Merge remote-tracking branch 'upstream/3.4' into merge-3.4

pull/11938/head
Alexander Alekhin 6 years ago
commit fa66c6b797
  1. 6
      modules/core/include/opencv2/core/mat.hpp
  2. 95
      modules/dnn/src/opencl/conv_layer_spatial.cl
  3. 18
      modules/dnn/test/test_backends.cpp
  4. 10
      modules/dnn/test/test_caffe_importer.cpp
  5. 2
      modules/dnn/test/test_googlenet.cpp
  6. 48
      modules/dnn/test/test_halide_layers.cpp
  7. 61
      modules/dnn/test/test_precomp.hpp
  8. 2
      modules/dnn/test/test_tf_importer.cpp
  9. 4
      modules/dnn/test/test_torch_importer.cpp

@ -1318,7 +1318,7 @@ public:
/** @brief Returns a zero array of the specified size and type.
The method returns a Matlab-style zero array initializer. It can be used to quickly form a constant
array as a function parameter, part of a matrix expression, or as a matrix initializer. :
array as a function parameter, part of a matrix expression, or as a matrix initializer:
@code
Mat A;
A = Mat::zeros(3, 3, CV_32F);
@ -1354,6 +1354,8 @@ public:
The above operation does not form a 100x100 matrix of 1's and then multiply it by 3. Instead, it
just remembers the scale factor (3 in this case) and use it when actually invoking the matrix
initializer.
@note In case of multi-channels type, only the first channel will be initialized with 1's, the
others will be set to 0's.
@param rows Number of rows.
@param cols Number of columns.
@param type Created matrix type.
@ -1381,6 +1383,8 @@ public:
// make a 4x4 diagonal matrix with 0.1's on the diagonal.
Mat A = Mat::eye(4, 4, CV_32F)*0.1;
@endcode
@note In case of multi-channels type, identity matrix will be initialized only for the first channel,
the others will be set to 0's
@param rows Number of rows.
@param cols Number of columns.
@param type Created matrix type.

@ -502,15 +502,23 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
const bool kernel_width_is_odd = KERNEL_WIDTH % 2 == 1;
#if INPUT_PAD_W == 0 && INPUT_PAD_H == 0 && DILATION_X == 1 && DILATION_Y == 1 && INPUT_PAD_BOTTOM == 0 && INPUT_PAD_RIGHT == 0
#if KERNEL_WIDTH == 3
Dtype_t blockA00 = vload3(0, src0_read);
Dtype* pblockA00 = (Dtype*)(&blockA00);
#else
Dtype_t blockA00 = ( (const __global Dtype_t*)src0_read )[ 0 ];
Dtype* pblockA00 = (Dtype*)(&blockA00);
#endif
#else
Dtype_t blockA00;
Dtype* pblockA00 = (Dtype*)(&blockA00);
int pos = 0;
LOOP(KERNEL_WIDTH, pos,
{
if (curr_y >= INPUT_PAD_H && curr_y < input_height + INPUT_PAD_H && curr_x + pos * DILATION_X >= INPUT_PAD_W && curr_x + pos * DILATION_X < input_width + INPUT_PAD_W)
if (curr_y >= INPUT_PAD_H &&
curr_y < input_height + INPUT_PAD_H &&
curr_x + pos * DILATION_X >= INPUT_PAD_W &&
curr_x + pos * DILATION_X < input_width + INPUT_PAD_W)
pblockA00[pos] = src0_read[pos * DILATION_X];
else
pblockA00[pos] = 0;
@ -564,7 +572,8 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
//while( ++patch_row < 1 ); //debug
while( ++patch_row < KERNEL_HEIGHT );
src0_read += slice_pitch - ( KERNEL_HEIGHT * ROW_PITCH * DILATION_Y); // reset to start of next slice of patch
// reset to start of next slice of patch
src0_read += slice_pitch - ( KERNEL_HEIGHT * ROW_PITCH * DILATION_Y);
}
//while ( ++patch_depth < 1 ); //debug
while ( ++patch_depth < INPUT_DEPTH );
@ -653,7 +662,10 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
int pos = 0;
LOOP(KERNEL_WIDTH, pos,
{
