep - 1)/ystep;
|
|
|
|
|
//n = (gsum.rows - 1 - cascade->orig_window_size.height + ystep - 1)/ystep;
|
|
|
|
|
//int counter = m*n;
|
|
|
|
|
|
|
|
|
|
int nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) - |
|
|
|
|
sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode); |
|
|
|
|
//if(flag == 0){
|
|
|
|
|
|
|
|
|
|
candidate = (int *)malloc(4 * sizeof(int) * outputsz); |
|
|
|
|
//memset((char*)candidate,0,4*sizeof(int)*outputsz);
|
|
|
|
|
gpuSetImagesForHaarClassifierCascade( cascade,/* &sum1, &sqsum1, _tilted,*/ 1., gsum.step / 4 ); |
|
|
|
|
|
|
|
|
|
//cascadebuffer = clCreateBuffer(gsum.clCxt->clContext,CL_MEM_READ_ONLY,sizeof(GpuHidHaarClassifierCascade),NULL,&status);
|
|
|
|
|
//openCLVerifyCall(status);
|
|
|
|
|
//openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->clCmdQueue,cascadebuffer,1,0,sizeof(GpuHidHaarClassifierCascade),gcascade,0,NULL,NULL));
|
|
|
|
|
gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 ); |
|
|
|
|
|
|
|
|
|
stagebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count); |
|
|
|
|
//openCLVerifyCall(status);
|
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)gsum.clCxt->oclCommandQueue(), stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); |
|
|
|
|
|
|
|
|
|
//classifierbuffer = clCreateBuffer(gsum.clCxt->clContext,CL_MEM_READ_ONLY,sizeof(GpuHidHaarClassifier)*totalclassifier,NULL,&status);
|
|
|
|
|
//status = clEnqueueWriteBuffer(gsum.clCxt->clCmdQueue,classifierbuffer,1,0,sizeof(GpuHidHaarClassifier)*totalclassifier,classifier,0,NULL,NULL);
|
|
|
|
|
cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue(); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); |
|
|
|
|
|
|
|
|
|
nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, nodenum * sizeof(GpuHidHaarTreeNode)); |
|
|
|
|
//openCLVerifyCall(status);
|
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)gsum.clCxt->oclCommandQueue(), nodebuffer, 1, 0, |
|
|
|
|
nodenum * sizeof(GpuHidHaarTreeNode), |
|
|
|
|
|
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, nodebuffer, 1, 0, nodenum * sizeof(GpuHidHaarTreeNode), |
|
|
|
|
node, 0, NULL, NULL)); |
|
|
|
|
candidatebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_WRITE_ONLY, 4 * sizeof(int) * outputsz); |
|
|
|
|
//openCLVerifyCall(status);
|
|
|
|
|
scaleinfobuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount); |
|
|
|
|
//openCLVerifyCall(status);
|
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)gsum.clCxt->oclCommandQueue(), scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL)); |
|
|
|
|
//flag = 1;
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
//t = (double)cvGetTickCount() - t;
|
|
|
|
|
//printf( "update time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
|
|
|
|
scaleinfobuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL)); |
|
|
|
|
|
|
|
|
|
//size_t globalThreads[3] = { counter+blocksize*blocksize-counter%(blocksize*blocksize),1,1};
|
|
|
|
|
//t = (double)cvGetTickCount();
|
|
|
|
|
int startstage = 0; |
|
|
|
|
int endstage = gcascade->count; |
|
|
|
|
int startnode = 0; |
|
|
|
@ -1088,11 +1026,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
pq.s[3] = gcascade->pq3; |
|
|
|
|
float correction = gcascade->inv_window_area; |
|
|
|
|
|
|
|
|
|
//int grpnumperline = ((m + localThreads[0] - 1) / localThreads[0]);
|
|
|
|
|
//int totalgrp = ((n + localThreads[1] - 1) / localThreads[1])*grpnumperline;
|
|
|
|
|
// openCLVerifyKernel(gsum.clCxt, kernel, &blocksize, globalThreads, localThreads);
|
|
|
|
|
//openCLSafeCall(clSetKernelArg(kernel,argcount++,sizeof(cl_mem),(void*)&cascadebuffer));
|
|
|
|
|
|
|
|
|
|
vector<pair<size_t, const void *> > args; |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&stagebuffer )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&scaleinfobuffer )); |
|
|
|
@ -1112,28 +1045,20 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction )); |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1); |
|
|
|
|
//t = (double)cvGetTickCount() - t;
|
|
|
|
|
//printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
|
|
|
|
//t = (double)cvGetTickCount();
|
|
|
|
|
//openCLSafeCall(clEnqueueReadBuffer(gsum.clCxt->impl->clCmdQueue, candidatebuffer, 1, 0, 4 * sizeof(int)*outputsz, candidate, 0, NULL, NULL));
