mirror of https://github.com/opencv/opencv.git
GSoC 2016 - Adding ALIASES for tutorial (#7041)
* GSoC 2016 - Adding toggle files to be used by tutorials. Add a toggle option for tutorials. * adds a button on the HTML tutorial pages to switch between blocks * the default option is for languages: one can write a block for C++ and another one for Python without re-writing the tutorial Add aliases to the doxyfile. * adding alises to make a link to previous and next tutorial. * adding alias to specify the toggle options in the tutorials index. * adding alias to add a youtube video directly from link. Add a sample tutorial (mat_mask_opertaions) using the developed aliases: * youtube alias * previous and next tutorial alias * buttons * languages info for tutorial table of content * code referances with snippets (and associated sample code files) * Removing the automatic ordering. Adding specific toggles for cpp, java and python. Move all the code to the footer / header and Doxyfile. Updating documentation.pull/7190/merge
parent
36b5abf6b7
commit
fcddfa4f86
13 changed files with 567 additions and 92 deletions
@ -0,0 +1,14 @@ |
||||
#include <iostream> |
||||
|
||||
/**
|
||||
* @function main |
||||
* @brief Main function |
||||
*/ |
||||
int main( void ) |
||||
{ |
||||
//! [hello_world]
|
||||
std::cout << "Hello World!"; |
||||
//! [hello_world]
|
||||
|
||||
return 0; |
||||
} |
@ -0,0 +1,139 @@ |
||||
import org.opencv.core.*; |
||||
import org.opencv.imgcodecs.Imgcodecs; |
||||
import org.opencv.imgproc.Imgproc; |
||||
|
||||
import javax.swing.*; |
||||
import java.awt.Image; |
||||
import java.awt.image.BufferedImage; |
||||
import java.awt.image.DataBufferByte; |
||||
|
||||
class MatMaskOperationsRun { |
||||
|
||||
public void run() { |
||||
|
||||
//! [laod_image]
|
||||
Mat I = Imgcodecs.imread("../data/lena.jpg"); |
||||
if(I.empty()) |
||||
System.out.println("Error opening image"); |
||||
//! [laod_image]
|
||||
|
||||
Image img = toBufferedImage( I ); |
||||
displayImage("Input Image" , img, 0, 200 ); |
||||
|
||||
double t = System.currentTimeMillis(); |
||||
|
||||
Mat J = sharpen(I, new Mat()); |
||||
|
||||
t = ((double)System.currentTimeMillis() - t)/1000; |
||||
System.out.println("Hand written function times passed in seconds: " + t); |
||||
|
||||
Image img2 = toBufferedImage( J ); |
||||
displayImage("Output Image" , img2, 400, 400 ); |
||||
|
||||
Mat K = new Mat(); |
||||
//![kern]
|
||||
Mat kern = new Mat( 3, 3, CvType.CV_8S ); |
||||
int row = 0, col = 0; |
||||
kern.put(row ,col, 0, -1, 0, -1, 5, -1, 0, -1, 0 ); |
||||
//![kern]
|
||||
|
||||
System.out.println("kern = \n" + kern.dump()); |
||||
|
||||
t = System.currentTimeMillis(); |
||||
|
||||
//![filter2D]
|
||||
Imgproc.filter2D(I, K, I.depth(), kern ); |
||||
//![filter2D]
|
||||
|
||||
t = ((double)System.currentTimeMillis() - t)/1000; |
||||
System.out.println("Built-in filter2D time passed in seconds: " + t); |
||||
|
||||
Image img3 = toBufferedImage( J ); |
||||
displayImage("filter2D Output Image" , img3, 800, 400 ); |
||||
} |
||||
|
||||
//! [basic_method]
|
||||
public static double saturateCastUchar(double x) { |
||||
return x > 255.0 ? 255.0 : (x < 0.0 ? 0.0 : x); |
||||
} |
||||
|
||||
public Mat sharpen(Mat myImage, Mat Result) |
||||
{ |
||||
//! [8_bit]
|
||||
myImage.convertTo(myImage, CvType.CV_8U); |
||||
//! [8_bit]
|
||||
|
||||
//! [create_channels]
|
||||
int nChannels = myImage.channels(); |
||||
Result.create(myImage.size(),myImage.type()); |
||||
//! [create_channels]
|
||||
|
||||
//! [basic_method_loop]
|
||||
for(int j = 1 ; j < myImage.rows()-1; ++j) |
||||
{ |
||||
for(int i = 1 ; i < myImage.cols()-1; ++i) |
||||
{ |
||||
double sum[] = new double[nChannels]; |
||||
|
||||
for(int k = 0; k < nChannels; ++k) { |
||||
|
||||
double top = -myImage.get(j - 1, i)[k]; |
||||
double bottom = -myImage.get(j + 1, i)[k]; |
||||