if (curr_y >= INPUT_PAD_H && curr_y < input_height + INPUT_PAD_H && curr_x + pos * DILATION_X >= INPUT_PAD_W && curr_x + pos * DILATION_X < input_width + INPUT_PAD_W)
if (curr_y >= INPUT_PAD_H &&
curr_y < input_height + INPUT_PAD_H &&
curr_x + pos * DILATION_X >= INPUT_PAD_W &&
curr_x + pos * DILATION_X < input_width + INPUT_PAD_W)
pblockA00[pos] = src0_read[pos * DILATION_X];
else
pblockA00[pos] = 0;
@ -730,7 +742,8 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
//while( ++patch_row < 1 ); //debug
while( ++patch_row < KERNEL_HEIGHT );
src0_read += slice_pitch - ( KERNEL_HEIGHT * ROW_PITCH * DILATION_Y ); // reset to start of next slice of patch
// reset to start of next slice of patch
src0_read += slice_pitch - ( KERNEL_HEIGHT * ROW_PITCH * DILATION_Y );
}
//while ( ++patch_depth < 1 ); //debug
while ( ++patch_depth < INPUT_DEPTH );
@ -883,17 +896,38 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
// ...
const bool kernel_width_is_odd = KERNEL_WIDTH % 2 == 1;
#if INPUT_PAD_H == 0 && INPUT_PAD_W == 0 && DILATION_X == 1 && DILATION_Y == 1 && INPUT_PAD_BOTTOM == 0 && INPUT_PAD_RIGHT == 0
Dtype_t blockA00 = ( (const __global Dtype_t*)src0_read0 )[ 0 ]; src0_read0 += ROW_PITCH;
Dtype_t blockA01 = ( (const __global Dtype_t*)src0_read1 )[ 0 ]; src0_read1 += ROW_PITCH;
#if KERNEL_WIDTH == 3
Dtype_t blockA00 = vload3(0, src0_read0); src0_read0 += ROW_PITCH;
Dtype_t blockA01 = vload3(0, src0_read1); src0_read1 += ROW_PITCH;
Dtype* pblockA00 = (Dtype*)(&blockA00);
Dtype* pblockA01 = (Dtype*)(&blockA01);
#else
Dtype_t blockA00 = { (Dtype)0.f };
Dtype_t blockA01 = { (Dtype)0.f };
Dtype* pblockA00 = (Dtype*)(&blockA00);
Dtype* pblockA01 = (Dtype*)(&blockA01);
int pos = 0;
LOOP(KERNEL_WIDTH, pos,
{
if (curr_x0 + pos < input_width)
pblockA00[pos] = src0_read0[pos];
if (curr_x1 + pos < input_width)
pblockA01[pos] = src0_read1[pos];
})
src0_read0 += ROW_PITCH;
src0_read1 += ROW_PITCH;
#endif
#else
Dtype_t blockA00;
Dtype* pblockA00 = (Dtype*)(&blockA00);
int pos = 0;
LOOP(KERNEL_WIDTH, pos,
{
if (curr_y0 >= INPUT_PAD_H && curr_y0 < input_height + INPUT_PAD_H && curr_x0 + pos * DILATION_X >= INPUT_PAD_W && curr_x0 + pos * DILATION_X < input_width + INPUT_PAD_W)
if (curr_y0 >= INPUT_PAD_H &&
curr_y0 < input_height + INPUT_PAD_H &&
curr_x0 + pos * DILATION_X >= INPUT_PAD_W &&
curr_x0 + pos * DILATION_X < input_width + INPUT_PAD_W)
pblockA00[pos] = src0_read0[pos * DILATION_X];
else
pblockA00[pos] = 0;
@ -904,7 +938,10 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
pos = 0;
LOOP(KERNEL_WIDTH, pos,
{
if (curr_y1 >= INPUT_PAD_H && curr_y1 < input_height + INPUT_PAD_H && curr_x1 + pos * DILATION_X >= INPUT_PAD_W && curr_x1 + pos * DILATION_X < input_width + INPUT_PAD_W)
if (curr_y1 >= INPUT_PAD_H &&
curr_y1 < input_height + INPUT_PAD_H &&
curr_x1 + pos * DILATION_X >= INPUT_PAD_W &&
curr_x1 + pos * DILATION_X < input_width + INPUT_PAD_W)
pblockA01[pos] = src0_read1[pos * DILATION_X];
else
pblockA01[pos] = 0;
@ -972,7 +1009,8 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
curr_y0 = saved_y0;
curr_y1 = saved_y1;
#endif
src0_read0 += slice_pitch - ( KERNEL_HEIGHT * ROW_PITCH * DILATION_Y ); // reset to start of next slice of patch
// reset to start of next slice of patch
src0_read0 += slice_pitch - ( KERNEL_HEIGHT * ROW_PITCH * DILATION_Y );
src0_read1 += slice_pitch - ( KERNEL_HEIGHT * ROW_PITCH * DILATION_Y );
}