|
|
|
|
|
|
|
|
|
|
openCLReadBuffer( gsum.clCxt, candidatebuffer, candidate, 4 * sizeof(int)*outputsz ); |
|
|
|
|
|
|
|
|
|
for(int i = 0; i < outputsz; i++) |
|
|
|
|
if(candidate[4 * i + 2] != 0) |
|
|
|
|
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], candidate[4 * i + 2], candidate[4 * i + 3])); |
|
|
|
|
// t = (double)cvGetTickCount() - t;
|
|
|
|
|
//printf( "post time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
|
|
|
|
//t = (double)cvGetTickCount();
|
|
|
|
|
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], |
|
|
|
|
candidate[4 * i + 2], candidate[4 * i + 3])); |
|
|
|
|
|
|
|
|
|
free(scaleinfo); |
|
|
|
|
free(candidate); |
|
|
|
|
//openCLSafeCall(clReleaseMemObject(cascadebuffer));
|
|
|
|
|
openCLSafeCall(clReleaseMemObject(stagebuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(scaleinfobuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(nodebuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(candidatebuffer)); |
|
|
|
|
// openCLSafeCall(clReleaseKernel(kernel));
|
|
|
|
|
//t = (double)cvGetTickCount() - t;
|
|
|
|
|
//printf( "release time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
@ -1151,7 +1076,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); |
|
|
|
|
node = (GpuHidHaarTreeNode *)(classifier->node); |
|
|
|
|
cl_mem stagebuffer; |
|
|
|
|
//cl_mem classifierbuffer;
|
|
|
|
|
cl_mem nodebuffer; |
|
|
|
|
cl_mem candidatebuffer; |
|
|
|
|
cl_mem scaleinfobuffer; |
|
|
|
@ -1188,24 +1112,20 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
size_t blocksize = 8; |
|
|
|
|
size_t localThreads[3] = { blocksize, blocksize , 1 }; |
|
|
|
|
size_t globalThreads[3] = { grp_per_CU *gsum.clCxt->computeUnits() *localThreads[0], |
|
|
|
|
localThreads[1], 1 |
|
|
|
|
}; |
|
|
|
|
localThreads[1], 1 }; |
|
|
|
|
int outputsz = 256 * globalThreads[0] / localThreads[0]; |
|
|
|
|
int nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) - |
|
|
|
|
sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode); |
|
|
|
|
nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, |
|
|
|
|
nodenum * sizeof(GpuHidHaarTreeNode)); |
|
|
|
|
//openCLVerifyCall(status);
|
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)gsum.clCxt->oclCommandQueue(), nodebuffer, 1, 0, |
|
|
|
|
cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue(); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, nodebuffer, 1, 0, |
|
|
|
|
nodenum * sizeof(GpuHidHaarTreeNode), |
|
|
|
|
node, 0, NULL, NULL)); |
|
|
|
|
cl_mem newnodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_WRITE, |
|
|
|
|
loopcount * nodenum * sizeof(GpuHidHaarTreeNode)); |
|
|
|
|
int startstage = 0; |
|
|
|
|
int endstage = gcascade->count; |
|
|
|
|
//cl_kernel kernel;
|
|
|
|
|
//kernel = openCLGetKernelFromSource(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2");
|
|
|
|
|
//cl_kernel kernel2 = openCLGetKernelFromSource(gimg.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier");
|
|
|
|
|
for(int i = 0; i < loopcount; i++) |
|
|
|
|
{ |
|
|
|
|
sz = sizev[i]; |
|
|
|
@ -1224,7 +1144,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
int height = (gsum.rows - 1 - sz.height + ystep - 1) / ystep; |
|
|
|
|
int grpnumperline = (width + localThreads[0] - 1) / localThreads[0]; |
|
|
|
|
int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline; |
|
|
|
|
//outputsz +=width*height;
|
|
|
|
|
|
|
|
|
|
scaleinfo[i].width_height = (width << 16) | height; |
|
|
|
|
scaleinfo[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp; |
|
|
|
|
scaleinfo[i].imgoff = 0; |
|
|
|
@ -1242,28 +1162,20 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
size_t globalThreads2[3] = {nodenum, 1, 1}; |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1); |
|
|
|
|
|
|
|
|
|
//clEnqueueNDRangeKernel(gsum.clCxt->impl->clCmdQueue, kernel2, 1, NULL, globalThreads2, 0, 0, NULL, NULL);
|
|
|
|
|
//clFinish(gsum.clCxt->impl->clCmdQueue);
|
|
|
|
|
} |
|
|
|
|
//clReleaseKernel(kernel2);
|
|
|
|
|
|
|
|
|
|
int step = gsum.step / 4; |
|
|
|
|
int startnode = 0; |
|
|
|
|
int splitstage = 3; |
|
|
|
|
int splitnode = stage[0].count + stage[1].count + stage[2].count; |
|
|
|
|
stagebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count); |
