Merge pull request #23597 from dmatveev:dm/gapi_onnx_py_integration

G-API: Integration branch for ONNX & Python-related changes #23597

# Changes overview

## 1. Expose ONNX backend's Normalization and Mean-value parameters in Python

* Since Python G-API bindings rely on `Generic` infer to express Inference, the `Generic` specialization of `onnx::Params` was extended with new methods to control normalization (`/255`) and mean-value; these methods were exposed in the Python bindings
* Found some questionable parts in the existing API which I'd like to review/discuss (see comments)

UPD:
1. Thanks to @TolyaTalamanov normalization inconsistencies have been identified with `squeezenet1.0-9` ONNX model itself; tests using these model were updated to DISABLE normalization and NOT using mean/value.
2. Questionable parts were removed and tests still pass.

### Details (taken from @TolyaTalamanov's comment):

`squeezenet1.0.*onnx` - doesn't require scaling to [0,1] and mean/std because the weights of the first convolution already scaled. ONNX documentation is broken. So the correct approach to use this models is:

1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44 but without normalization step:
```
# DON'T DO IT:
# mean_vec = np.array([0.485, 0.456, 0.406])
# stddev_vec = np.array([0.229, 0.224, 0.225])
# norm_img_data = np.zeros(img_data.shape).astype('float32')
# for i in range(img_data.shape[0]):
#     norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]
#     # add batch channel
#     norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32')
#     return norm_img_data

# INSTEAD
return img_data.reshape(1, 3, 224, 224)
```

2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', False)
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.

---

`squeezenet1.1.*onnx` - requires scaling to [0,1] and mean/std - onnx documentation is correct.
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', True) // default
net.cfgMeanStd('data_0', [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.

## 2. Expose Fluid & kernel package-related functionality in Python

* `cv::gapi::combine()`
* `cv::GKernelPackage::size()` (mainly for testing purposes)
* `cv::gapi::imgproc::fluid::kernels()`

Added a test for the above.

## 3. Fixed issues with Python stateful kernel handling

Fixed error message when `outMeta()` of custom python operation fails.

## 4. Fixed various issues in Python tests

1. `test_gapi_streaming.py` - fixed behavior of Desync test to avoid sporadic issues
2. `test_gapi_infer_onnx.py` - fixed model lookup (it was still using the ONNX Zoo layout but was NOT using the proper env var we use to point to one).

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
pull/23713/head^2
Dmitry Matveev 1 year ago committed by GitHub
parent 93d490213f
commit fc5d412ba7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      modules/gapi/include/opencv2/gapi/fluid/imgproc.hpp
  2. 8
      modules/gapi/include/opencv2/gapi/gkernel.hpp
  3. 7
      modules/gapi/include/opencv2/gapi/infer/bindings_onnx.hpp
  4. 2
      modules/gapi/include/opencv2/gapi/infer/ie.hpp
  5. 20
      modules/gapi/include/opencv2/gapi/infer/onnx.hpp
  6. 26
      modules/gapi/misc/python/pyopencv_gapi.hpp
  7. 14
      modules/gapi/misc/python/test/test_gapi_infer_onnx.py
  8. 48
      modules/gapi/misc/python/test/test_gapi_kernels.py
  9. 76
      modules/gapi/misc/python/test/test_gapi_stateful_kernel.py
  10. 12
      modules/gapi/misc/python/test/test_gapi_streaming.py
  11. 13
      modules/gapi/src/backends/onnx/bindings_onnx.cpp
  12. 26
      modules/gapi/src/backends/onnx/gonnxbackend.cpp
  13. 86
      modules/gapi/test/infer/gapi_infer_onnx_test.cpp

@ -13,7 +13,7 @@
namespace cv { namespace gapi { namespace imgproc { namespace fluid {
GAPI_EXPORTS GKernelPackage kernels();
GAPI_EXPORTS_W GKernelPackage kernels();
}}}}