//while ( ++patch_depth < 1 ); //debug
@ -1084,7 +1122,10 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
int pos = 0;
LOOP(KERNEL_WIDTH, pos,
{
if (curr_y0 >= INPUT_PAD_H && curr_y0 < input_height + INPUT_PAD_H && curr_x0 + pos * DILATION_X >= INPUT_PAD_W && curr_x0 + pos * DILATION_X < input_width + INPUT_PAD_W)
if (curr_y0 >= INPUT_PAD_H &&
curr_y0 < input_height + INPUT_PAD_H &&
curr_x0 + pos * DILATION_X >= INPUT_PAD_W &&
curr_x0 + pos * DILATION_X < input_width + INPUT_PAD_W)
pblockA00[pos] = src0_read0[pos * DILATION_X];
else
pblockA00[pos] = 0;
@ -1095,7 +1136,10 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
pos = 0;
LOOP(KERNEL_WIDTH, pos,
{
if (curr_y1 >= INPUT_PAD_H && curr_y1 < input_height + INPUT_PAD_H && curr_x1 + pos * DILATION_X >= INPUT_PAD_W && curr_x1 + pos * DILATION_X < input_width + INPUT_PAD_W)
if (curr_y1 >= INPUT_PAD_H &&
curr_y1 < input_height + INPUT_PAD_H &&
curr_x1 + pos * DILATION_X >= INPUT_PAD_W &&
curr_x1 + pos * DILATION_X < input_width + INPUT_PAD_W)
pblockA01[pos] = src0_read1[pos * DILATION_X];
else
pblockA01[pos] = 0;
@ -1185,7 +1229,8 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
curr_y0 = saved_y0;
curr_y1 = saved_y1;
#endif
src0_read0 += slice_pitch - ( KERNEL_HEIGHT * ROW_PITCH * DILATION_Y ); // reset to start of next slice of patch
// reset to start of next slice of patch
src0_read0 += slice_pitch - ( KERNEL_HEIGHT * ROW_PITCH * DILATION_Y );
src0_read1 += slice_pitch - ( KERNEL_HEIGHT * ROW_PITCH * DILATION_Y );
}
//while ( ++patch_depth < 1 ); //debug
@ -1409,15 +1454,23 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
const bool kernel_width_is_odd = KERNEL_WIDTH % 2 == 1;
#if INPUT_PAD_W == 0 && INPUT_PAD_H == 0 && DILATION_X == 1 && DILATION_Y == 1 && INPUT_PAD_BOTTOM == 0 && INPUT_PAD_RIGHT == 0
#if KERNEL_WIDTH == 3
Dtype_t blockA00 = vload3(0, src0_read);
Dtype* pblockA00 = (Dtype*)(&blockA00);
#else
Dtype_t blockA00 = ( (const __global Dtype_t*)src0_read )[ 0 ];
Dtype* pblockA00 = (Dtype*)(&blockA00);
#endif
#else
Dtype_t blockA00;
Dtype* pblockA00 = (Dtype*)(&blockA00);
int pos = 0;
LOOP(KERNEL_WIDTH, pos,
{
if (curr_y >= INPUT_PAD_H && curr_y < input_height + INPUT_PAD_H && curr_x + pos * DILATION_X >= INPUT_PAD_W && curr_x + pos * DILATION_X < input_width + INPUT_PAD_W)
if (curr_y >= INPUT_PAD_H &&
curr_y < input_height + INPUT_PAD_H &&
curr_x + pos * DILATION_X >= INPUT_PAD_W &&
curr_x + pos * DILATION_X < input_width + INPUT_PAD_W)
pblockA00[pos] = src0_read[pos * DILATION_X];
else
pblockA00[pos] = 0;
@ -1463,7 +1516,8 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
//while( ++patch_row < 1 ); //debug
while( ++patch_row < KERNEL_HEIGHT );
src0_read += slice_pitch - ( KERNEL_HEIGHT * ROW_PITCH * DILATION_Y ); // reset to start of next slice of patch
// reset to start of next slice of patch
src0_read += slice_pitch - ( KERNEL_HEIGHT * ROW_PITCH * DILATION_Y );
}
//while ( ++patch_depth < 1 ); //debug
while ( ++patch_depth < INPUT_DEPTH );
@ -1600,7 +1654,10 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
int pos = 0;
LOOP(KERNEL_WIDTH, pos,
{
if (curr_y0 >= INPUT_PAD_H && curr_y0 < input_height + INPUT_PAD_H && curr_x0 + pos * DILATION_X >= INPUT_PAD_W && curr_x0 + pos * DILATION_X < input_width + INPUT_PAD_W)
if (curr_y0 >= INPUT_PAD_H &&
curr_y0 < input_height + INPUT_PAD_H &&
curr_x0 + pos * DILATION_X >= INPUT_PAD_W &&