|
|
|
|
//openCLVerifyCall(status);
|
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)gsum.clCxt->oclCommandQueue(), stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); |
|
|
|
|
candidatebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, 4 * sizeof(int) * outputsz); |
|
|
|
|
//openCLVerifyCall(status);
|
|
|
|
|
scaleinfobuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount); |
|
|
|
|
//openCLVerifyCall(status);
|
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)gsum.clCxt->oclCommandQueue(), scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL)); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL)); |
|
|
|
|
pbuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(cl_int4) * loopcount); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)gsum.clCxt->oclCommandQueue(), pbuffer, 1, 0, sizeof(cl_int4)*loopcount, p, 0, NULL, NULL)); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, pbuffer, 1, 0, sizeof(cl_int4)*loopcount, p, 0, NULL, NULL)); |
|
|
|
|
correctionbuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(cl_float) * loopcount); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)gsum.clCxt->oclCommandQueue(), correctionbuffer, 1, 0, sizeof(cl_float)*loopcount, correction, 0, NULL, NULL)); |
|
|
|
|
//int argcount = 0;
|
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, correctionbuffer, 1, 0, sizeof(cl_float)*loopcount, correction, 0, NULL, NULL)); |
|
|
|
|
|
|
|
|
|
vector<pair<size_t, const void *> > args; |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&stagebuffer )); |
|
|
|
@ -1272,22 +1184,21 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&candidatebuffer )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.rows )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.cols )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&step )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&loopcount )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitnode )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&pbuffer )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&correctionbuffer )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&nodenum )); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1); |
|
|
|
|
|
|
|
|
|
//openCLSafeCall(clEnqueueReadBuffer(gsum.clCxt->clCmdQueue,candidatebuffer,1,0,4*sizeof(int)*outputsz,candidate,0,NULL,NULL));
|
|
|
|
|
candidate = (int *)clEnqueueMapBuffer((cl_command_queue)gsum.clCxt->oclCommandQueue(), candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int), 0, 0, 0, &status); |
|
|
|
|
candidate = (int *)clEnqueueMapBuffer(qu, candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, &status); |
|
|
|
|
|
|
|
|
|
for(int i = 0; i < outputsz; i++) |
|
|
|
|
{ |
|
|
|
@ -1298,7 +1209,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
free(scaleinfo); |
|
|
|
|
free(p); |
|
|
|
|
free(correction); |
|
|
|
|
clEnqueueUnmapMemObject((cl_command_queue)gsum.clCxt->oclCommandQueue(), candidatebuffer, candidate, 0, 0, 0); |
|
|
|
|
clEnqueueUnmapMemObject(qu, candidatebuffer, candidate, 0, 0, 0); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(stagebuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(scaleinfobuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(nodebuffer)); |
|
|
|
@ -1307,20 +1218,547 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
openCLSafeCall(clReleaseMemObject(pbuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(correctionbuffer)); |
|
|
|
|
} |
|
|
|
|
//t = (double)cvGetTickCount() ;
|
|
|
|
|
|
|
|
|
|
cvFree(&cascade->hid_cascade); |
|
|
|
|
// printf("%d\n",globalcounter);
|
|
|
|
|
rectList.resize(allCandidates.size()); |
|
|
|
|
if(!allCandidates.empty()) |
|
|
|
|
std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin()); |
|
|
|
|
|
|
|
|
|
//cout << "count = " << rectList.size()<< endl;
|
|
|
|
|
if( minNeighbors != 0 || findBiggestObject ) |
|
|
|
|
groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS); |
|
|
|
|
else |
|
|
|
|
rweights.resize(rectList.size(), 0); |
|
|
|
|
|
|
|
|
|
if( findBiggestObject && rectList.size() ) |
|
|
|
|
{ |
|
|
|
|
CvAvgComp result_comp = {{0, 0, 0, 0}, 0}; |
|
|
|
|
|
|
|
|
|
for( size_t i = 0; i < rectList.size(); i++ ) |
|
