|
|
|
@ -198,7 +198,7 @@ public: |
|
|
|
|
CV_WRAP virtual Mat getTestSampleWeights() const = 0; |
|
|
|
|
CV_WRAP virtual Mat getVarIdx() const = 0; |
|
|
|
|
CV_WRAP virtual Mat getVarType() const = 0; |
|
|
|
|
CV_WRAP Mat getVarSymbolFlags() const; |
|
|
|
|
CV_WRAP virtual Mat getVarSymbolFlags() const = 0; |
|
|
|
|
CV_WRAP virtual int getResponseType() const = 0; |
|
|
|
|
CV_WRAP virtual Mat getTrainSampleIdx() const = 0; |
|
|
|
|
CV_WRAP virtual Mat getTestSampleIdx() const = 0; |
|
|
|
@ -234,10 +234,10 @@ public: |
|
|
|
|
CV_WRAP virtual void shuffleTrainTest() = 0; |
|
|
|
|
|
|
|
|
|
/** @brief Returns matrix of test samples */ |
|
|
|
|
CV_WRAP Mat getTestSamples() const; |
|
|
|
|
CV_WRAP virtual Mat getTestSamples() const = 0; |
|
|
|
|
|
|
|
|
|
/** @brief Returns vector of symbolic names captured in loadFromCSV() */ |
|
|
|
|
CV_WRAP void getNames(std::vector<String>& names) const; |
|
|
|
|
CV_WRAP virtual void getNames(std::vector<String>& names) const = 0; |
|
|
|
|
|
|
|
|
|
CV_WRAP static Mat getSubVector(const Mat& vec, const Mat& idx); |
|
|
|
|
|
|
|
|
@ -727,7 +727,7 @@ public: |
|
|
|
|
regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and |
|
|
|
|
the usual %SVM with parameters specified in params is executed. |
|
|
|
|
*/ |
|
|
|
|
CV_WRAP bool trainAuto(InputArray samples, |
|
|
|
|
CV_WRAP virtual bool trainAuto(InputArray samples, |
|
|
|
|
int layout, |
|
|
|
|
InputArray responses, |
|
|
|
|
int kFold = 10, |
|
|
|
@ -737,7 +737,7 @@ public: |
|
|
|
|
Ptr<ParamGrid> nuGrid = SVM::getDefaultGridPtr(SVM::NU), |
|
|
|
|
Ptr<ParamGrid> coeffGrid = SVM::getDefaultGridPtr(SVM::COEF), |
|
|
|
|
Ptr<ParamGrid> degreeGrid = SVM::getDefaultGridPtr(SVM::DEGREE), |
|
|
|
|
bool balanced=false); |
|
|
|
|
bool balanced=false) = 0; |
|
|
|
|
|
|
|
|
|
/** @brief Retrieves all the support vectors
|
|
|
|
|
|
|
|
|
@ -752,7 +752,7 @@ public: |
|
|
|
|
support vector, used for prediction, was derived from. They are returned in a floating-point |
|
|
|
|
matrix, where the support vectors are stored as matrix rows. |
|
|
|
|
*/ |
|
|
|
|
CV_WRAP Mat getUncompressedSupportVectors() const; |
|
|
|
|
CV_WRAP virtual Mat getUncompressedSupportVectors() const = 0; |
|
|
|
|
|
|
|
|
|
/** @brief Retrieves the decision function
|
|
|
|
|
|
|
|
|
@ -1273,7 +1273,7 @@ public: |
|
|
|
|
@param results Array where the result of the calculation will be written. |
|
|
|
|
@param flags Flags for defining the type of RTrees. |
|
|
|
|
*/ |
|
|
|
|
CV_WRAP void getVotes(InputArray samples, OutputArray results, int flags) const; |
|
|
|
|
CV_WRAP virtual void getVotes(InputArray samples, OutputArray results, int flags) const = 0; |
|
|
|
|
|
|
|
|
|
/** Creates the empty model.
|
|
|
|
|
Use StatModel::train to train the model, StatModel::train to create and train the model, |
|
|
|
|