Merge pull request #21020 from lukasalexanderweber:squash
Created Stitching Tool based on stitching_detailed.pypull/21027/head
parent
ceb94d52a1
commit
fa5c7a9e75
30 changed files with 2155 additions and 0 deletions
@ -0,0 +1,3 @@ |
|||||||
|
## In-Depth Stitching Tool for experiments and research |
||||||
|
|
||||||
|
Visit [opencv_stitching_tutorial](https://github.com/lukasalexanderweber/opencv_stitching_tutorial) for a detailed Tutorial |
@ -0,0 +1,4 @@ |
|||||||
|
# python binary files |
||||||
|
*.pyc |
||||||
|
__pycache__ |
||||||
|
.pylint* |
@ -0,0 +1,48 @@ |
|||||||
|
import cv2 as cv |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
|
||||||
|
class Blender: |
||||||
|
|
||||||
|
BLENDER_CHOICES = ('multiband', 'feather', 'no',) |
||||||
|
DEFAULT_BLENDER = 'multiband' |
||||||
|
DEFAULT_BLEND_STRENGTH = 5 |
||||||
|
|
||||||
|
def __init__(self, blender_type=DEFAULT_BLENDER, |
||||||
|
blend_strength=DEFAULT_BLEND_STRENGTH): |
||||||
|
self.blender_type = blender_type |
||||||
|
self.blend_strength = blend_strength |
||||||
|
self.blender = None |
||||||
|
|
||||||
|
def prepare(self, corners, sizes): |
||||||
|
dst_sz = cv.detail.resultRoi(corners=corners, sizes=sizes) |
||||||
|
blend_width = (np.sqrt(dst_sz[2] * dst_sz[3]) * |
||||||
|
self.blend_strength / 100) |
||||||
|
|
||||||
|
if self.blender_type == 'no' or blend_width < 1: |
||||||
|
self.blender = cv.detail.Blender_createDefault( |
||||||
|
cv.detail.Blender_NO |
||||||
|
) |
||||||
|
|
||||||
|
elif self.blender_type == "multiband": |
||||||
|
self.blender = cv.detail_MultiBandBlender() |
||||||
|
self.blender.setNumBands((np.log(blend_width) / |
||||||
|
np.log(2.) - 1.).astype(np.int)) |
||||||
|
|
||||||
|
elif self.blender_type == "feather": |
||||||
|
self.blender = cv.detail_FeatherBlender() |
||||||
|
self.blender.setSharpness(1. / blend_width) |
||||||
|
|
||||||
|
self.blender.prepare(dst_sz) |
||||||
|
|
||||||
|
def feed(self, img, mask, corner): |
||||||
|
"""https://docs.opencv.org/master/d6/d4a/classcv_1_1detail_1_1Blender.html#a64837308bcf4e414a6219beff6cbe37a""" # noqa |
||||||
|
self.blender.feed(cv.UMat(img.astype(np.int16)), mask, corner) |
||||||
|
|
||||||
|
def blend(self): |
||||||
|
"""https://docs.opencv.org/master/d6/d4a/classcv_1_1detail_1_1Blender.html#aa0a91ce0d6046d3a63e0123cbb1b5c00""" # noqa |
||||||
|
result = None |
||||||
|
result_mask = None |
||||||
|
result, result_mask = self.blender.blend(result, result_mask) |
||||||
|
result = cv.convertScaleAbs(result) |
||||||
|
return result |
@ -0,0 +1,49 @@ |
|||||||
|
from collections import OrderedDict |
||||||
|
import cv2 as cv |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
from .stitching_error import StitchingError |
||||||
|
|
||||||
|
|
||||||
|
class CameraAdjuster: |
||||||
|
"""https://docs.opencv.org/master/d5/d56/classcv_1_1detail_1_1BundleAdjusterBase.html""" # noqa |
||||||
|
|
||||||
|
CAMERA_ADJUSTER_CHOICES = OrderedDict() |
||||||
|
CAMERA_ADJUSTER_CHOICES['ray'] = cv.detail_BundleAdjusterRay |
||||||
|
CAMERA_ADJUSTER_CHOICES['reproj'] = cv.detail_BundleAdjusterReproj |
||||||
|
CAMERA_ADJUSTER_CHOICES['affine'] = cv.detail_BundleAdjusterAffinePartial |
||||||
|
CAMERA_ADJUSTER_CHOICES['no'] = cv.detail_NoBundleAdjuster |
||||||
|
|
||||||
|
DEFAULT_CAMERA_ADJUSTER = list(CAMERA_ADJUSTER_CHOICES.keys())[0] |
||||||
|
DEFAULT_REFINEMENT_MASK = "xxxxx" |
||||||
|
|
||||||
|
def __init__(self, |
||||||
|
adjuster=DEFAULT_CAMERA_ADJUSTER, |
||||||
|
refinement_mask=DEFAULT_REFINEMENT_MASK): |
||||||
|
|
||||||
|
self.adjuster = CameraAdjuster.CAMERA_ADJUSTER_CHOICES[adjuster]() |
||||||
|
self.set_refinement_mask(refinement_mask) |
||||||
|
self.adjuster.setConfThresh(1) |
||||||
|
|
||||||
|
def set_refinement_mask(self, refinement_mask): |
||||||
|
mask_matrix = np.zeros((3, 3), np.uint8) |
||||||
|
if refinement_mask[0] == 'x': |
||||||
|
mask_matrix[0, 0] = 1 |
||||||
|
if refinement_mask[1] == 'x': |