@ -414,8 +414,8 @@ namespace cv {
class GAPI_EXPORTS_W_SIMPLE GKernelPackage;
namespace gapi {
GAPI_EXPORTS cv::GKernelPackage combine(const cv::GKernelPackage &lhs,
const cv::GKernelPackage &rhs);
GAPI_EXPORTS_W cv::GKernelPackage combine(const cv::GKernelPackage &lhs,
const cv::GKernelPackage &rhs);
/// @private
class GFunctor
@ -513,7 +513,7 @@ namespace gapi {
*
* @return a number of kernels in the package
*/
std::size_t size() const;
GAPI_WRAP std::size_t size() const;
/**
* @brief Returns vector of transformations included in the package
@ -717,6 +717,8 @@ namespace gapi {
{
return combine(a, combine(b, rest...));
}
// NB(DM): Variadic-arg version in Python may require the same
// approach as used in GComputation::compile/apply.
/** \addtogroup gapi_compile_args
* @{

@ -26,6 +26,13 @@ public:
GAPI_WRAP
PyParams(const std::string& tag, const std::string& model_path);
GAPI_WRAP
PyParams& cfgMeanStd(const std::string &layer_name,
const cv::Scalar &m,
const cv::Scalar &s);
GAPI_WRAP
PyParams& cfgNormalize(const std::string &layer_name, bool flag);
GBackend backend() const;
std::string tag() const;
cv::util::any params() const;

@ -242,7 +242,7 @@ public:
@param cfg Map of pairs: (config parameter name, config parameter value).
@return reference to this parameter structure.
*/
Params& pluginConfig(const IEConfig& cfg) {
Params& pluginConfig(const IEConfig& cfg) {
desc.config = cfg;
return *this;
}

@ -70,6 +70,14 @@ struct ParamDesc {
std::vector<std::string> names_to_remap; //!< Names of output layers that will be processed in PostProc function.
bool is_generic;
// TODO: Needs to modify the rest of ParamDesc accordingly to support
// both generic and non-generic options without duplication
// (as it was done for the OV IE backend)
// These values are pushed into the respective vector<> fields above
// when the generic infer parameters are unpacked (see GONNXBackendImpl::unpackKernel)
std::unordered_map<std::string, std::pair<cv::Scalar, cv::Scalar> > generic_mstd;
std::unordered_map<std::string, bool> generic_norm;
};
} // namespace detail
@ -298,7 +306,17 @@ public:
@param model_path path to model file (.onnx file).
*/
Params(const std::string& tag, const std::string& model_path)
: desc{model_path, 0u, 0u, {}, {}, {}, {}, {}, {}, {}, {}, {}, true}, m_tag(tag) {}
: desc{model_path, 0u, 0u, {}, {}, {}, {}, {}, {}, {}, {}, {}, true, {}, {} }, m_tag(tag) {}
void cfgMeanStdDev(const std::string &layer,
const cv::Scalar &m,
const cv::Scalar &s) {
desc.generic_mstd[layer] = std::make_pair(m, s);
}
void cfgNormalize(const std::string &layer, bool flag) {
desc.generic_norm[layer] = flag;
}
// BEGIN(G-API's network parametrization API)
GBackend backend() const { return cv::gapi::onnx::backend(); }