|
|
|
{ |
|
|
|
|
cv::Rect r = rectList[i]; |
|
|
|
|
if( r.area() > cv::Rect(result_comp.rect).area() ) |
|
|
|
|
{ |
|
|
|
|
result_comp.rect = r; |
|
|
|
|
result_comp.neighbors = rweights[i]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
cvSeqPush( result_seq, &result_comp ); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
for( size_t i = 0; i < rectList.size(); i++ ) |
|
|
|
|
{ |
|
|
|
|
CvAvgComp c; |
|
|
|
|
c.rect = rectList[i]; |
|
|
|
|
c.neighbors = rweights[i]; |
|
|
|
|
cvSeqPush( result_seq, &c ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return result_seq; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
struct OclBuffers |
|
|
|
|
{ |
|
|
|
|
cl_mem stagebuffer; |
|
|
|
|
cl_mem nodebuffer; |
|
|
|
|
cl_mem candidatebuffer; |
|
|
|
|
cl_mem scaleinfobuffer; |
|
|
|
|
cl_mem pbuffer; |
|
|
|
|
cl_mem correctionbuffer; |
|
|
|
|
cl_mem newnodebuffer; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
struct getRect |
|
|
|
|
{ |
|
|
|
|
Rect operator()(const CvAvgComp &e) const |
|
|
|
|
{ |
|
|
|
|
return e.rect; |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std::vector<cv::Rect>& faces, |
|
|
|
|
double scaleFactor, int minNeighbors, int flags, |
|
|
|
|
Size minSize, Size maxSize) |
|
|
|
|
{ |
|
|
|
|
int blocksize = 8; |
|
|
|
|
int grp_per_CU = 12; |
|
|
|
|
size_t localThreads[3] = { blocksize, blocksize, 1 }; |
|
|
|
|
size_t globalThreads[3] = { grp_per_CU * Context::getContext()->computeUnits() * localThreads[0], |
|
|
|
|
localThreads[1], |
|
|
|
|
1 }; |
|
|
|
|
int outputsz = 256 * globalThreads[0] / localThreads[0]; |
|
|
|
|
|
|
|
|
|
Init(gimg.rows, gimg.cols, scaleFactor, flags, outputsz, localThreads, minSize, maxSize); |
|
|
|
|
|
|
|
|
|
const double GROUP_EPS = 0.2; |
|
|
|
|
|
|
|
|
|
cv::ConcurrentRectVector allCandidates; |
|
|
|
|
std::vector<cv::Rect> rectList; |
|
|
|
|
std::vector<int> rweights; |
|
|
|
|
|
|
|
|
|
CvHaarClassifierCascade *cascade = oldCascade; |
|
|
|
|
GpuHidHaarClassifierCascade *gcascade; |
|
|
|
|
GpuHidHaarStageClassifier *stage; |
|
|
|
|
GpuHidHaarClassifier *classifier; |
|
|
|
|
GpuHidHaarTreeNode *node; |
|
|
|
|
|
|
|
|
|
if( CV_MAT_DEPTH(gimg.type()) != CV_8U ) |
|
|
|
|
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" ); |
|
|
|
|
|
|
|
|
|
if( CV_MAT_CN(gimg.type()) > 1 ) |
|
|
|
|
{ |
|
|
|
|
oclMat gtemp; |
|
|
|
|
cvtColor( gimg, gtemp, CV_BGR2GRAY ); |
|
|
|
|
gimg = gtemp; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int *candidate; |
|
|
|
|
|
|
|
|
|
if( (flags & CV_HAAR_SCALE_IMAGE) ) |
|
|
|
|
{ |
|
|
|
|
int indexy = 0; |
|
|
|
|
CvSize sz; |
|
|
|
|
|
|
|
|
|
cv::Rect roi, roi2; |
|
|
|
|
cv::Mat imgroi, imgroisq; |
|
|
|
|
cv::ocl::oclMat resizeroi, gimgroi, gimgroisq; |
|
|
|
|
|
|
|
|
|
for( int i = 0; i < m_loopcount; i++ ) |
|
|
|
|
{ |
|
|
|
|
sz = sizev[i]; |
|
|
|
|
roi = Rect(0, indexy, sz.width, sz.height); |
|
|
|
|
roi2 = Rect(0, 0, sz.width - 1, sz.height - 1); |
|
|
|
|
resizeroi = gimg1(roi2); |
|
|
|
|
gimgroi = gsum(roi); |
|
|
|
|
gimgroisq = gsqsum(roi); |
|
|
|
|
|
|
|
|
|
cv::ocl::resize(gimg, resizeroi, Size(sz.width - 1, sz.height - 1), 0, 0, INTER_LINEAR); |
|
|
|
|
cv::ocl::integral(resizeroi, gimgroi, gimgroisq); |
|
|
|
|
indexy += sz.height; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade); |
|
|
|
|
stage = (GpuHidHaarStageClassifier *)(gcascade + 1); |
|
|
|
|
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); |
|
|
|
|
node = (GpuHidHaarTreeNode *)(classifier->node); |
|
|
|
|
|
|
|
|
|
gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 ); |
|
|
|
|
|
|
|
|
|
cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue(); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, |
|
|
|
|
sizeof(GpuHidHaarStageClassifier) * gcascade->count, |
|
|
|
|
stage, 0, NULL, NULL)); |
|
|
|
|
|
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0, |
|
|
|
|
m_nodenum * sizeof(GpuHidHaarTreeNode), |
|
|
|
|
node, 0, NULL, NULL)); |
|
|
|
|
|
|
|
|
|
int startstage = 0; |
|
|
|
|
int endstage = gcascade->count; |
|
|
|
|
int startnode = 0; |
|
|
|
|
int pixelstep = gsum.step / 4; |
|
|
|
|
int splitstage = 3; |
|
|
|
|
int splitnode = stage[0].count + stage[1].count + stage[2].count; |
|
|
|
|
cl_int4 p, pq; |