||||||
|
mask_matrix[0, 1] = 1 |
||||||
|
if refinement_mask[2] == 'x': |
||||||
|
mask_matrix[0, 2] = 1 |
||||||
|
if refinement_mask[3] == 'x': |
||||||
|
mask_matrix[1, 1] = 1 |
||||||
|
if refinement_mask[4] == 'x': |
||||||
|
mask_matrix[1, 2] = 1 |
||||||
|
self.adjuster.setRefinementMask(mask_matrix) |
||||||
|
|
||||||
|
def adjust(self, features, pairwise_matches, estimated_cameras): |
||||||
|
b, cameras = self.adjuster.apply(features, |
||||||
|
pairwise_matches, |
||||||
|
estimated_cameras) |
||||||
|
if not b: |
||||||
|
raise StitchingError("Camera parameters adjusting failed.") |
||||||
|
|
||||||
|
return cameras |
@ -0,0 +1,27 @@ |
|||||||
|
from collections import OrderedDict |
||||||
|
import cv2 as cv |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
from .stitching_error import StitchingError |
||||||
|
|
||||||
|
|
||||||
|
class CameraEstimator: |
||||||
|
|
||||||
|
CAMERA_ESTIMATOR_CHOICES = OrderedDict() |
||||||
|
CAMERA_ESTIMATOR_CHOICES['homography'] = cv.detail_HomographyBasedEstimator |
||||||
|
CAMERA_ESTIMATOR_CHOICES['affine'] = cv.detail_AffineBasedEstimator |
||||||
|
|
||||||
|
DEFAULT_CAMERA_ESTIMATOR = list(CAMERA_ESTIMATOR_CHOICES.keys())[0] |
||||||
|
|
||||||
|
def __init__(self, estimator=DEFAULT_CAMERA_ESTIMATOR, **kwargs): |
||||||
|
self.estimator = CameraEstimator.CAMERA_ESTIMATOR_CHOICES[estimator]( |
||||||
|
**kwargs |
||||||
|
) |
||||||
|
|
||||||
|
def estimate(self, features, pairwise_matches): |
||||||
|
b, cameras = self.estimator.apply(features, pairwise_matches, None) |
||||||
|
if not b: |
||||||
|
raise StitchingError("Homography estimation failed.") |
||||||
|
for cam in cameras: |
||||||
|
cam.R = cam.R.astype(np.float32) |
||||||
|
return cameras |
@ -0,0 +1,28 @@ |
|||||||
|
from collections import OrderedDict |
||||||
|
import cv2 as cv |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
|
||||||
|
class WaveCorrector: |
||||||
|
"""https://docs.opencv.org/master/d7/d74/group__stitching__rotation.html#ga83b24d4c3e93584986a56d9e43b9cf7f""" # noqa |
||||||
|
WAVE_CORRECT_CHOICES = OrderedDict() |
||||||
|
WAVE_CORRECT_CHOICES['horiz'] = cv.detail.WAVE_CORRECT_HORIZ |
||||||
|
WAVE_CORRECT_CHOICES['vert'] = cv.detail.WAVE_CORRECT_VERT |
||||||
|
WAVE_CORRECT_CHOICES['auto'] = cv.detail.WAVE_CORRECT_AUTO |
||||||
|
WAVE_CORRECT_CHOICES['no'] = None |
||||||
|
|
||||||
|
DEFAULT_WAVE_CORRECTION = list(WAVE_CORRECT_CHOICES.keys())[0] |
||||||
|
|
||||||
|
def __init__(self, wave_correct_kind=DEFAULT_WAVE_CORRECTION): |
||||||
|
self.wave_correct_kind = WaveCorrector.WAVE_CORRECT_CHOICES[ |
||||||
|
wave_correct_kind |
||||||
|
] |
||||||
|
|
||||||
|
def correct(self, cameras): |
||||||
|
if self.wave_correct_kind is not None: |
||||||
|
rmats = [np.copy(cam.R) for cam in cameras] |
||||||
|
rmats = cv.detail.waveCorrect(rmats, self.wave_correct_kind) |
||||||
|
for idx, cam in enumerate(cameras): |
||||||
|
cam.R = rmats[idx] |
||||||
|
return cameras |
||||||
|
return cameras |
@ -0,0 +1,40 @@ |
|||||||
|
from collections import OrderedDict |
||||||
|
import cv2 as cv |
||||||
|
|
||||||
|
|
||||||
|
class ExposureErrorCompensator: |
||||||
|
|
||||||
|
COMPENSATOR_CHOICES = OrderedDict() |
||||||
|
COMPENSATOR_CHOICES['gain_blocks'] = cv.detail.ExposureCompensator_GAIN_BLOCKS # noqa |
||||||
|
COMPENSATOR_CHOICES['gain'] = cv.detail.ExposureCompensator_GAIN |
||||||
|
COMPENSATOR_CHOICES['channel'] = cv.detail.ExposureCompensator_CHANNELS |
||||||
|
COMPENSATOR_CHOICES['channel_blocks'] = cv.detail.ExposureCompensator_CHANNELS_BLOCKS # noqa |
||||||
|
COMPENSATOR_CHOICES['no'] = cv.detail.ExposureCompensator_NO |
||||||
|
|
||||||
|
DEFAULT_COMPENSATOR = list(COMPENSATOR_CHOICES.keys())[0] |
||||||
|
DEFAULT_NR_FEEDS = 1 |
||||||
|
DEFAULT_BLOCK_SIZE = 32 |
||||||
|
|
||||||
|
def __init__(self, |
||||||
|
compensator=DEFAULT_COMPENSATOR, |
||||||
|
nr_feeds=DEFAULT_NR_FEEDS, |
||||||
|
block_size=DEFAULT_BLOCK_SIZE): |
