|
|
|
@ -89,244 +89,6 @@ PERF_TEST_P(HOG, CalTech, Values<string>("gpu/caltech/image_00000009_0.png", "gp |
|
|
|
|
SANITY_CHECK(found_locations); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//================================================= ICF SoftCascade =================================================//
|
|
|
|
|
|
|
|
|
|
typedef pair<string, string> pair_string; |
|
|
|
|
DEF_PARAM_TEST_1(SoftCascade, pair_string); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// struct SoftCascadeTest : public perf::TestBaseWithParam<roi_fixture_t>
|
|
|
|
|
// {
|
|
|
|
|
// typedef cv::gpu::SoftCascade::Detection detection_t;
|
|
|
|
|
// static cv::Rect getFromTable(int idx)
|
|
|
|
|
// {
|
|
|
|
|
// static const cv::Rect rois[] =
|
|
|
|
|
// {
|
|
|
|
|
// cv::Rect( 65, 20, 35, 80),
|
|
|
|
|
// cv::Rect( 95, 35, 45, 40),
|
|
|
|
|
// cv::Rect( 45, 35, 45, 40),
|
|
|
|
|
// cv::Rect( 25, 27, 50, 45),
|
|
|
|
|
// cv::Rect(100, 50, 45, 40),
|
|
|
|
|
|
|
|
|
|
// cv::Rect( 60, 30, 45, 40),
|
|
|
|
|
// cv::Rect( 40, 55, 50, 40),
|
|
|
|
|
// cv::Rect( 48, 37, 72, 80),
|
|
|
|
|
// cv::Rect( 48, 32, 85, 58),
|
|
|
|
|
// cv::Rect( 48, 0, 32, 27)
|
|
|
|
|
// };
|
|
|
|
|
|
|
|
|
|
// return rois[idx];
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
// static std::string itoa(long i)
|
|
|
|
|
// {
|
|
|
|
|
// static char s[65];
|
|
|
|
|
// sprintf(s, "%ld", i);
|
|
|
|
|
// return std::string(s);
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
// static std::string getImageName(int level)
|
|
|
|
|
// {
|
|
|
|
|
// time_t rawtime;
|
|
|
|
|
// struct tm * timeinfo;
|
|
|
|
|
// char buffer [80];
|
|
|
|
|
|
|
|
|
|
// time ( &rawtime );
|
|
|
|
|
// timeinfo = localtime ( &rawtime );
|
|
|
|
|
|
|
|
|
|
// strftime (buffer,80,"%Y-%m-%d--%H-%M-%S",timeinfo);
|
|
|
|
|
// return "gpu_rec_level_" + itoa(level)+ "_" + std::string(buffer) + ".png";
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
// static void print(std::ostream &out, const detection_t& d)
|
|
|
|
|
// {
|
|
|
|
|
// out << "\x1b[32m[ detection]\x1b[0m ("
|
|
|
|
|
// << std::setw(4) << d.x
|
|
|
|
|
// << " "
|
|
|
|
|
// << std::setw(4) << d.y
|
|
|
|
|
// << ") ("
|
|
|
|
|
// << std::setw(4) << d.w
|
|
|
|
|
// << " "
|
|
|
|
|
// << std::setw(4) << d.h
|
|
|
|
|
// << ") "
|
|
|
|
|
// << std::setw(12) << d.confidence
|
|
|
|
|
// << std::endl;
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
// static void printTotal(std::ostream &out, int detbytes)
|
|
|
|
|
// {
|
|
|
|
|
// out << "\x1b[32m[ ]\x1b[0m Total detections " << (detbytes / sizeof(detection_t)) << std::endl;
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
// static void writeResult(const cv::Mat& result, const int level)
|
|
|
|
|
// {
|
|
|
|
|
// std::string path = cv::tempfile(getImageName(level).c_str());
|
|
|
|
|
// cv::imwrite(path, result);
|
|
|
|
|