curr_x0 + pos * DILATION_X < input_width + INPUT_PAD_W)
pblockA00[pos] = src0_read0[pos * DILATION_X];
else
pblockA00[pos] = 0;
@ -1611,7 +1668,10 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
pos = 0;
LOOP(KERNEL_WIDTH, pos,
{
if (curr_y1 >= INPUT_PAD_H && curr_y1 < input_height + INPUT_PAD_H && curr_x1 + pos * DILATION_X >= INPUT_PAD_W && curr_x1 + pos * DILATION_X < input_width + INPUT_PAD_W)
if (curr_y1 >= INPUT_PAD_H &&
curr_y1 < input_height + INPUT_PAD_H &&
curr_x1 + pos * DILATION_X >= INPUT_PAD_W &&
curr_x1 + pos * DILATION_X < input_width + INPUT_PAD_W)
pblockA01[pos] = src0_read1[pos * DILATION_X];
else
pblockA01[pos] = 0;
@ -1667,7 +1727,8 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
curr_y0 = saved_y0;
curr_y1 = saved_y1;
#endif
src0_read0 += slice_pitch - ( KERNEL_HEIGHT * ROW_PITCH * DILATION_Y); // reset to start of next slice of patch
// reset to start of next slice of patch
src0_read0 += slice_pitch - ( KERNEL_HEIGHT * ROW_PITCH * DILATION_Y);
src0_read1 += slice_pitch - ( KERNEL_HEIGHT * ROW_PITCH * DILATION_Y);
}
//while ( ++patch_depth < 1 ); //debug

@ -278,19 +278,19 @@ TEST_P(DNNTestNetwork, FastNeuralStyle_eccv16)
processNet("dnn/fast_neural_style_eccv16_starry_night.t7", "", inp, "", "", l1, lInf);
}
const tuple<DNNBackend, DNNTarget> testCases[] = {
const tuple<Backend, Target> testCases[] = {
#ifdef HAVE_HALIDE
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_HALIDE, DNN_TARGET_CPU),
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_HALIDE, DNN_TARGET_OPENCL),
tuple<Backend, Target>(DNN_BACKEND_HALIDE, DNN_TARGET_CPU),
tuple<Backend, Target>(DNN_BACKEND_HALIDE, DNN_TARGET_OPENCL),
#endif
#ifdef HAVE_INF_ENGINE
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_CPU),
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL),
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL_FP16),
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_MYRIAD),
tuple<Backend, Target>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_CPU),
tuple<Backend, Target>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL),
tuple<Backend, Target>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL_FP16),
tuple<Backend, Target>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_MYRIAD),
#endif
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL),
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL_FP16)
tuple<Backend, Target>(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL),
tuple<Backend, Target>(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL_FP16)
};
INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, testing::ValuesIn(testCases));

@ -82,7 +82,7 @@ TEST(Test_Caffe, read_googlenet)
ASSERT_FALSE(net.empty());
}
typedef testing::TestWithParam<tuple<bool, DNNTarget> > Reproducibility_AlexNet;
typedef testing::TestWithParam<tuple<bool, Target> > Reproducibility_AlexNet;
TEST_P(Reproducibility_AlexNet, Accuracy)
{
bool readFromMemory = get<0>(GetParam());
@ -179,7 +179,7 @@ TEST(Reproducibility_SSD, Accuracy)
normAssertDetections(ref, out);
}
typedef testing::TestWithParam<DNNTarget> Reproducibility_MobileNet_SSD;
typedef testing::TestWithParam<Target> Reproducibility_MobileNet_SSD;
TEST_P(Reproducibility_MobileNet_SSD, Accuracy)
{
const string proto = findDataFile("dnn/MobileNetSSD_deploy.prototxt", false);
@ -234,7 +234,7 @@ TEST_P(Reproducibility_MobileNet_SSD, Accuracy)