||||||
|
|
||||||
|
if compensator == 'channel': |
||||||
|
self.compensator = cv.detail_ChannelsCompensator(nr_feeds) |
||||||
|
elif compensator == 'channel_blocks': |
||||||
|
self.compensator = cv.detail_BlocksChannelsCompensator( |
||||||
|
block_size, block_size, nr_feeds |
||||||
|
) |
||||||
|
else: |
||||||
|
self.compensator = cv.detail.ExposureCompensator_createDefault( |
||||||
|
ExposureErrorCompensator.COMPENSATOR_CHOICES[compensator] |
||||||
|
) |
||||||
|
|
||||||
|
def feed(self, *args): |
||||||
|
"""https://docs.opencv.org/master/d2/d37/classcv_1_1detail_1_1ExposureCompensator.html#ae6b0cc69a7bc53818ddea53eddb6bdba""" # noqa |
||||||
|
self.compensator.feed(*args) |
||||||
|
|
||||||
|
def apply(self, *args): |
||||||
|
"""https://docs.opencv.org/master/d2/d37/classcv_1_1detail_1_1ExposureCompensator.html#a473eaf1e585804c08d77c91e004f93aa""" # noqa |
||||||
|
return self.compensator.apply(*args) |
@ -0,0 +1,44 @@ |
|||||||
|
from collections import OrderedDict |
||||||
|
import cv2 as cv |
||||||
|
|
||||||
|
|
||||||
|
class FeatureDetector: |
||||||
|
DETECTOR_CHOICES = OrderedDict() |
||||||
|
try: |
||||||
|
cv.xfeatures2d_SURF.create() # check if the function can be called |
||||||
|
DETECTOR_CHOICES['surf'] = cv.xfeatures2d_SURF.create |
||||||
|
except (AttributeError, cv.error): |
||||||
|
print("SURF not available") |
||||||
|
|
||||||
|
# if SURF not available, ORB is default |
||||||
|
DETECTOR_CHOICES['orb'] = cv.ORB.create |
||||||
|
|
||||||
|
try: |
||||||
|
DETECTOR_CHOICES['sift'] = cv.SIFT_create |
||||||
|
except AttributeError: |
||||||
|
print("SIFT not available") |
||||||
|
|
||||||
|
try: |
||||||
|
DETECTOR_CHOICES['brisk'] = cv.BRISK_create |
||||||
|
except AttributeError: |
||||||
|
print("BRISK not available") |
||||||
|
|
||||||
|
try: |
||||||
|
DETECTOR_CHOICES['akaze'] = cv.AKAZE_create |
||||||
|
except AttributeError: |
||||||
|
print("AKAZE not available") |
||||||
|
|
||||||
|
DEFAULT_DETECTOR = list(DETECTOR_CHOICES.keys())[0] |
||||||
|
|
||||||
|
def __init__(self, detector=DEFAULT_DETECTOR, **kwargs): |
||||||
|
self.detector = FeatureDetector.DETECTOR_CHOICES[detector](**kwargs) |
||||||
|
|
||||||
|
def detect_features(self, img, *args, **kwargs): |
||||||
|
return cv.detail.computeImageFeatures2(self.detector, img, |
||||||
|
*args, **kwargs) |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def draw_keypoints(img, features, **kwargs): |
||||||
|
kwargs.setdefault('color', (0, 255, 0)) |
||||||
|
keypoints = features.getKeypoints() |
||||||
|
return cv.drawKeypoints(img, keypoints, None, **kwargs) |
@ -0,0 +1,98 @@ |
|||||||
|
import math |
||||||
|
import cv2 as cv |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
|
||||||
|
class FeatureMatcher: |
||||||
|
|
||||||
|
MATCHER_CHOICES = ('homography', 'affine') |
||||||
|
DEFAULT_MATCHER = 'homography' |
||||||
|
DEFAULT_RANGE_WIDTH = -1 |
||||||
|
|
||||||
|
def __init__(self, |
||||||
|
matcher_type=DEFAULT_MATCHER, |
||||||
|
range_width=DEFAULT_RANGE_WIDTH, |
||||||
|
**kwargs): |
||||||
|
|
||||||
|
if matcher_type == "affine": |
||||||
|
"""https://docs.opencv.org/master/d3/dda/classcv_1_1detail_1_1AffineBestOf2NearestMatcher.html""" # noqa |
||||||
|
self.matcher = cv.detail_AffineBestOf2NearestMatcher(**kwargs) |
||||||
|
elif range_width == -1: |
||||||
|
"""https://docs.opencv.org/master/d4/d26/classcv_1_1detail_1_1BestOf2NearestMatcher.html""" # noqa |
||||||
|
self.matcher = cv.detail.BestOf2NearestMatcher_create(**kwargs) |
||||||
|
else: |
||||||
|
"""https://docs.opencv.org/master/d8/d72/classcv_1_1detail_1_1BestOf2NearestRangeMatcher.html""" # noqa |
||||||
|
self.matcher = cv.detail.BestOf2NearestRangeMatcher_create( |
||||||
|
range_width, **kwargs |
||||||
|
) |
||||||
|
|
||||||
|
def match_features(self, features, *args, **kwargs): |
||||||
|
pairwise_matches = self.matcher.apply2(features, *args, **kwargs) |
||||||
|