|
|
|
|
p.s[0] = gcascade->p0; |
|
|
|
|
p.s[1] = gcascade->p1; |
|
|
|
|
p.s[2] = gcascade->p2; |
|
|
|
|
p.s[3] = gcascade->p3; |
|
|
|
|
pq.s[0] = gcascade->pq0; |
|
|
|
|
pq.s[1] = gcascade->pq1; |
|
|
|
|
pq.s[2] = gcascade->pq2; |
|
|
|
|
pq.s[3] = gcascade->pq3; |
|
|
|
|
float correction = gcascade->inv_window_area; |
|
|
|
|
|
|
|
|
|
vector<pair<size_t, const void *> > args; |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->scaleinfobuffer )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->candidatebuffer )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&pixelstep )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_loopcount )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitnode )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int4) , (void *)&p )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction )); |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1); |
|
|
|
|
|
|
|
|
|
candidate = (int *)malloc(4 * sizeof(int) * outputsz); |
|
|
|
|
memset(candidate, 0, 4 * sizeof(int) * outputsz); |
|
|
|
|
openCLReadBuffer( gsum.clCxt, ((OclBuffers *)buffers)->candidatebuffer, candidate, 4 * sizeof(int)*outputsz ); |
|
|
|
|
|
|
|
|
|
for(int i = 0; i < outputsz; i++) |
|
|
|
|
if(candidate[4 * i + 2] != 0) |
|
|
|
|
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], |
|
|
|
|
candidate[4 * i + 2], candidate[4 * i + 3])); |
|
|
|
|
|
|
|
|
|
free((void *)candidate); |
|
|
|
|
candidate = NULL; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
cv::ocl::integral(gimg, gsum, gsqsum); |
|
|
|
|
|
|
|
|
|
gpuSetHaarClassifierCascade(cascade); |
|
|
|
|
|
|
|
|
|
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; |
|
|
|
|
stage = (GpuHidHaarStageClassifier *)(gcascade + 1); |
|
|
|
|
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); |
|
|
|
|
node = (GpuHidHaarTreeNode *)(classifier->node); |
|
|
|
|
|
|
|
|
|
cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue(); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0, |
|
|
|
|
m_nodenum * sizeof(GpuHidHaarTreeNode), |
|
|
|
|
node, 0, NULL, NULL)); |
|
|
|
|
|
|
|
|
|
cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * m_loopcount); |
|
|
|
|
float *correction = (float *)malloc(sizeof(float) * m_loopcount); |
|
|
|
|
int startstage = 0; |
|
|
|
|
int endstage = gcascade->count; |
|
|
|
|
double factor; |
|
|
|
|
for(int i = 0; i < m_loopcount; i++) |
|
|
|
|
{ |
|
|
|
|
factor = scalev[i]; |
|
|
|
|
int equRect_x = (int)(factor * gcascade->p0 + 0.5); |
|
|
|
|
int equRect_y = (int)(factor * gcascade->p1 + 0.5); |
|
|
|
|
int equRect_w = (int)(factor * gcascade->p3 + 0.5); |
|
|
|
|
int equRect_h = (int)(factor * gcascade->p2 + 0.5); |
|
|
|
|
p[i].s[0] = equRect_x; |
|
|
|
|
p[i].s[1] = equRect_y; |
|
|
|
|
p[i].s[2] = equRect_x + equRect_w; |
|
|
|
|
p[i].s[3] = equRect_y + equRect_h; |
|
|
|
|
correction[i] = 1. / (equRect_w * equRect_h); |
|
|
|
|
int startnodenum = m_nodenum * i; |
|
|
|
|
float factor2 = (float)factor; |
|
|
|
|
|
|
|
|
|
vector<pair<size_t, const void *> > args1; |
|
|
|
|
args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer )); |
|
|
|
|
args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer )); |
|
|
|
|
args1.push_back ( make_pair(sizeof(cl_float) , (void *)&factor2 )); |
|
|
|
|
args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] )); |
|
|
|
|
args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum )); |
|
|
|
|
|
|
|
|
|
size_t globalThreads2[3] = {m_nodenum, 1, 1}; |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int step = gsum.step / 4; |
|
|
|
|
int startnode = 0; |
|
|
|
|
int splitstage = 3; |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->pbuffer, 1, 0, sizeof(cl_int4)*m_loopcount, p, 0, NULL, NULL)); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->correctionbuffer, 1, 0, sizeof(cl_float)*m_loopcount, correction, 0, NULL, NULL)); |
|
|
|
|
|
|
|
|
|