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_MobileNet_SSD,
Values(DNN_TARGET_CPU, DNN_TARGET_OPENCL, DNN_TARGET_OPENCL_FP16));
typedef testing::TestWithParam<DNNTarget> Reproducibility_ResNet50;
typedef testing::TestWithParam<Target> Reproducibility_ResNet50;
TEST_P(Reproducibility_ResNet50, Accuracy)
{
Net net = readNetFromCaffe(findDataFile("dnn/ResNet-50-deploy.prototxt", false),
@ -270,7 +270,7 @@ TEST_P(Reproducibility_ResNet50, Accuracy)
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_ResNet50,
Values(DNN_TARGET_CPU, DNN_TARGET_OPENCL, DNN_TARGET_OPENCL_FP16));
typedef testing::TestWithParam<DNNTarget> Reproducibility_SqueezeNet_v1_1;
typedef testing::TestWithParam<Target> Reproducibility_SqueezeNet_v1_1;
TEST_P(Reproducibility_SqueezeNet_v1_1, Accuracy)
{
Net net = readNetFromCaffe(findDataFile("dnn/squeezenet_v1.1.prototxt", false),
@ -413,7 +413,7 @@ TEST(Test_Caffe, multiple_inputs)
normAssert(out, first_image + second_image);
}
typedef testing::TestWithParam<tuple<std::string, DNNTarget> > opencv_face_detector;
typedef testing::TestWithParam<tuple<std::string, Target> > opencv_face_detector;
TEST_P(opencv_face_detector, Accuracy)
{
std::string proto = findDataFile("dnn/opencv_face_detector.prototxt", false);

@ -52,7 +52,7 @@ static std::string _tf(TString filename)
return (getOpenCVExtraDir() + "/dnn/") + filename;
}
typedef testing::TestWithParam<DNNTarget> Reproducibility_GoogLeNet;
typedef testing::TestWithParam<Target> Reproducibility_GoogLeNet;
TEST_P(Reproducibility_GoogLeNet, Batching)
{
Net net = readNetFromCaffe(findDataFile("dnn/bvlc_googlenet.prototxt", false),

@ -41,21 +41,21 @@ static void test(LayerParams& params, Mat& input, int backendId, int targetId)
test(input, net, backendId, targetId);
}
static testing::internal::ParamGenerator<tuple<DNNBackend, DNNTarget> > dnnBackendsAndTargetsWithHalide()
static testing::internal::ParamGenerator<tuple<Backend, Target> > dnnBackendsAndTargetsWithHalide()
{
static const tuple<DNNBackend, DNNTarget> testCases[] = {
static const tuple<Backend, Target> testCases[] = {
#ifdef HAVE_HALIDE
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_HALIDE, DNN_TARGET_CPU),
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_HALIDE, DNN_TARGET_OPENCL),
tuple<Backend, Target>(DNN_BACKEND_HALIDE, DNN_TARGET_CPU),
tuple<Backend, Target>(DNN_BACKEND_HALIDE, DNN_TARGET_OPENCL),
#endif
#ifdef HAVE_INF_ENGINE
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_CPU),
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL),
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL_FP16),
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_MYRIAD),
tuple<Backend, Target>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_CPU),
tuple<Backend, Target>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL),
tuple<Backend, Target>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL_FP16),
tuple<Backend, Target>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_MYRIAD),
#endif
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL),
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL_FP16)
tuple<Backend, Target>(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL),
tuple<Backend, Target>(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL_FP16)
};
return testing::ValuesIn(testCases);
}
@ -89,7 +89,7 @@ TEST_P(Test_Halide_layers, Padding)