self.matcher.collectGarbage() |
||||||
|
return pairwise_matches |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def draw_matches_matrix(imgs, features, matches, conf_thresh=1, |
||||||
|
inliers=False, **kwargs): |
||||||
|
matches_matrix = FeatureMatcher.get_matches_matrix(matches) |
||||||
|
for idx1, idx2 in FeatureMatcher.get_all_img_combinations(len(imgs)): |
||||||
|
match = matches_matrix[idx1, idx2] |
||||||
|
if match.confidence < conf_thresh: |
||||||
|
continue |
||||||
|
if inliers: |
||||||
|
kwargs['matchesMask'] = match.getInliers() |
||||||
|
yield idx1, idx2, FeatureMatcher.draw_matches( |
||||||
|
imgs[idx1], features[idx1], |
||||||
|
imgs[idx2], features[idx2], |
||||||
|
match, |
||||||
|
**kwargs |
||||||
|
) |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def draw_matches(img1, features1, img2, features2, match1to2, **kwargs): |
||||||
|
kwargs.setdefault('flags', cv.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS) |
||||||
|
|
||||||
|
keypoints1 = features1.getKeypoints() |
||||||
|
keypoints2 = features2.getKeypoints() |
||||||
|
matches = match1to2.getMatches() |
||||||
|
|
||||||
|
return cv.drawMatches( |
||||||
|
img1, keypoints1, img2, keypoints2, matches, None, **kwargs |
||||||
|
) |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def get_matches_matrix(pairwise_matches): |
||||||
|
return FeatureMatcher.array_in_sqare_matrix(pairwise_matches) |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def get_confidence_matrix(pairwise_matches): |
||||||
|
matches_matrix = FeatureMatcher.get_matches_matrix(pairwise_matches) |
||||||
|
match_confs = [[m.confidence for m in row] for row in matches_matrix] |
||||||
|
match_conf_matrix = np.array(match_confs) |
||||||
|
return match_conf_matrix |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def array_in_sqare_matrix(array): |
||||||
|
matrix_dimension = int(math.sqrt(len(array))) |
||||||
|
rows = [] |
||||||
|
for i in range(0, len(array), matrix_dimension): |
||||||
|
rows.append(array[i:i+matrix_dimension]) |
||||||
|
return np.array(rows) |
||||||
|
|
||||||
|
def get_all_img_combinations(number_imgs): |
||||||
|
ii, jj = np.triu_indices(number_imgs, k=1) |
||||||
|
for i, j in zip(ii, jj): |
||||||
|
yield i, j |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def get_match_conf(match_conf, feature_detector_type): |
||||||
|
if match_conf is None: |
||||||
|
match_conf = \ |
||||||
|
FeatureMatcher.get_default_match_conf(feature_detector_type) |
||||||
|
return match_conf |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def get_default_match_conf(feature_detector_type): |
||||||
|
if feature_detector_type == 'orb': |
||||||
|
return 0.3 |
||||||
|
return 0.65 |
@ -0,0 +1,94 @@ |
|||||||
|
import cv2 as cv |
||||||
|
|
||||||
|
from .megapix_downscaler import MegapixDownscaler |
||||||
|
from .stitching_error import StitchingError |
||||||
|
|
||||||
|
class ImageHandler: |
||||||
|
|
||||||
|
DEFAULT_MEDIUM_MEGAPIX = 0.6 |
||||||
|
DEFAULT_LOW_MEGAPIX = 0.1 |
||||||
|
DEFAULT_FINAL_MEGAPIX = -1 |
||||||
|
|
||||||
|
def __init__(self, |
||||||
|
medium_megapix=DEFAULT_MEDIUM_MEGAPIX, |
||||||
|
low_megapix=DEFAULT_LOW_MEGAPIX, |
||||||
|
final_megapix=DEFAULT_FINAL_MEGAPIX): |
||||||
|
|
||||||
|
if medium_megapix < low_megapix: |
||||||
|
raise StitchingError("Medium resolution megapix need to be " |
||||||
|
"greater or equal than low resolution " |
||||||
|
"megapix") |
||||||
|
|
||||||
|
self.medium_scaler = MegapixDownscaler(medium_megapix) |
||||||
|
self.low_scaler = MegapixDownscaler(low_megapix) |
||||||
|
self.final_scaler = MegapixDownscaler(final_megapix) |
||||||
|
|
||||||
|
self.scales_set = False |
||||||
|
self.img_names = [] |
||||||
|
self.img_sizes = [] |
||||||
|
|
||||||
|
def set_img_names(self, img_names): |
||||||
|
self.img_names = img_names |
||||||
|
|
||||||
|
def resize_to_medium_resolution(self): |
||||||
|
return self.read_and_resize_imgs(self.medium_scaler) |