@ -785,15 +785,14 @@ static void unpackMetasToTuple(const cv::GMetaArgs& meta,
}
}
static cv::GArg setup_py(cv::detail::PyObjectHolder setup,
const cv::GMetaArgs& meta,
const cv::GArgs& gargs)
static cv::GArg run_py_setup(cv::detail::PyObjectHolder setup,
const cv::GMetaArgs &meta,
const cv::GArgs &gargs)
{
PyGILState_STATE gstate;
gstate = PyGILState_Ensure();
cv::GArg out;
cv::GArg state;
try
{
// NB: Doesn't increase reference counter (false),
@ -801,23 +800,20 @@ static cv::GArg setup_py(cv::detail::PyObjectHolder setup,
// In case exception decrement reference counter.
cv::detail::PyObjectHolder args(PyTuple_New(meta.size()), false);
unpackMetasToTuple(meta, gargs, args);
// NB: Take an onwership because this state is "Python" type so it will be wrapped as-is
// into cv::GArg and stored in GPythonBackend. Object without ownership can't
// be dealocated outside this function.
cv::detail::PyObjectHolder result(PyObject_CallObject(setup.get(), args.get()), true);
PyObject *py_kernel_state = PyObject_CallObject(setup.get(), args.get());
if (PyErr_Occurred())
{
PyErr_PrintEx(0);
PyErr_Clear();
throw std::logic_error("Python kernel failed with error!");
throw std::logic_error("Python kernel setup failed with error!");
}
// NB: In fact it's impossible situation, because errors were handled above.
GAPI_Assert(result.get() && "Python kernel returned NULL!");
GAPI_Assert(py_kernel_state && "Python kernel setup returned NULL!");
if (!pyopencv_to(result.get(), out, ArgInfo("arg", false)))
if (!pyopencv_to(py_kernel_state, state, ArgInfo("arg", false)))
{
util::throw_error(std::logic_error("Unsupported output meta type"));
util::throw_error(std::logic_error("Failed to convert python state"));
}
}
catch (...)
@ -826,7 +822,7 @@ static cv::GArg setup_py(cv::detail::PyObjectHolder setup,
throw;
}
PyGILState_Release(gstate);
return out;
return state;
}
static GMetaArg get_meta_arg(PyObject* obj)
@ -947,7 +943,7 @@ static PyObject* pyopencv_cv_gapi_kernels(PyObject* , PyObject* py_args, PyObjec
gapi::python::GPythonFunctor f(
id.c_str(), std::bind(run_py_meta, cv::detail::PyObjectHolder{out_meta}, _1, _2),
std::bind(run_py_kernel, cv::detail::PyObjectHolder{run}, _1),
std::bind(setup_py, cv::detail::PyObjectHolder{setup}, _1, _2));
std::bind(run_py_setup, cv::detail::PyObjectHolder{setup}, _1, _2));
pkg.include(f);
}
else

@ -14,21 +14,14 @@ try:
if sys.version_info[:2] < (3, 0):
raise unittest.SkipTest('Python 2.x is not supported')
CLASSIFICATION_MODEL_PATH = "onnx_models/vision/classification/squeezenet/model/squeezenet1.0-9.onnx"
testdata_required = bool(os.environ.get('OPENCV_DNN_TEST_REQUIRE_TESTDATA', False))
CLASSIFICATION_MODEL_PATH = "vision/classification/squeezenet/model/squeezenet1.0-9.onnx"
class test_gapi_infer(NewOpenCVTests):
def find_dnn_file(self, filename, required=None):
if not required:
required = testdata_required
return self.find_file(filename, [os.environ.get('OPENCV_DNN_TEST_DATA_PATH', os.getcwd()),
os.environ['OPENCV_TEST_DATA_PATH']],
required=required)
def find_dnn_file(self, filename):
return self.find_file(filename, [os.environ.get('OPENCV_GAPI_ONNX_MODEL_PATH')], False)
def test_onnx_classification(self):
model_path = self.find_dnn_file(CLASSIFICATION_MODEL_PATH)
if model_path is None:
raise unittest.SkipTest("Missing DNN test file")
@ -45,6 +38,7 @@ try:
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
net = cv.gapi.onnx.params("squeeze-net", model_path)
net.cfgNormalize("data_0", False)
try:
out_gapi = comp.apply(cv.gin(in_mat), cv.gapi.compile_args(cv.gapi.networks(net)))
except cv.error as err:

@ -0,0 +1,48 @@
#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
import sys
import unittest
from tests_common import NewOpenCVTests
try:
if sys.version_info[:2] < (3, 0):
raise unittest.SkipTest('Python 2.x is not supported')
class gapi_kernels_test(NewOpenCVTests):
def test_fluid_core_package(self):
fluid_core = cv.gapi.core.fluid.kernels()
self.assertLess(0, fluid_core.size())
def test_fluid_imgproc_package(self):
fluid_imgproc = cv.gapi.imgproc.fluid.kernels()
self.assertLess(0, fluid_imgproc.size())
def test_combine(self):
fluid_core = cv.gapi.core.fluid.kernels()
fluid_imgproc = cv.gapi.imgproc.fluid.kernels()
fluid = cv.gapi.combine(fluid_core, fluid_imgproc)
self.assertEqual(fluid_core.size() + fluid_imgproc.size(), fluid.size())
except unittest.SkipTest as e:
message = str(e)
class TestSkip(unittest.TestCase):
def setUp(self):
self.skipTest('Skip tests: ' + message)
def test_skip():
pass
pass
if __name__ == '__main__':
NewOpenCVTests.bootstrap()