vector<pair<size_t, const void *> > args; |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->scaleinfobuffer )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->candidatebuffer )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.rows )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.cols )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&step )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_loopcount )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->pbuffer )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->correctionbuffer )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_nodenum )); |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1); |
|
|
|
|
|
|
|
|
|
candidate = (int *)clEnqueueMapBuffer(qu, ((OclBuffers *)buffers)->candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, NULL); |
|
|
|
|
|
|
|
|
|
for(int i = 0; i < outputsz; i++) |
|
|
|
|
{ |
|
|
|
|
if(candidate[4 * i + 2] != 0) |
|
|
|
|
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], |
|
|
|
|
candidate[4 * i + 2], candidate[4 * i + 3])); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
free(p); |
|
|
|
|
free(correction); |
|
|
|
|
clEnqueueUnmapMemObject(qu, ((OclBuffers *)buffers)->candidatebuffer, candidate, 0, 0, 0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
rectList.resize(allCandidates.size()); |
|
|
|
|
if(!allCandidates.empty()) |
|
|
|
|
std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin()); |
|
|
|
|
|
|
|
|
|
if( minNeighbors != 0 || findBiggestObject ) |
|
|
|
|
groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS); |
|
|
|
|
else |
|
|
|
|
rweights.resize(rectList.size(), 0); |
|
|
|
|
|
|
|
|
|
GenResult(faces, rectList, rweights); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::ocl::OclCascadeClassifierBuf::Init(const int rows, const int cols, |
|
|
|
|
double scaleFactor, int flags, |
|
|
|
|
const int outputsz, const size_t localThreads[], |
|
|
|
|
CvSize minSize, CvSize maxSize) |
|
|
|
|
{ |
|
|
|
|
CvHaarClassifierCascade *cascade = oldCascade; |
|
|
|
|
|
|
|
|
|
if( !CV_IS_HAAR_CLASSIFIER(cascade) ) |
|
|
|
|
CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" ); |
|
|
|
|
|
|
|
|
|
if( scaleFactor <= 1 ) |
|
|
|
|
CV_Error( CV_StsOutOfRange, "scale factor must be > 1" ); |
|
|
|
|
|
|
|
|
|
if( cols < minSize.width || rows < minSize.height ) |
|
|
|
|
CV_Error(CV_StsError, "Image too small"); |
|
|
|
|
|
|
|
|
|
int datasize=0; |
|
|
|
|
int totalclassifier=0; |
|
|
|
|
|
|
|
|
|
if( !cascade->hid_cascade ) |
|
|
|
|
gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier); |
|
|
|
|
|
|
|
|
|
if( maxSize.height == 0 || maxSize.width == 0 ) |
|
|
|
|
{ |
|
|
|
|
maxSize.height = rows; |
|
|
|
|
maxSize.width = cols; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0; |
|
|
|
|
if( findBiggestObject ) |
|
|
|
|
flags &= ~(CV_HAAR_SCALE_IMAGE | CV_HAAR_DO_CANNY_PRUNING); |
|
|
|
|
|
|
|
|
|
CreateBaseBufs(datasize, totalclassifier, flags, outputsz); |
|
|
|
|
CreateFactorRelatedBufs(rows, cols, flags, scaleFactor, localThreads, minSize, maxSize); |
|
|
|
|
|
|
|
|
|
m_scaleFactor = scaleFactor; |
|
|
|
|
m_rows = rows; |
|
|
|
|
m_cols = cols; |
|
|
|
|
m_flags = flags; |
|
|
|
|
m_minSize = minSize; |
|
|
|
|
m_maxSize = maxSize; |
|
|
|
|
|
|
|
|
|
initialized = true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::ocl::OclCascadeClassifierBuf::CreateBaseBufs(const int datasize, const int totalclassifier, |
|
|
|
|
const int flags, const int outputsz) |
|
|
|
|
{ |
|
|
|
|
if (!initialized) |
|
|
|
|
{ |
|
|
|
|
buffers = malloc(sizeof(OclBuffers)); |
|
|
|
|
|
|
|
|
|
size_t tempSize = |
|
|
|
|
sizeof(GpuHidHaarStageClassifier) * ((GpuHidHaarClassifierCascade *)oldCascade->hid_cascade)->count; |
|
|
|
|
m_nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) - tempSize - sizeof(GpuHidHaarClassifier) * totalclassifier) |
|
|
|
|
/ sizeof(GpuHidHaarTreeNode); |
|
|
|
|
|
|
|
|
|
((OclBuffers *)buffers)->stagebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, tempSize); |
|
|
|
|
((OclBuffers *)buffers)->nodebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, m_nodenum * sizeof(GpuHidHaarTreeNode)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (initialized |
|
|
|
|
&& ((m_flags & CV_HAAR_SCALE_IMAGE) ^ (flags & CV_HAAR_SCALE_IMAGE))) |
|
|
|
|
{ |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (flags & CV_HAAR_SCALE_IMAGE) |
|
|
|
|
{ |
|
|
|
|
((OclBuffers *)buffers)->candidatebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), |
|
|
|
|
CL_MEM_WRITE_ONLY, |
|
|
|
|