||||||
|
|
||||||
|
def resize_to_low_resolution(self, medium_imgs=None): |
||||||
|
if medium_imgs and self.scales_set: |
||||||
|
return self.resize_medium_to_low(medium_imgs) |
||||||
|
return self.read_and_resize_imgs(self.low_scaler) |
||||||
|
|
||||||
|
def resize_to_final_resolution(self): |
||||||
|
return self.read_and_resize_imgs(self.final_scaler) |
||||||
|
|
||||||
|
def read_and_resize_imgs(self, scaler): |
||||||
|
for img, size in self.input_images(): |
||||||
|
yield self.resize_img_by_scaler(scaler, size, img) |
||||||
|
|
||||||
|
def resize_medium_to_low(self, medium_imgs): |
||||||
|
for img, size in zip(medium_imgs, self.img_sizes): |
||||||
|
yield self.resize_img_by_scaler(self.low_scaler, size, img) |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def resize_img_by_scaler(scaler, size, img): |
||||||
|
desired_size = scaler.get_scaled_img_size(size) |
||||||
|
return cv.resize(img, desired_size, |
||||||
|
interpolation=cv.INTER_LINEAR_EXACT) |
||||||
|
|
||||||
|
def input_images(self): |
||||||
|
self.img_sizes = [] |
||||||
|
for name in self.img_names: |
||||||
|
img = self.read_image(name) |
||||||
|
size = self.get_image_size(img) |
||||||
|
self.img_sizes.append(size) |
||||||
|
self.set_scaler_scales() |
||||||
|
yield img, size |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def get_image_size(img): |
||||||
|
"""(width, height)""" |
||||||
|
return (img.shape[1], img.shape[0]) |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def read_image(img_name): |
||||||
|
img = cv.imread(img_name) |
||||||
|
if img is None: |
||||||
|
raise StitchingError("Cannot read image " + img_name) |
||||||
|
return img |
||||||
|
|
||||||
|
def set_scaler_scales(self): |
||||||
|
if not self.scales_set: |
||||||
|
first_img_size = self.img_sizes[0] |
||||||
|
self.medium_scaler.set_scale_by_img_size(first_img_size) |
||||||
|
self.low_scaler.set_scale_by_img_size(first_img_size) |
||||||
|
self.final_scaler.set_scale_by_img_size(first_img_size) |
||||||
|
self.scales_set = True |
||||||
|
|
||||||
|
def get_medium_to_final_ratio(self): |
||||||
|
return self.final_scaler.scale / self.medium_scaler.scale |
||||||
|
|
||||||
|
def get_medium_to_low_ratio(self): |
||||||
|
return self.low_scaler.scale / self.medium_scaler.scale |
||||||
|
|
||||||
|
def get_final_to_low_ratio(self): |
||||||
|
return self.low_scaler.scale / self.final_scaler.scale |
@ -0,0 +1,12 @@ |
|||||||
|
from .megapix_scaler import MegapixScaler |
||||||
|
|
||||||
|
|
||||||
|
class MegapixDownscaler(MegapixScaler): |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def force_downscale(scale): |
||||||
|
return min(1.0, scale) |
||||||
|
|
||||||
|
def set_scale(self, scale): |
||||||
|
scale = self.force_downscale(scale) |
||||||
|
super().set_scale(scale) |
@ -0,0 +1,27 @@ |
|||||||
|
import numpy as np |
||||||
|
|
||||||
|
|
||||||
|
class MegapixScaler: |
||||||
|
def __init__(self, megapix): |
||||||
|
self.megapix = megapix |
||||||
|
self.is_scale_set = False |
||||||
|
self.scale = None |
||||||
|
|
||||||
|
def set_scale_by_img_size(self, img_size): |
||||||
|
self.set_scale( |
||||||
|
self.get_scale_by_resolution(img_size[0] * img_size[1]) |
||||||
|
) |
||||||
|
|
||||||
|
def set_scale(self, scale): |
||||||
|
self.scale = scale |
||||||
|
self.is_scale_set = True |
||||||
|
|
||||||
|
def get_scale_by_resolution(self, resolution): |
||||||
|
if self.megapix > 0: |
||||||
|
return np.sqrt(self.megapix * 1e6 / resolution) |
||||||
|
return 1.0 |
||||||
|
|
||||||
|
def get_scaled_img_size(self, img_size): |
||||||
|
width = int(round(img_size[0] * self.scale)) |
||||||
|
height = int(round(img_size[1] * self.scale)) |
||||||
|
return (width, height) |
@ -0,0 +1,27 @@ |
|||||||
|
import statistics |
||||||
|
|
||||||
|
|
||||||
|
def estimate_final_panorama_dimensions(cameras, warper, img_handler): |
||||||
|
medium_to_final_ratio = img_handler.get_medium_to_final_ratio() |