@ -24,7 +24,7 @@ try:
in_types=[cv.GOpaque.Int],
out_types=[cv.GOpaque.Int])
class GStatefulCounter:
"""Accumulate state counter on every call"""
"""Accumulates state counter on every call"""
@staticmethod
def outMeta(desc):
@ -45,6 +45,22 @@ try:
return state.counter
class SumState:
def __init__(self):
self.sum = 0
@cv.gapi.op('stateful_sum',
in_types=[cv.GOpaque.Int, cv.GOpaque.Int],
out_types=[cv.GOpaque.Int])
class GStatefulSum:
"""Accumulates sum on every call"""
@staticmethod
def outMeta(lhs_desc, rhs_desc):
return cv.empty_gopaque_desc()
class gapi_sample_pipelines(NewOpenCVTests):
def test_stateful_kernel_single_instance(self):
g_in = cv.GOpaque.Int()
@ -124,6 +140,64 @@ try:
cc.stop()
def test_stateful_multiple_inputs(self):
@cv.gapi.kernel(GStatefulSum)
class GStatefulSumImpl:
"""Implementation for GStatefulCounter operation."""
@staticmethod
def setup(lhs_desc, rhs_desc):
return SumState()
@staticmethod
def run(lhs, rhs, state):
state.sum+= lhs + rhs
return state.sum
g_in1 = cv.GOpaque.Int()
g_in2 = cv.GOpaque.Int()
g_out = GStatefulSum.on(g_in1, g_in2)
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
pkg = cv.gapi.kernels(GStatefulSumImpl)
lhs_list = [1, 10, 15]
rhs_list = [2, 14, 32]
ref_out = 0
for lhs, rhs in zip(lhs_list, rhs_list):
ref_out += lhs + rhs
gapi_out = comp.apply(cv.gin(lhs, rhs), cv.gapi.compile_args(pkg))
self.assertEqual(ref_out, gapi_out)
def test_stateful_multiple_inputs_throw(self):
@cv.gapi.kernel(GStatefulSum)
class GStatefulSumImplIncorrect:
"""Incorrect implementation for GStatefulCounter operation."""
# NB: setup methods is intentionally
# incorrect - accepts one meta arg instead of two
@staticmethod
def setup(desc):
return SumState()
@staticmethod
def run(lhs, rhs, state):
state.sum+= lhs + rhs
return state.sum
g_in1 = cv.GOpaque.Int()
g_in2 = cv.GOpaque.Int()
g_out = GStatefulSum.on(g_in1, g_in2)
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
pkg = cv.gapi.kernels(GStatefulSumImplIncorrect)
with self.assertRaises(Exception): comp.apply(cv.gin(42, 42),
args=cv.gapi.compile_args(pkg))
except unittest.SkipTest as e:
message = str(e)

@ -17,7 +17,7 @@ try:
@cv.gapi.op('custom.delay', in_types=[cv.GMat], out_types=[cv.GMat])
class GDelay:
"""Delay for 10 ms."""
"""Delay for 50 ms."""
@staticmethod
def outMeta(desc):
@ -30,7 +30,7 @@ try:
@staticmethod
def run(img):
time.sleep(0.01)
time.sleep(0.05)
return img
@ -289,8 +289,7 @@ try:
ccomp.start()
# Assert
max_num_frames = 10
proc_num_frames = 0
max_num_frames = 50
out_counter = 0
desync_out_counter = 0
@ -307,12 +306,11 @@ try:
else:
none_counter += 1
proc_num_frames += 1
if proc_num_frames == max_num_frames:
if out_counter == max_num_frames:
ccomp.stop()
break
self.assertLess(0, proc_num_frames)
self.assertLess(0, out_counter)
self.assertLess(desync_out_counter, out_counter)
self.assertLess(0, none_counter)