4 * sizeof(int) * outputsz); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
((OclBuffers *)buffers)->candidatebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), |
|
|
|
|
CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, |
|
|
|
|
4 * sizeof(int) * outputsz); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::ocl::OclCascadeClassifierBuf::CreateFactorRelatedBufs( |
|
|
|
|
const int rows, const int cols, const int flags, |
|
|
|
|
const double scaleFactor, const size_t localThreads[], |
|
|
|
|
CvSize minSize, CvSize maxSize) |
|
|
|
|
{ |
|
|
|
|
if (initialized) |
|
|
|
|
{ |
|
|
|
|
if ((m_flags & CV_HAAR_SCALE_IMAGE) && !(flags & CV_HAAR_SCALE_IMAGE)) |
|
|
|
|
{ |
|
|
|
|
gimg1.release(); |
|
|
|
|
gsum.release(); |
|
|
|
|
gsqsum.release(); |
|
|
|
|
}
|
|
|
|
|
else if (!(m_flags & CV_HAAR_SCALE_IMAGE) && (flags & CV_HAAR_SCALE_IMAGE)) |
|
|
|
|
{ |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer)); |
|
|
|
|
} |
|
|
|
|
else if ((m_flags & CV_HAAR_SCALE_IMAGE) && (flags & CV_HAAR_SCALE_IMAGE)) |
|
|
|
|
{ |
|
|
|
|
if (fabs(m_scaleFactor - scaleFactor) < 1e-6 |
|
|
|
|
&& (rows == m_rows && cols == m_cols) |
|
|
|
|
&& (minSize.width == m_minSize.width) |
|
|
|
|
&& (minSize.height == m_minSize.height) |
|
|
|
|
&& (maxSize.width == m_maxSize.width) |
|
|
|
|
&& (maxSize.height == m_maxSize.height)) |
|
|
|
|
{ |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
}
|
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
if (fabs(m_scaleFactor - scaleFactor) < 1e-6 |
|
|
|
|
&& (rows == m_rows && cols == m_cols) |
|
|
|
|
&& (minSize.width == m_minSize.width) |
|
|
|
|
&& (minSize.height == m_minSize.height) |
|
|
|
|
&& (maxSize.width == m_maxSize.width) |
|
|
|
|
&& (maxSize.height == m_maxSize.height)) |
|
|
|
|
{ |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int loopcount; |
|
|
|
|
int indexy = 0; |
|
|
|
|
int totalheight = 0; |
|
|
|
|
double factor; |
|
|
|
|
Rect roi; |
|
|
|
|
CvSize sz; |
|
|
|
|
CvSize winSize0 = oldCascade->orig_window_size; |
|
|
|
|
detect_piramid_info *scaleinfo; |
|
|
|
|
if (flags & CV_HAAR_SCALE_IMAGE) |
|
|
|
|
{ |
|
|
|
|
for(factor = 1.f;; factor *= scaleFactor) |
|
|
|
|
{ |
|
|
|
|
CvSize winSize = { cvRound(winSize0.width * factor), cvRound(winSize0.height * factor) }; |
|
|
|
|
sz.width = cvRound( cols / factor ) + 1; |
|
|
|
|
sz.height = cvRound( rows / factor ) + 1; |
|
|
|
|
CvSize sz1 = { sz.width - winSize0.width - 1, sz.height - winSize0.height - 1 }; |
|
|
|
|
|
|
|
|
|
if( sz1.width <= 0 || sz1.height <= 0 ) |
|
|
|
|
break; |
|
|
|
|
if( winSize.width > maxSize.width || winSize.height > maxSize.height ) |
|
|
|
|
break; |
|
|
|
|
if( winSize.width < minSize.width || winSize.height < minSize.height ) |
|
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
totalheight += sz.height; |
|
|
|
|
sizev.push_back(sz); |
|
|
|
|
scalev.push_back(static_cast<float>(factor)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
loopcount = sizev.size(); |
|
|
|
|
gimg1.create(rows, cols, CV_8UC1); |
|
|
|
|
gsum.create(totalheight + 4, cols + 1, CV_32SC1); |
|
|
|
|
gsqsum.create(totalheight + 4, cols + 1, CV_32FC1); |
|
|
|
|
|
|
|
|
|
scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount); |
|
|
|
|
for( int i = 0; i < loopcount; i++ ) |
|
|
|
|
{ |
|
|
|
|
sz = sizev[i]; |
|
|
|
|
roi = Rect(0, indexy, sz.width, sz.height); |
|
|
|
|
int width = sz.width - 1 - oldCascade->orig_window_size.width; |
|
|
|
|
int height = sz.height - 1 - oldCascade->orig_window_size.height; |
|
|
|
|
int grpnumperline = (width + localThreads[0] - 1) / localThreads[0]; |
|
|
|
|
int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline; |
|
|
|
|
|
|
|
|
|
((detect_piramid_info *)scaleinfo)[i].width_height = (width << 16) | height; |
|
|
|
|
((detect_piramid_info *)scaleinfo)[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp; |
|
|
|
|
((detect_piramid_info *)scaleinfo)[i].imgoff = gsum(roi).offset >> 2; |
|
|
|
|
((detect_piramid_info *)scaleinfo)[i].factor = scalev[i]; |
|
|
|
|
|
|
|
|
|
indexy += sz.height; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
for(factor = 1; |
|
|
|
|
cvRound(factor * winSize0.width) < cols - 10 && cvRound(factor * winSize0.height) < rows - 10; |
|
|
|
|