||||||
|
|
||||||
|
panorama_scale_determined_on_medium_img = \ |
||||||
|
estimate_panorama_scale(cameras) |
||||||
|
|
||||||
|
panorama_scale = (panorama_scale_determined_on_medium_img * |
||||||
|
medium_to_final_ratio) |
||||||
|
panorama_corners = [] |
||||||
|
panorama_sizes = [] |
||||||
|
|
||||||
|
for size, camera in zip(img_handler.img_sizes, cameras): |
||||||
|
width, height = img_handler.final_scaler.get_scaled_img_size(size) |
||||||
|
roi = warper.warp_roi(width, height, camera, panorama_scale, medium_to_final_ratio) |
||||||
|
panorama_corners.append(roi[0:2]) |
||||||
|
panorama_sizes.append(roi[2:4]) |
||||||
|
|
||||||
|
return panorama_scale, panorama_corners, panorama_sizes |
||||||
|
|
||||||
|
|
||||||
|
def estimate_panorama_scale(cameras): |
||||||
|
focals = [cam.focal for cam in cameras] |
||||||
|
panorama_scale = statistics.median(focals) |
||||||
|
return panorama_scale |
@ -0,0 +1,127 @@ |
|||||||
|
from collections import OrderedDict |
||||||
|
import cv2 as cv |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
from .blender import Blender |
||||||
|
|
||||||
|
|
||||||
|
class SeamFinder: |
||||||
|
"""https://docs.opencv.org/master/d7/d09/classcv_1_1detail_1_1SeamFinder.html""" # noqa |
||||||
|
SEAM_FINDER_CHOICES = OrderedDict() |
||||||
|
SEAM_FINDER_CHOICES['dp_color'] = cv.detail_DpSeamFinder('COLOR') |
||||||
|
SEAM_FINDER_CHOICES['dp_colorgrad'] = cv.detail_DpSeamFinder('COLOR_GRAD') |
||||||
|
SEAM_FINDER_CHOICES['voronoi'] = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_VORONOI_SEAM) # noqa |
||||||
|
SEAM_FINDER_CHOICES['no'] = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_NO) # noqa |
||||||
|
|
||||||
|
DEFAULT_SEAM_FINDER = list(SEAM_FINDER_CHOICES.keys())[0] |
||||||
|
|
||||||
|
def __init__(self, finder=DEFAULT_SEAM_FINDER): |
||||||
|
self.finder = SeamFinder.SEAM_FINDER_CHOICES[finder] |
||||||
|
|
||||||
|
def find(self, imgs, corners, masks): |
||||||
|
"""https://docs.opencv.org/master/d0/dd5/classcv_1_1detail_1_1DpSeamFinder.html#a7914624907986f7a94dd424209a8a609""" # noqa |
||||||
|
imgs_float = [img.astype(np.float32) for img in imgs] |
||||||
|
return self.finder.find(imgs_float, corners, masks) |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def resize(seam_mask, mask): |
||||||
|
dilated_mask = cv.dilate(seam_mask, None) |
||||||
|
resized_seam_mask = cv.resize(dilated_mask, (mask.shape[1], |
||||||
|
mask.shape[0]), |
||||||
|
0, 0, cv.INTER_LINEAR_EXACT) |
||||||
|
return cv.bitwise_and(resized_seam_mask, mask) |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def draw_seam_mask(img, seam_mask, color=(0, 0, 0)): |
||||||
|
seam_mask = cv.UMat.get(seam_mask) |
||||||
|
overlayed_img = np.copy(img) |
||||||
|
overlayed_img[seam_mask == 0] = color |
||||||
|
return overlayed_img |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def draw_seam_polygons(panorama, blended_seam_masks, alpha=0.5): |
||||||
|
return add_weighted_image(panorama, blended_seam_masks, alpha) |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def draw_seam_lines(panorama, blended_seam_masks, |
||||||
|
linesize=1, color=(0, 0, 255)): |
||||||
|
seam_lines = \ |
||||||
|
SeamFinder.exctract_seam_lines(blended_seam_masks, linesize) |
||||||
|
panorama_with_seam_lines = panorama.copy() |
||||||
|
panorama_with_seam_lines[seam_lines == 255] = color |
||||||
|
return panorama_with_seam_lines |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def exctract_seam_lines(blended_seam_masks, linesize=1): |
||||||
|
seam_lines = cv.Canny(np.uint8(blended_seam_masks), 100, 200) |
||||||
|
seam_indices = (seam_lines == 255).nonzero() |
||||||
|
seam_lines = remove_invalid_line_pixels( |
||||||
|
seam_indices, seam_lines, blended_seam_masks |
||||||
|
) |
||||||
|
kernelsize = linesize + linesize - 1 |
||||||
|
kernel = np.ones((kernelsize, kernelsize), np.uint8) |
||||||
|