@ -8,6 +8,19 @@ cv::gapi::onnx::PyParams::PyParams(const std::string& tag,
const std::string& model_path)
: m_priv(std::make_shared<Params<cv::gapi::Generic>>(tag, model_path)) {}
cv::gapi::onnx::PyParams& cv::gapi::onnx::PyParams::cfgMeanStd(const std::string &layer_name,
const cv::Scalar &m,
const cv::Scalar &s) {
m_priv->cfgMeanStdDev(layer_name, m, s);
return *this;
}
cv::gapi::onnx::PyParams& cv::gapi::onnx::PyParams::cfgNormalize(const std::string &layer_name,
bool flag) {
m_priv->cfgNormalize(layer_name, flag);
return *this;
}
cv::gapi::GBackend cv::gapi::onnx::PyParams::backend() const {
return m_priv->backend();
}

@ -284,6 +284,7 @@ inline void preprocess(const cv::Mat& src,
cv::resize(csc, rsz, cv::Size(new_w, new_h));
if (src.depth() == CV_8U && type == CV_32F) {
rsz.convertTo(pp, type, ti.normalize ? 1.f / 255 : 1.f);
if (ti.mstd.has_value()) {
pp -= ti.mstd->mean;
pp /= ti.mstd->stdev;
@ -1143,24 +1144,31 @@ namespace {
if (pp.is_generic) {
auto& info = cv::util::any_cast<cv::detail::InOutInfo>(op.params);
for (const auto& a : info.in_names)
{
pp.input_names.push_back(a);
}
// Adding const input is necessary because the definition of input_names
// includes const input.
for (const auto& a : pp.const_inputs)
for (const auto& layer_name : info.in_names)
{
pp.input_names.push_back(a.first);
pp.input_names.push_back(layer_name);
if (!pp.generic_mstd.empty()) {
const auto &ms = pp.generic_mstd.at(layer_name);
pp.mean.push_back(ms.first);
pp.stdev.push_back(ms.second);
}
if (!pp.generic_norm.empty()) {
pp.normalize.push_back(pp.generic_norm.at(layer_name));
}
}
pp.num_in = info.in_names.size();
// Incorporate extra parameters associated with input layer names
// FIXME(DM): The current form assumes ALL input layers require
// this information, this is obviously not correct
for (const auto& a : info.out_names)
{
pp.output_names.push_back(a);
}
pp.num_out = info.out_names.size();
}
} // if(is_generic) -- note, the structure is already filled at the user
// end when a non-generic Params are used
gm.metadata(nh).set(ONNXUnit{pp});
gm.metadata(nh).set(ONNXCallable{ki.run});