////////////////////////////////////////////////////////////////////////////////
// Convolution
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<Vec3i, Size, Size, Size, Size, Size, bool, tuple<DNNBackend, DNNTarget> > > Convolution;
typedef TestWithParam<tuple<Vec3i, Size, Size, Size, Size, Size, bool, tuple<Backend, Target> > > Convolution;
TEST_P(Convolution, Accuracy)
{
int inChannels = get<0>(GetParam())[0];
@ -154,7 +154,7 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Convolution, Combine(
////////////////////////////////////////////////////////////////////////////////
// Deconvolution
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<Vec3i, Size, Size, Size, Size, Vec4i, bool, tuple<DNNBackend, DNNTarget> > > Deconvolution;
typedef TestWithParam<tuple<Vec3i, Size, Size, Size, Size, Vec4i, bool, tuple<Backend, Target> > > Deconvolution;
TEST_P(Deconvolution, Accuracy)
{
int inChannels = get<0>(GetParam())[0];
@ -220,7 +220,7 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Deconvolution, Combine(
////////////////////////////////////////////////////////////////////////////////
// LRN
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<Vec3i, int, Vec3f, bool, std::string, tuple<DNNBackend, DNNTarget> > > LRN;
typedef TestWithParam<tuple<Vec3i, int, Vec3f, bool, std::string, tuple<Backend, Target> > > LRN;
TEST_P(LRN, Accuracy)
{
int inChannels = get<0>(GetParam())[0];
@ -265,7 +265,7 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, LRN, Combine(
////////////////////////////////////////////////////////////////////////////////
// Average pooling
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<int, Size, Size, Size, tuple<DNNBackend, DNNTarget> > > AvePooling;
typedef TestWithParam<tuple<int, Size, Size, Size, tuple<Backend, Target> > > AvePooling;
TEST_P(AvePooling, Accuracy)
{
int inChannels = get<0>(GetParam());
@ -305,7 +305,7 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, AvePooling, Combine(
////////////////////////////////////////////////////////////////////////////////
// Maximum pooling
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<int, Size, Size, Size, Size, tuple<DNNBackend, DNNTarget> > > MaxPooling;
typedef TestWithParam<tuple<int, Size, Size, Size, Size, tuple<Backend, Target> > > MaxPooling;
TEST_P(MaxPooling, Accuracy)
{
int inChannels = get<0>(GetParam());
@ -344,7 +344,7 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, MaxPooling, Combine(
////////////////////////////////////////////////////////////////////////////////
// Fully-connected
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<int, Size, int, bool, tuple<DNNBackend, DNNTarget> > > FullyConnected;
typedef TestWithParam<tuple<int, Size, int, bool, tuple<Backend, Target> > > FullyConnected;
TEST_P(FullyConnected, Accuracy)
{
int inChannels = get<0>(GetParam());
@ -387,7 +387,7 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, FullyConnected, Combine(
////////////////////////////////////////////////////////////////////////////////
// SoftMax
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<int, tuple<DNNBackend, DNNTarget> > > SoftMax;
typedef TestWithParam<tuple<int, tuple<Backend, Target> > > SoftMax;
TEST_P(SoftMax, Accuracy)
{
int inChannels = get<0>(GetParam());
@ -476,7 +476,7 @@ void testInPlaceActivation(LayerParams& lp, int backendId, int targetId)