return cv.dilate(seam_lines, kernel) |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def blend_seam_masks(seam_masks, corners, sizes, colors=[ |
||||||
|
(255, 000, 000), # Blue |
||||||
|
(000, 000, 255), # Red |
||||||
|
(000, 255, 000), # Green |
||||||
|
(000, 255, 255), # Yellow |
||||||
|
(255, 000, 255), # Magenta |
||||||
|
(128, 128, 255), # Pink |
||||||
|
(128, 128, 128), # Gray |
||||||
|
(000, 000, 128), # Brown |
||||||
|
(000, 128, 255)] # Orange |
||||||
|
): |
||||||
|
|
||||||
|
blender = Blender("no") |
||||||
|
blender.prepare(corners, sizes) |
||||||
|
|
||||||
|
for idx, (seam_mask, size, corner) in enumerate( |
||||||
|
zip(seam_masks, sizes, corners)): |
||||||
|
if idx+1 > len(colors): |
||||||
|
raise ValueError("Not enough default colors! Pass additional " |
||||||
|
"colors to \"colors\" parameter") |
||||||
|
one_color_img = create_img_by_size(size, colors[idx]) |
||||||
|
blender.feed(one_color_img, seam_mask, corner) |
||||||
|
|
||||||
|
return blender.blend() |
||||||
|
|
||||||
|
|
||||||
|
def create_img_by_size(size, color=(0, 0, 0)): |
||||||
|
width, height = size |
||||||
|
img = np.zeros((height, width, 3), np.uint8) |
||||||
|
img[:] = color |
||||||
|
return img |
||||||
|
|
||||||
|
|
||||||
|
def add_weighted_image(img1, img2, alpha): |
||||||
|
return cv.addWeighted( |
||||||
|
img1, alpha, img2, (1.0 - alpha), 0.0 |
||||||
|
) |
||||||
|
|
||||||
|
|
||||||
|
def remove_invalid_line_pixels(indices, lines, mask): |
||||||
|
for x, y in zip(*indices): |
||||||
|
if check_if_pixel_or_neighbor_is_black(mask, x, y): |
||||||
|
lines[x, y] = 0 |
||||||
|
return lines |
||||||
|
|
||||||
|
|
||||||
|
def check_if_pixel_or_neighbor_is_black(img, x, y): |
||||||
|
check = [is_pixel_black(img, x, y), |
||||||
|
is_pixel_black(img, x+1, y), is_pixel_black(img, x-1, y), |
||||||
|
is_pixel_black(img, x, y+1), is_pixel_black(img, x, y-1)] |
||||||
|
return any(check) |
||||||
|
|
||||||
|
|
||||||
|
def is_pixel_black(img, x, y): |
||||||
|
return np.all(get_pixel_value(img, x, y) == 0) |
||||||
|
|
||||||
|
|
||||||
|
def get_pixel_value(img, x, y): |
||||||
|
try: |
||||||
|
return img[x, y] |
||||||
|
except IndexError: |
||||||
|
pass |
@ -0,0 +1,207 @@ |
|||||||
|
from types import SimpleNamespace |
||||||
|
|
||||||
|
from .image_handler import ImageHandler |
||||||
|
from .feature_detector import FeatureDetector |
||||||
|
from .feature_matcher import FeatureMatcher |
||||||
|
from .subsetter import Subsetter |
||||||
|
from .camera_estimator import CameraEstimator |
||||||
|
from .camera_adjuster import CameraAdjuster |
||||||
|
from .camera_wave_corrector import WaveCorrector |
||||||
|
from .warper import Warper |
||||||
|
from .panorama_estimation import estimate_final_panorama_dimensions |
||||||
|
from .exposure_error_compensator import ExposureErrorCompensator |
||||||
|
from .seam_finder import SeamFinder |
||||||
|
from .blender import Blender |
||||||
|
from .timelapser import Timelapser |
||||||
|
from .stitching_error import StitchingError |
||||||
|
|
||||||
|
|
||||||
|
class Stitcher: |
||||||
|
DEFAULT_SETTINGS = { |
||||||
|
"medium_megapix": ImageHandler.DEFAULT_MEDIUM_MEGAPIX, |
||||||
|
"detector": FeatureDetector.DEFAULT_DETECTOR, |
||||||
|
"nfeatures": 500, |
||||||
|
"matcher_type": FeatureMatcher.DEFAULT_MATCHER, |
||||||
|
"range_width": FeatureMatcher.DEFAULT_RANGE_WIDTH, |
||||||
|
"try_use_gpu": False, |
||||||
|
"match_conf": None, |
||||||
|
"confidence_threshold": Subsetter.DEFAULT_CONFIDENCE_THRESHOLD, |
||||||
|
"matches_graph_dot_file": Subsetter.DEFAULT_MATCHES_GRAPH_DOT_FILE, |
||||||
|
"estimator": CameraEstimator.DEFAULT_CAMERA_ESTIMATOR, |
||||||
|
"adjuster": CameraAdjuster.DEFAULT_CAMERA_ADJUSTER, |
||||||
|
"refinement_mask": CameraAdjuster.DEFAULT_REFINEMENT_MASK, |
||||||
|
"wave_correct_kind": WaveCorrector.DEFAULT_WAVE_CORRECTION, |
||||||
|
"warper_type": Warper.DEFAULT_WARP_TYPE, |
||||||
|
"low_megapix": ImageHandler.DEFAULT_LOW_MEGAPIX, |