@ -423,13 +423,17 @@ public:
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360})
};
void preprocess(const cv::Mat& src, cv::Mat& dst) {
// FIXME(dm): There's too much "preprocess" routines in this file
// Only one must stay but better design it wisely (and later)
void preprocess(const cv::Mat& src, cv::Mat& dst, bool norm = true) {
const int new_h = 224;
const int new_w = 224;
cv::Mat tmp, cvt, rsz;
cv::resize(src, rsz, cv::Size(new_w, new_h));
rsz.convertTo(cvt, CV_32F, 1.f / 255);
tmp = (cvt - mean) / std;
rsz.convertTo(cvt, CV_32F, norm ? 1.f / 255 : 1.f);
tmp = norm
? (cvt - mean) / std
: cvt;
toCHW(tmp, dst);
dst = dst.reshape(1, {1, 3, new_h, new_w});
}
@ -550,16 +554,16 @@ TEST_F(ONNXClassification, Infer)
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
// ONNX_API code
cv::Mat processed_mat;
preprocess(in_mat, processed_mat);
preprocess(in_mat, processed_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(processed_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GMat in;
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(in_mat),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
@ -573,7 +577,7 @@ TEST_F(ONNXClassification, InferTensor)
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
// Create tensor
cv::Mat tensor;
preprocess(in_mat, tensor);
preprocess(in_mat, tensor, false); // NO normalization for 1.0-9, see #23597
// ONNX_API code
infer<float>(tensor, out_onnx);
// G_API code
@ -581,7 +585,9 @@ TEST_F(ONNXClassification, InferTensor)
cv::GMat in;
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path };
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(tensor),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
@ -596,7 +602,7 @@ TEST_F(ONNXClassification, InferROI)
const auto ROI = rois.at(0);
// ONNX_API code
cv::Mat roi_mat;
preprocess(in_mat(ROI), roi_mat);
preprocess(in_mat(ROI), roi_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(roi_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
@ -604,9 +610,9 @@ TEST_F(ONNXClassification, InferROI)
cv::GOpaque<cv::Rect> rect;
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(in_mat, ROI),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
@ -621,7 +627,7 @@ TEST_F(ONNXClassification, InferROIList)
// ONNX_API code
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(in_mat(rois[i]), roi_mat);
preprocess(in_mat(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(roi_mat, out_onnx);
}
// G_API code
@ -632,7 +638,9 @@ TEST_F(ONNXClassification, InferROIList)
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(in_mat, rois),
cv::gout(out_gapi),
cv::compile_args(cv::gapi::networks(net)));
@ -647,7 +655,7 @@ TEST_F(ONNXClassification, Infer2ROIList)
// ONNX_API code
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(in_mat(rois[i]), roi_mat);
preprocess(in_mat(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(roi_mat, out_onnx);
}
// G_API code
@ -658,7 +666,9 @@ TEST_F(ONNXClassification, Infer2ROIList)
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(in_mat, rois),
cv::gout(out_gapi),
cv::compile_args(cv::gapi::networks(net)));
@ -747,7 +757,7 @@ TEST_F(ONNXMediaFrame, InferBGR)
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
// ONNX_API code
cv::Mat processed_mat;
preprocess(in_mat, processed_mat);
preprocess(in_mat, processed_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(processed_mat, out_onnx);
// G_API code
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
@ -757,7 +767,9 @@ TEST_F(ONNXMediaFrame, InferBGR)
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(frame),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
@ -774,7 +786,7 @@ TEST_F(ONNXMediaFrame, InferYUV)
cv::Mat pp;
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
cv::Mat processed_mat;
preprocess(pp, processed_mat);
preprocess(pp, processed_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(processed_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
@ -783,7 +795,9 @@ TEST_F(ONNXMediaFrame, InferYUV)
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(frame),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
@ -798,7 +812,7 @@ TEST_F(ONNXMediaFrame, InferROIBGR)
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
// ONNX_API code
cv::Mat roi_mat;
preprocess(in_mat(rois.front()), roi_mat);
preprocess(in_mat(rois.front()), roi_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(roi_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
@ -808,7 +822,9 @@ TEST_F(ONNXMediaFrame, InferROIBGR)
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(frame, rois.front()),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
@ -825,7 +841,7 @@ TEST_F(ONNXMediaFrame, InferROIYUV)
cv::Mat pp;
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
cv::Mat roi_mat;
preprocess(pp(rois.front()), roi_mat);
preprocess(pp(rois.front()), roi_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(roi_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
@ -835,7 +851,9 @@ TEST_F(ONNXMediaFrame, InferROIYUV)
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(frame, rois.front()),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
@ -851,7 +869,7 @@ TEST_F(ONNXMediaFrame, InferListBGR)
// ONNX_API code
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(in_mat(rois[i]), roi_mat);
preprocess(in_mat(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(roi_mat, out_onnx);
}
// G_API code
@ -862,7 +880,9 @@ TEST_F(ONNXMediaFrame, InferListBGR)
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(frame, rois),
cv::gout(out_gapi),
cv::compile_args(cv::gapi::networks(net)));
@ -880,7 +900,7 @@ TEST_F(ONNXMediaFrame, InferListYUV)
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(pp(rois[i]), roi_mat);
preprocess(pp(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(roi_mat, out_onnx);
}
// G_API code
@ -891,7 +911,9 @@ TEST_F(ONNXMediaFrame, InferListYUV)
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(frame, rois),
cv::gout(out_gapi),
cv::compile_args(cv::gapi::networks(net)));
@ -933,7 +955,7 @@ TEST_F(ONNXMediaFrame, InferList2BGR)
// ONNX_API code
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(in_mat(rois[i]), roi_mat);
preprocess(in_mat(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(roi_mat, out_onnx);
}
// G_API code
@ -944,7 +966,9 @@ TEST_F(ONNXMediaFrame, InferList2BGR)
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(frame, rois),
cv::gout(out_gapi),
cv::compile_args(cv::gapi::networks(net)));

Loading…
Cancel
Save