// std::cout << "\x1b[32m" << "[ ]" << std::endl << "[ stored in]"<< "\x1b[0m" << path << std::endl;
|
|
|
|
|
// }
|
|
|
|
|
// };
|
|
|
|
|
|
|
|
|
|
typedef std::tr1::tuple<std::string, std::string> fixture_t; |
|
|
|
|
typedef perf::TestBaseWithParam<fixture_t> SoftCascadeTest; |
|
|
|
|
|
|
|
|
|
PERF_TEST_P(SoftCascadeTest, detect, |
|
|
|
|
testing::Combine( |
|
|
|
|
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
|
|
|
|
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")))) |
|
|
|
|
{ |
|
|
|
|
if (runOnGpu) |
|
|
|
|
{ |
|
|
|
|
cv::Mat cpu = readImage (GET_PARAM(1)); |
|
|
|
|
ASSERT_FALSE(cpu.empty()); |
|
|
|
|
cv::gpu::GpuMat colored(cpu); |
|
|
|
|
|
|
|
|
|
cv::gpu::SoftCascade cascade; |
|
|
|
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0)))); |
|
|
|
|
|
|
|
|
|
cv::gpu::GpuMat objectBoxes(1, 16384, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1), trois; |
|
|
|
|
rois.setTo(1); |
|
|
|
|
cv::gpu::transpose(rois, trois); |
|
|
|
|
|
|
|
|
|
cv::gpu::GpuMat curr = objectBoxes; |
|
|
|
|
cascade.detectMultiScale(colored, trois, curr); |
|
|
|
|
|
|
|
|
|
TEST_CYCLE() |
|
|
|
|
{ |
|
|
|
|
curr = objectBoxes; |
|
|
|
|
cascade.detectMultiScale(colored, trois, curr); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
cv::Mat colored = readImage(GET_PARAM(1)); |
|
|
|
|
ASSERT_FALSE(colored.empty()); |
|
|
|
|
|
|
|
|
|
cv::SoftCascade cascade; |
|
|
|
|
ASSERT_TRUE(cascade.load(getDataPath(GET_PARAM(0)))); |
|
|
|
|
|
|
|
|
|
std::vector<cv::Rect> rois; |
|
|
|
|
|
|
|
|
|
typedef cv::SoftCascade::Detection Detection; |
|
|
|
|
std::vector<Detection>objectBoxes; |
|
|
|
|
cascade.detectMultiScale(colored, rois, objectBoxes); |
|
|
|
|
|
|
|
|
|
TEST_CYCLE() |
|
|
|
|
{ |
|
|
|
|
cascade.detectMultiScale(colored, rois, objectBoxes); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static cv::Rect getFromTable(int idx) |
|
|
|
|
{ |
|
|
|
|
static const cv::Rect rois[] = |
|
|
|
|
{ |
|
|
|
|
cv::Rect( 65, 20, 35, 80), |
|
|
|
|
cv::Rect( 95, 35, 45, 40), |
|
|
|
|
cv::Rect( 45, 35, 45, 40), |
|
|
|
|
cv::Rect( 25, 27, 50, 45), |
|
|
|
|
cv::Rect(100, 50, 45, 40), |
|
|
|
|
|
|
|
|
|
cv::Rect( 60, 30, 45, 40), |
|
|
|
|
cv::Rect( 40, 55, 50, 40), |
|
|
|
|
cv::Rect( 48, 37, 72, 80), |
|
|
|
|
cv::Rect( 48, 32, 85, 58), |
|
|
|
|
cv::Rect( 48, 0, 32, 27) |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
return rois[idx]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
typedef std::tr1::tuple<std::string, std::string, int> roi_fixture_t; |
|
|
|
|
typedef perf::TestBaseWithParam<roi_fixture_t> SoftCascadeTestRoi; |
|
|
|
|
|
|
|
|
|
PERF_TEST_P(SoftCascadeTestRoi, detectInRoi, |
|
|
|
|
testing::Combine( |
|
|
|
|
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
|
|
|
|
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")), |
|
|
|
|
testing::Range(0, 5))) |
|
|
|
|
{ |
|