test(input, net, backendId, targetId);
}
typedef TestWithParam<tuple<bool, bool, float, tuple<DNNBackend, DNNTarget> > > BatchNorm;
typedef TestWithParam<tuple<bool, bool, float, tuple<Backend, Target> > > BatchNorm;
TEST_P(BatchNorm, Accuracy)
{
bool hasWeights = get<0>(GetParam());
@ -511,7 +511,7 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, BatchNorm, Combine(
dnnBackendsAndTargetsWithHalide()
));
typedef TestWithParam<tuple<float, tuple<DNNBackend, DNNTarget> > > ReLU;
typedef TestWithParam<tuple<float, tuple<Backend, Target> > > ReLU;
TEST_P(ReLU, Accuracy)
{
float negativeSlope = get<0>(GetParam());
@ -530,7 +530,7 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, ReLU, Combine(
dnnBackendsAndTargetsWithHalide()
));
typedef TestWithParam<tuple<std::string, tuple<DNNBackend, DNNTarget> > > NoParamActivation;
typedef TestWithParam<tuple<std::string, tuple<Backend, Target> > > NoParamActivation;
TEST_P(NoParamActivation, Accuracy)
{
int backendId = get<0>(get<1>(GetParam()));
@ -546,7 +546,7 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, NoParamActivation, Combine(
dnnBackendsAndTargetsWithHalide()
));
typedef TestWithParam<tuple<Vec3f, tuple<DNNBackend, DNNTarget> > > Power;
typedef TestWithParam<tuple<Vec3f, tuple<Backend, Target> > > Power;
TEST_P(Power, Accuracy)
{
float power = get<0>(GetParam())[0];
@ -582,7 +582,7 @@ TEST_P(Test_Halide_layers, ChannelsPReLU)
testInPlaceActivation(lp, backend, target);
}
typedef TestWithParam<tuple<bool, tuple<DNNBackend, DNNTarget> > > Scale;
typedef TestWithParam<tuple<bool, tuple<Backend, Target> > > Scale;
TEST_P(Scale, Accuracy)
{
bool hasBias = get<0>(GetParam());
@ -616,7 +616,7 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Scale, Combine(
// `--- conv ----^ ^ ^
// `---- ... ------' '
// `-----------------'
typedef TestWithParam<tuple<Vec3i, Vec3i, tuple<DNNBackend, DNNTarget> > > Concat;
typedef TestWithParam<tuple<Vec3i, Vec3i, tuple<Backend, Target> > > Concat;
TEST_P(Concat, Accuracy)
{
Vec3i inSize = get<0>(GetParam());
@ -682,7 +682,7 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Concat, Combine(
// `--- conv ----^ ^ ^
// `---- ... ------' '
// `-----------------'
typedef TestWithParam<tuple<Vec3i, std::string, int, bool, tuple<DNNBackend, DNNTarget> > > Eltwise;
typedef TestWithParam<tuple<Vec3i, std::string, int, bool, tuple<Backend, Target> > > Eltwise;
TEST_P(Eltwise, Accuracy)
{
Vec3i inSize = get<0>(GetParam());

@ -49,15 +49,41 @@
#include "opencv2/dnn.hpp"
#include "test_common.hpp"
namespace opencv_test { namespace {
using namespace cv::dnn;
namespace cv {
namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
static inline void PrintTo(const cv::dnn::Backend& v, std::ostream* os)
{
switch (v) {
case DNN_BACKEND_DEFAULT: *os << "DNN_BACKEND_DEFAULT"; return;
case DNN_BACKEND_HALIDE: *os << "DNN_BACKEND_HALIDE"; return;
case DNN_BACKEND_INFERENCE_ENGINE: *os << "DNN_BACKEND_INFERENCE_ENGINE"; return;
case DNN_BACKEND_OPENCV: *os << "DNN_BACKEND_OPENCV"; return;
} // don't use "default:" to emit compiler warnings
*os << "DNN_BACKEND_UNKNOWN(" << v << ")";
}
static inline void PrintTo(const cv::dnn::Target& v, std::ostream* os)
{
switch (v) {
case DNN_TARGET_CPU: *os << "DNN_TARGET_CPU"; return;
case DNN_TARGET_OPENCL: *os << "DNN_TARGET_OPENCL"; return;
case DNN_TARGET_OPENCL_FP16: *os << "DNN_TARGET_OPENCL_FP16"; return;
