|
|
|
@ -53,21 +53,9 @@ using namespace cv::gpu; |
|
|
|
|
|
|
|
|
|
void FeaturesFinder::operator ()(const Mat &image, ImageFeatures &features)
|
|
|
|
|
{
|
|
|
|
|
features.img_size = image.size(); |
|
|
|
|
|
|
|
|
|
// Calculate histogram
|
|
|
|
|
Mat hsv; |
|
|
|
|
cvtColor(image, hsv, CV_BGR2HSV); |
|
|
|
|
int hbins = 30, sbins = 32, vbins = 30; |
|
|
|
|
int hist_size[] = { hbins, sbins, vbins }; |
|
|
|
|
float hranges[] = { 0, 180 }; |
|
|
|
|
float sranges[] = { 0, 256 }; |
|
|
|
|
float vranges[] = { 0, 256 }; |
|
|
|
|
const float* ranges[] = { hranges, sranges, vranges }; |
|
|
|
|
int channels[] = { 0, 1, 2 }; |
|
|
|
|
calcHist(&hsv, 1, channels, Mat(), features.hist, 3, hist_size, ranges); |
|
|
|
|
|
|
|
|
|
find(image, features); |
|
|
|
|
features.img_size = image.size(); |
|
|
|
|
//features.img = image.clone();
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
@ -293,7 +281,7 @@ namespace |
|
|
|
|
void CpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info) |
|
|
|
|
{ |
|
|
|
|
matches_info.matches.clear(); |
|
|
|
|
BruteForceMatcher< L2<float> > matcher; |
|
|
|
|
FlannBasedMatcher matcher; |
|
|
|
|
vector< vector<DMatch> > pair_matches; |
|
|
|
|
|
|
|
|
|
// Find 1->2 matches
|
|
|
|
@ -340,10 +328,6 @@ namespace |
|
|
|
|
continue; |
|
|
|
|
const DMatch& m0 = pair_matches[i][0]; |
|
|
|
|
const DMatch& m1 = pair_matches[i][1]; |
|
|
|
|
|
|
|
|
|
CV_Assert(m0.queryIdx < static_cast<int>(features1.keypoints.size())); |
|
|
|
|
CV_Assert(m0.trainIdx < static_cast<int>(features2.keypoints.size())); |
|
|
|
|
|
|
|
|
|
if (m0.distance < (1.f - match_conf_) * m1.distance) |
|
|
|
|
matches_info.matches.push_back(m0); |
|
|
|
|
} |
|
|
|
@ -358,10 +342,6 @@ namespace |
|
|
|
|
continue; |
|
|
|
|
const DMatch& m0 = pair_matches[i][0]; |
|
|
|
|
const DMatch& m1 = pair_matches[i][1]; |
|
|
|
|
|
|
|
|
|
CV_Assert(m0.trainIdx < static_cast<int>(features1.keypoints.size())); |
|
|
|
|
CV_Assert(m0.queryIdx < static_cast<int>(features2.keypoints.size())); |
|
|
|
|
|
|
|
|
|
if (m0.distance < (1.f - match_conf_) * m1.distance) |
|
|
|
|
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); |
|
|
|
|
} |
|
|
|
@ -388,9 +368,16 @@ void BestOf2NearestMatcher::match(const ImageFeatures &features1, const ImageFea |
|
|
|
|
{ |
|
|
|
|
(*impl_)(features1, features2, matches_info); |
|
|
|
|
|
|
|
|
|
//Mat out;
|
|
|
|
|
//drawMatches(features1.img, features1.keypoints, features2.img, features2.keypoints, matches_info.matches, out);
|
|
|
|
|
//stringstream ss;
|
|
|
|
|
//ss << features1.img_idx << features2.img_idx << ".png";
|
|
|
|
|
//imwrite(ss.str(), out);
|
|
|
|
|
|
|
|
|
|
// Check if it makes sense to find homography
|
|
|
|
|
if (matches_info.matches.size() < static_cast<size_t>(num_matches_thresh1_)) |
|
|
|
|
return; |
|
|
|
|
|
|
|
|
|
// Construct point-point correspondences for homography estimation
|
|
|
|
|
Mat src_points(1, matches_info.matches.size(), CV_32FC2); |
|
|
|
|
Mat dst_points(1, matches_info.matches.size(), CV_32FC2); |
|
|
|
|