factor *= scaleFactor) |
|
|
|
|
{ |
|
|
|
|
CvSize winSize = { cvRound( winSize0.width * factor ), cvRound( winSize0.height * factor ) }; |
|
|
|
|
if( winSize.width < minSize.width || winSize.height < minSize.height ) |
|
|
|
|
{ |
|
|
|
|
continue; |
|
|
|
|
} |
|
|
|
|
sizev.push_back(winSize); |
|
|
|
|
scalev.push_back(factor); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
loopcount = scalev.size(); |
|
|
|
|
if(loopcount == 0) |
|
|
|
|
{ |
|
|
|
|
loopcount = 1; |
|
|
|
|
sizev.push_back(minSize); |
|
|
|
|
scalev.push_back( min(cvRound(minSize.width / winSize0.width), cvRound(minSize.height / winSize0.height)) ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
((OclBuffers *)buffers)->pbuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, |
|
|
|
|
sizeof(cl_int4) * loopcount); |
|
|
|
|
((OclBuffers *)buffers)->correctionbuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, |
|
|
|
|
sizeof(cl_float) * loopcount); |
|
|
|
|
((OclBuffers *)buffers)->newnodebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_WRITE, |
|
|
|
|
loopcount * m_nodenum * sizeof(GpuHidHaarTreeNode)); |
|
|
|
|
|
|
|
|
|
scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount); |
|
|
|
|
for( int i = 0; i < loopcount; i++ ) |
|
|
|
|
{ |
|
|
|
|
sz = sizev[i]; |
|
|
|
|
factor = scalev[i]; |
|
|
|
|
int ystep = cvRound(std::max(2., factor)); |
|
|
|
|
int width = (cols - 1 - sz.width + ystep - 1) / ystep; |
|
|
|
|
int height = (rows - 1 - sz.height + ystep - 1) / ystep; |
|
|
|
|
int grpnumperline = (width + localThreads[0] - 1) / localThreads[0]; |
|
|
|
|
int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline; |
|
|
|
|
|
|
|
|
|
((detect_piramid_info *)scaleinfo)[i].width_height = (width << 16) | height; |
|
|
|
|
((detect_piramid_info *)scaleinfo)[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp; |
|
|
|
|
((detect_piramid_info *)scaleinfo)[i].imgoff = 0; |
|
|
|
|
((detect_piramid_info *)scaleinfo)[i].factor = factor; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (loopcount != m_loopcount) |
|
|
|
|
{ |
|
|
|
|
if (initialized) |
|
|
|
|
{ |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer)); |
|
|
|
|
} |
|
|
|
|
((OclBuffers *)buffers)->scaleinfobuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)cv::ocl::Context::getContext()->oclCommandQueue(), ((OclBuffers *)buffers)->scaleinfobuffer, 1, 0, |
|
|
|
|
sizeof(detect_piramid_info)*loopcount, |
|
|
|
|
scaleinfo, 0, NULL, NULL)); |
|
|
|
|
free(scaleinfo); |
|
|
|
|
|
|
|
|
|
m_loopcount = loopcount; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::ocl::OclCascadeClassifierBuf::GenResult(CV_OUT std::vector<cv::Rect>& faces, |
|
|
|
|
const std::vector<cv::Rect> &rectList, |
|
|
|
|
const std::vector<int> &rweights) |
|
|
|
|
{ |
|
|
|
|
CvSeq *result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), cvCreateMemStorage(0) ); |
|
|
|
|
|
|
|
|
|
if( findBiggestObject && rectList.size() ) |
|
|
|
|
{ |
|
|
|
@ -1347,13 +1785,34 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
cvSeqPush( result_seq, &c ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
//t = (double)cvGetTickCount() - t;
|
|
|
|
|
//printf( "get face time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
|
|
|
|
//alltime = (double)cvGetTickCount() - alltime;
|
|
|
|
|
//printf( "all time = %g ms\n", alltime/((double)cvGetTickFrequency()*1000.) );
|
|
|
|
|
return result_seq; |
|
|
|
|
|
|
|
|
|
vector<CvAvgComp> vecAvgComp; |
|
|
|
|
Seq<CvAvgComp>(result_seq).copyTo(vecAvgComp); |
|
|
|
|
faces.resize(vecAvgComp.size()); |
|
|
|
|
std::transform(vecAvgComp.begin(), vecAvgComp.end(), faces.begin(), getRect()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::ocl::OclCascadeClassifierBuf::release() |
|
|
|
|
{ |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->stagebuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->nodebuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer)); |
|
|
|
|
|
|
|
|
|
if( (m_flags & CV_HAAR_SCALE_IMAGE) ) |
|
|
|
|
{ |
|
|
|
|
cvFree(&oldCascade->hid_cascade); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
free(buffers); |
|
|
|
|
buffers = NULL; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifndef _MAX_PATH |
|
|
|
|
#define _MAX_PATH 1024 |
|
|
|
|