fixes for latest changes in opencv3.0 api

fixes for latest changes in opencv3.0 api

waitKey() normalization

fixed mser bindings
pull/3572/head
berak 10 years ago
parent fd2d800c06
commit fd60e98c5b
  1. 2
      modules/features2d/include/opencv2/features2d.hpp
  2. 2
      samples/python2/calibrate.py
  3. 4
      samples/python2/common.py
  4. 2
      samples/python2/deconvolution.py
  5. 2
      samples/python2/digits_video.py
  6. 2
      samples/python2/edge.py
  7. 12
      samples/python2/find_obj.py
  8. 2
      samples/python2/fitline.py
  9. 2
      samples/python2/lappyr.py
  10. 2
      samples/python2/mosse.py
  11. 4
      samples/python2/mser.py
  12. 2
      samples/python2/plane_ar.py
  13. 4
      samples/python2/plane_tracker.py
  14. 2
      samples/python2/squares.py
  15. 13
      samples/python2/stereo_match.py

@ -337,7 +337,7 @@ public:
double _min_margin=0.003, int _edge_blur_size=5 );
CV_WRAP virtual void detectRegions( InputArray image,
std::vector<std::vector<Point> >& msers,
CV_OUT std::vector<std::vector<Point> >& msers,
std::vector<Rect>& bboxes ) = 0;
CV_WRAP virtual void setDelta(int delta) = 0;

@ -26,7 +26,7 @@ if __name__ == '__main__':
try:
img_mask = img_mask[0]
except:
img_mask = '../cpp/left*.jpg'
img_mask = '../data/left*.jpg'
img_names = glob(img_mask)
debug_dir = args.get('--debug')

@ -71,8 +71,8 @@ def mtx2rvec(R):
return axis * np.arctan2(s, c)
def draw_str(dst, (x, y), s):
cv2.putText(dst, s, (x+1, y+1), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv2.CV_AA)
cv2.putText(dst, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv2.CV_AA)
cv2.putText(dst, s, (x+1, y+1), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv2.LINE_AA)
cv2.putText(dst, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv2.LINE_AA)
class Sketcher:
def __init__(self, windowname, dests, colors_func):

@ -119,7 +119,7 @@ if __name__ == '__main__':
update(None)
while True:
ch = cv2.waitKey()
ch = cv2.waitKey() & 0xFF
if ch == 27:
break
if ch == ord(' '):

@ -86,7 +86,7 @@ def main():
cv2.imshow('frame', frame)
cv2.imshow('bin', bin)
ch = cv2.waitKey(1)
ch = cv2.waitKey(1) & 0xFF
if ch == 27:
break

@ -45,7 +45,7 @@ if __name__ == '__main__':
vis /= 2
vis[edge != 0] = (0, 255, 0)
cv2.imshow('edge', vis)
ch = cv2.waitKey(5)
ch = cv2.waitKey(5) & 0xFF
if ch == 27:
break
cv2.destroyAllWindows()

@ -3,6 +3,8 @@
'''
Feature-based image matching sample.
Note, that you will need the https://github.com/Itseez/opencv_contrib repo for SIFT and SURF
USAGE
find_obj.py [--feature=<sift|surf|orb|akaze|brisk>[-flann]] [ <image1> <image2> ]
@ -23,19 +25,19 @@ FLANN_INDEX_LSH = 6
def init_feature(name):
chunks = name.split('-')
if chunks[0] == 'sift':
detector = cv2.xfeatures2d.SIFT()
detector = cv2.xfeatures2d.SIFT_create()
norm = cv2.NORM_L2
elif chunks[0] == 'surf':
detector = cv2.xfeatures2d.SURF(800)
detector = cv2.xfeatures2d.SURF_create(800)
norm = cv2.NORM_L2
elif chunks[0] == 'orb':
detector = cv2.ORB(400)
detector = cv2.ORB_create(400)
norm = cv2.NORM_HAMMING
elif chunks[0] == 'akaze':
detector = cv2.AKAZE()
detector = cv2.AKAZE_create()
norm = cv2.NORM_HAMMING
elif chunks[0] == 'brisk':
detector = cv2.BRISK()
detector = cv2.BRISK_create()
norm = cv2.NORM_HAMMING
else:
return None, None

@ -79,7 +79,7 @@ if __name__ == '__main__':
cv2.createTrackbar('outlier %', 'fit line', 30, 100, update)
while True:
update()
ch = cv2.waitKey(0)
ch = cv2.waitKey(0) & 0xFF
if ch == ord('f'):
cur_func_name = dist_func_names.next()
if ch == 27:

@ -62,5 +62,5 @@ if __name__ == '__main__':
cv2.imshow('laplacian pyramid filter', res)
if cv2.waitKey(1) == 27:
if cv2.waitKey(1) & 0xFF == 27:
break

@ -168,7 +168,7 @@ class App:
self.rect_sel.draw(vis)
cv2.imshow('frame', vis)
ch = cv2.waitKey(10)
ch = cv2.waitKey(10) & 0xFF
if ch == 27:
break
if ch == ord(' '):

@ -26,13 +26,13 @@ if __name__ == '__main__':
video_src = 0
cam = video.create_capture(video_src)
mser = cv2.MSER()
mser = cv2.MSER_create()
while True:
ret, img = cam.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
vis = img.copy()
regions = mser.detect(gray, None)
regions = mser.detectRegions(gray, None)
hulls = [cv2.convexHull(p.reshape(-1, 1, 2)) for p in regions]
cv2.polylines(vis, hulls, 1, (0, 255, 0))

@ -71,7 +71,7 @@ class App:
self.rect_sel.draw(vis)
cv2.imshow('plane', vis)
ch = cv2.waitKey(1)
ch = cv2.waitKey(1) & 0xFF
if ch == ord(' '):
self.paused = not self.paused
if ch == ord('c'):

@ -61,7 +61,7 @@ TrackedTarget = namedtuple('TrackedTarget', 'target, p0, p1, H, quad')
class PlaneTracker:
def __init__(self):
self.detector = cv2.ORB( nfeatures = 1000 )
self.detector = cv2.ORB_create( nfeatures = 1000 )
self.matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
self.targets = []
@ -160,7 +160,7 @@ class App:
self.rect_sel.draw(vis)
cv2.imshow('plane', vis)
ch = cv2.waitKey(1)
ch = cv2.waitKey(1) & 0xFF
if ch == ord(' '):
self.paused = not self.paused
if ch == ord('c'):

@ -37,7 +37,7 @@ def find_squares(img):
if __name__ == '__main__':
from glob import glob
for fn in glob('../cpp/pic*.png'):
for fn in glob('../data/pic*.png'):
img = cv2.imread(fn)
squares = find_squares(img)
cv2.drawContours( img, squares, -1, (0, 255, 0), 3 )

@ -39,16 +39,15 @@ if __name__ == '__main__':
window_size = 3
min_disp = 16
num_disp = 112-min_disp
stereo = cv2.StereoSGBM(minDisparity = min_disp,
stereo = cv2.StereoSGBM_create(minDisparity = min_disp,
numDisparities = num_disp,
SADWindowSize = window_size,
uniquenessRatio = 10,
speckleWindowSize = 100,
speckleRange = 32,
disp12MaxDiff = 1,
blockSize = 16,
P1 = 8*3*window_size**2,
P2 = 32*3*window_size**2,
fullDP = False
disp12MaxDiff = 1,
uniquenessRatio = 10,
speckleWindowSize = 100,
speckleRange = 32
)
print 'computing disparity...'

Loading…
Cancel
Save