double center = (5 * myImage.get(j, i)[k]); |
||||
double left = -myImage.get(j , i - 1)[k]; |
||||
double right = -myImage.get(j , i + 1)[k]; |
||||
|
||||
sum[k] = saturateCastUchar(top + bottom + center + left + right); |
||||
} |
||||
|
||||
Result.put(j, i, sum); |
||||
} |
||||
} |
||||
//! [basic_method_loop]
|
||||
|
||||
//! [borders]
|
||||
Result.row(0).setTo(new Scalar(0)); |
||||
Result.row(Result.rows()-1).setTo(new Scalar(0)); |
||||
Result.col(0).setTo(new Scalar(0)); |
||||
Result.col(Result.cols()-1).setTo(new Scalar(0)); |
||||
//! [borders]
|
||||
|
||||
return Result; |
||||
} |
||||
//! [basic_method]
|
||||
|
||||
public Image toBufferedImage(Mat m) { |
||||
int type = BufferedImage.TYPE_BYTE_GRAY; |
||||
if ( m.channels() > 1 ) { |
||||
type = BufferedImage.TYPE_3BYTE_BGR; |
||||
} |
||||
int bufferSize = m.channels()*m.cols()*m.rows(); |
||||
byte [] b = new byte[bufferSize]; |
||||
m.get(0,0,b); // get all the pixels
|
||||
BufferedImage image = new BufferedImage(m.cols(),m.rows(), type); |
||||
final byte[] targetPixels = ((DataBufferByte) image.getRaster().getDataBuffer()).getData(); |
||||
System.arraycopy(b, 0, targetPixels, 0, b.length); |
||||
return image; |
||||
} |
||||
|
||||
public void displayImage(String title, Image img, int x, int y) |
||||
{ |
||||
ImageIcon icon=new ImageIcon(img); |
||||
JFrame frame=new JFrame(title); |
||||
JLabel lbl=new JLabel(icon); |
||||
frame.add(lbl); |
||||
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); |
||||
frame.pack(); |
||||
frame.setLocation(x, y); |
||||
frame.setVisible(true); |
||||
} |
||||
} |
||||
|
||||
public class MatMaskOperations { |
||||
public static void main(String[] args) { |
||||
|
||||
// Load the native library.
|
||||
System.loadLibrary(Core.NATIVE_LIBRARY_NAME); |
||||
new MatMaskOperationsRun().run(); |
||||
} |
||||
} |
@ -0,0 +1,9 @@ |
||||
public class Documentation { |
||||
|
||||
public static void main (String[] args) { |
||||
|
||||
//! [hello_world]
|
||||
System.out.println ("Hello World!"); |
||||
//! [hello_world]
|
||||
} |
||||
} |
@ -0,0 +1,57 @@ |
||||
import time |
||||
import numpy as np |
||||
import cv2 |
||||
## [basic_method] |
||||
def sharpen(my_image): |
||||
my_image = cv2.cvtColor(my_image, cv2.CV_8U) |
||||
|
||||
height, width, n_channels = my_image.shape |
||||
result = np.zeros(my_image.shape, my_image.dtype) |
||||
|
||||
## [basic_method_loop] |
||||
for j in range (1, height-1): |
||||
for i in range (1, width-1): |
||||
for k in range (0, n_channels): |
||||
sum = 5 * my_image[j, i, k] - my_image[j + 1, i, k] - my_image[j - 1, i, k]\ |
||||
- my_image[j, i + 1, k] - my_image[j, i - 1, k]; |
||||
|
||||
if sum > 255: |
||||
sum = 255 |
||||
if sum < 0: |
||||
sum = 0 |
||||
|
||||
result[j, i, k] = sum |
||||
## [basic_method_loop] |
||||
|
||||
return result |
||||
## [basic_method] |
||||
|
||||
|
||||
I = cv2.imread("../data/lena.jpg") |
||||
cv2.imshow('Input Image', I) |
||||
|
||||
t = round(time.time()) |
||||
J = sharpen(I) |
||||
t = (time.time() - t)/1000 |
||||
print "Hand written function times passed in seconds: %s" % t |
||||
|
||||
cv2.imshow('Output Image', J) |
||||
|
||||
t = time.time() |
||||
## [kern] |
||||
kernel = np.array([ [0,-1,0], |
||||
[-1,5,-1], |
||||
[0,-1,0] ],np.float32) # kernel should be floating point type |
||||
## [kern] |
||||
|
||||
## [filter2D] |
||||
K = cv2.filter2D(I, -1, kernel) # ddepth = -1, means destination image has depth same as input image. |
||||
## [filter2D] |
||||
|
||||
t = (time.time() - t)/1000 |
||||
print "Built-in filter2D time passed in seconds: %s" % t |
||||
|
||||
cv2.imshow('filter2D Output Image', K) |
||||
|
||||
cv2.waitKey(0) |
||||
cv2.destroyAllWindows() |
@ -0,0 +1,5 @@ |
||||
print('Not showing this text because it is outside the snippet') |
||||
|
||||
## [hello_world] |
||||
print('Hello world!') |
||||
## [hello_world] |
Loading…
Reference in new issue