|
|
|
if (runOnGpu) |
|
|
|
|
{ |
|
|
|
|
cv::Mat cpu = readImage (GET_PARAM(1)); |
|
|
|
|
ASSERT_FALSE(cpu.empty()); |
|
|
|
|
cv::gpu::GpuMat colored(cpu); |
|
|
|
|
|
|
|
|
|
cv::gpu::SoftCascade cascade; |
|
|
|
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0)))); |
|
|
|
|
|
|
|
|
|
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1); |
|
|
|
|
rois.setTo(0); |
|
|
|
|
|
|
|
|
|
int nroi = GET_PARAM(2); |
|
|
|
|
cv::RNG rng; |
|
|
|
|
for (int i = 0; i < nroi; ++i) |
|
|
|
|
{ |
|
|
|
|
cv::Rect r = getFromTable(rng(10)); |
|
|
|
|
cv::gpu::GpuMat sub(rois, r); |
|
|
|
|
sub.setTo(1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::gpu::GpuMat trois; |
|
|
|
|
cv::gpu::transpose(rois, trois); |
|
|
|
|
|
|
|
|
|
cv::gpu::GpuMat curr = objectBoxes; |
|
|
|
|
cascade.detectMultiScale(colored, trois, curr); |
|
|
|
|
|
|
|
|
|
TEST_CYCLE() |
|
|
|
|
{ |
|
|
|
|
curr = objectBoxes; |
|
|
|
|
cascade.detectMultiScale(colored, trois, curr); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
FAIL(); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P(SoftCascadeTestRoi, detectEachRoi, |
|
|
|
|
testing::Combine( |
|
|
|
|
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
|
|
|
|
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")), |
|
|
|
|
testing::Range(0, 10))) |
|
|
|
|
{ |
|
|
|
|
if (runOnGpu) |
|
|
|
|
{ |
|
|
|
|
cv::Mat cpu = readImage (GET_PARAM(1)); |
|
|
|
|
ASSERT_FALSE(cpu.empty()); |
|
|
|
|
cv::gpu::GpuMat colored(cpu); |
|
|
|
|
|
|
|
|
|
cv::gpu::SoftCascade cascade; |
|
|
|
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0)))); |
|
|
|
|
|
|
|
|
|
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1); |
|
|
|
|
rois.setTo(0); |
|
|
|
|
|
|
|
|
|
int idx = GET_PARAM(2); |
|
|
|
|
cv::Rect r = getFromTable(idx); |
|
|
|
|
cv::gpu::GpuMat sub(rois, r); |
|
|
|
|
sub.setTo(1); |
|
|
|
|
|
|
|
|
|
cv::gpu::GpuMat curr = objectBoxes; |
|
|
|
|
cv::gpu::GpuMat trois; |
|
|
|
|
cv::gpu::transpose(rois, trois); |
|
|
|
|
|
|
|
|
|
cascade.detectMultiScale(colored, trois, curr); |
|
|
|
|
|
|
|
|
|
TEST_CYCLE() |
|
|
|
|
{ |
|
|
|
|
curr = objectBoxes; |
|
|
|
|
cascade.detectMultiScale(colored, rois, curr); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
FAIL(); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////
|
|
|
|
|
// HaarClassifier
|
|
|
|
|
|
|
|
|
@ -383,7 +145,7 @@ PERF_TEST_P(ImageAndCascade, ObjDetect_LBPClassifier, |
|
|
|
|
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); |
|
|
|
|
ASSERT_FALSE(img.empty()); |
|
|
|
|
|
|
|
|
|
if (runOnGpu) |
|
|
|
|
if (PERF_RUN_GPU()) |
|
|
|
|
{ |
|
|
|
|
cv::gpu::CascadeClassifier_GPU d_cascade; |
|
|
|
|
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second))); |
|
|
|
@ -418,4 +180,4 @@ PERF_TEST_P(ImageAndCascade, ObjDetect_LBPClassifier, |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
} // namespace
|