case DNN_TARGET_MYRIAD: *os << "DNN_TARGET_MYRIAD"; return;
} // don't use "default:" to emit compiler warnings
*os << "DNN_TARGET_UNKNOWN(" << v << ")";
}
CV_ENUM(DNNBackend, DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE, DNN_BACKEND_INFERENCE_ENGINE, DNN_BACKEND_OPENCV)
CV_ENUM(DNNTarget, DNN_TARGET_CPU, DNN_TARGET_OPENCL, DNN_TARGET_OPENCL_FP16, DNN_TARGET_MYRIAD)
CV__DNN_EXPERIMENTAL_NS_END
}} // namespace
static testing::internal::ParamGenerator<DNNTarget> availableDnnTargets()
namespace opencv_test {
using namespace cv::dnn;
static testing::internal::ParamGenerator<Target> availableDnnTargets()
{
static std::vector<DNNTarget> targets;
static std::vector<Target> targets;
if (targets.empty())
{
targets.push_back(DNN_TARGET_CPU);
@ -69,23 +95,23 @@ static testing::internal::ParamGenerator<DNNTarget> availableDnnTargets()
return testing::ValuesIn(targets);
}
static testing::internal::ParamGenerator<tuple<DNNBackend, DNNTarget> > dnnBackendsAndTargets()
static testing::internal::ParamGenerator<tuple<Backend, Target> > dnnBackendsAndTargets()
{
static const tuple<DNNBackend, DNNTarget> testCases[] = {
static const tuple<Backend, Target> testCases[] = {
#ifdef HAVE_INF_ENGINE
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_CPU),
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL),
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL_FP16),
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_MYRIAD),
tuple<Backend, Target>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_CPU),
tuple<Backend, Target>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL),
tuple<Backend, Target>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL_FP16),
tuple<Backend, Target>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_MYRIAD),
#endif
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_OPENCV, DNN_TARGET_CPU),
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL),
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL_FP16)
tuple<Backend, Target>(DNN_BACKEND_OPENCV, DNN_TARGET_CPU),
tuple<Backend, Target>(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL),
tuple<Backend, Target>(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL_FP16)
};
return testing::ValuesIn(testCases);
}
class DNNTestLayer : public TestWithParam <tuple<DNNBackend, DNNTarget> >
class DNNTestLayer : public TestWithParam<tuple<Backend, Target> >
{
public:
dnn::Backend backend;
@ -156,6 +182,5 @@ protected:
}
};
}}
} // namespace
#endif

@ -243,7 +243,7 @@ TEST_P(Test_TensorFlow_layers, l2_normalize_3d)
runTensorFlowNet("l2_normalize_3d");
}
typedef testing::TestWithParam<DNNTarget> Test_TensorFlow_nets;
typedef testing::TestWithParam<Target> Test_TensorFlow_nets;
TEST_P(Test_TensorFlow_nets, MobileNet_SSD)
{

@ -100,7 +100,7 @@ static void runTorchNet(String prefix, int targetId = DNN_TARGET_CPU, String out
}
}
typedef testing::TestWithParam<DNNTarget> Test_Torch_layers;
typedef testing::TestWithParam<Target> Test_Torch_layers;
TEST_P(Test_Torch_layers, run_convolution)
{
@ -208,7 +208,7 @@ TEST_P(Test_Torch_layers, net_non_spatial)
INSTANTIATE_TEST_CASE_P(/**/, Test_Torch_layers, availableDnnTargets());
typedef testing::TestWithParam<DNNTarget> Test_Torch_nets;
typedef testing::TestWithParam<Target> Test_Torch_nets;
TEST_P(Test_Torch_nets, OpenFace_accuracy)
{

Loading…
Cancel
Save