||||||
|
"compensator": ExposureErrorCompensator.DEFAULT_COMPENSATOR, |
||||||
|
"nr_feeds": ExposureErrorCompensator.DEFAULT_NR_FEEDS, |
||||||
|
"block_size": ExposureErrorCompensator.DEFAULT_BLOCK_SIZE, |
||||||
|
"finder": SeamFinder.DEFAULT_SEAM_FINDER, |
||||||
|
"final_megapix": ImageHandler.DEFAULT_FINAL_MEGAPIX, |
||||||
|
"blender_type": Blender.DEFAULT_BLENDER, |
||||||
|
"blend_strength": Blender.DEFAULT_BLEND_STRENGTH, |
||||||
|
"timelapse": Timelapser.DEFAULT_TIMELAPSE} |
||||||
|
|
||||||
|
def __init__(self, **kwargs): |
||||||
|
self.initialize_stitcher(**kwargs) |
||||||
|
|
||||||
|
def initialize_stitcher(self, **kwargs): |
||||||
|
self.settings = Stitcher.DEFAULT_SETTINGS.copy() |
||||||
|
self.validate_kwargs(kwargs) |
||||||
|
self.settings.update(kwargs) |
||||||
|
|
||||||
|
args = SimpleNamespace(**self.settings) |
||||||
|
self.img_handler = ImageHandler(args.medium_megapix, |
||||||
|
args.low_megapix, |
||||||
|
args.final_megapix) |
||||||
|
self.detector = \ |
||||||
|
FeatureDetector(args.detector, nfeatures=args.nfeatures) |
||||||
|
match_conf = \ |
||||||
|
FeatureMatcher.get_match_conf(args.match_conf, args.detector) |
||||||
|
self.matcher = FeatureMatcher(args.matcher_type, args.range_width, |
||||||
|
try_use_gpu=args.try_use_gpu, |
||||||
|
match_conf=match_conf) |
||||||
|
self.subsetter = \ |
||||||
|
Subsetter(args.confidence_threshold, args.matches_graph_dot_file) |
||||||
|
self.camera_estimator = CameraEstimator(args.estimator) |
||||||
|
self.camera_adjuster = \ |
||||||
|
CameraAdjuster(args.adjuster, args.refinement_mask) |
||||||
|
self.wave_corrector = WaveCorrector(args.wave_correct_kind) |
||||||
|
self.warper = Warper(args.warper_type) |
||||||
|
self.compensator = \ |
||||||
|
ExposureErrorCompensator(args.compensator, args.nr_feeds, |
||||||
|
args.block_size) |
||||||
|
self.seam_finder = SeamFinder(args.finder) |
||||||
|
self.blender = Blender(args.blender_type, args.blend_strength) |
||||||
|
self.timelapser = Timelapser(args.timelapse) |
||||||
|
|
||||||
|
def stitch(self, img_names): |
||||||
|
self.initialize_registration(img_names) |
||||||
|
|
||||||
|
imgs = self.resize_medium_resolution() |
||||||
|
features = self.find_features(imgs) |
||||||
|
matches = self.match_features(features) |
||||||
|
imgs, features, matches = self.subset(imgs, features, matches) |
||||||
|
cameras = self.estimate_camera_parameters(features, matches) |
||||||
|
cameras = self.refine_camera_parameters(features, matches, cameras) |
||||||
|
cameras = self.perform_wave_correction(cameras) |
||||||
|
panorama_scale, panorama_corners, panorama_sizes = \ |
||||||
|
self.estimate_final_panorama_dimensions(cameras) |
||||||
|
|
||||||
|
self.initialize_composition(panorama_corners, panorama_sizes) |
||||||
|
|
||||||
|
imgs = self.resize_low_resolution(imgs) |
||||||
|
imgs = self.warp_low_resolution_images(imgs, cameras, panorama_scale) |
||||||
|
self.estimate_exposure_errors(imgs) |
||||||
|
seam_masks = self.find_seam_masks(imgs) |
||||||
|
|
||||||
|
imgs = self.resize_final_resolution() |
||||||
|
imgs = self.warp_final_resolution_images(imgs, cameras, panorama_scale) |
||||||
|
imgs = self.compensate_exposure_errors(imgs) |
||||||
|
seam_masks = self.resize_seam_masks(seam_masks) |
||||||
|
self.blend_images(imgs, seam_masks) |
||||||
|
|
||||||
|
return self.create_final_panorama() |
||||||
|
|
||||||
|
def initialize_registration(self, img_names): |
||||||
|
self.img_handler.set_img_names(img_names) |
||||||
|
|
||||||
|
def resize_medium_resolution(self): |
||||||
|
return list(self.img_handler.resize_to_medium_resolution()) |
||||||
|
|
||||||
|
def find_features(self, imgs): |
||||||
|
return [self.detector.detect_features(img) for img in imgs] |
||||||
|
|
||||||
|
def match_features(self, features): |
||||||
|
return self.matcher.match_features(features) |
||||||
|
|
||||||
|
def subset(self, imgs, features, matches): |
||||||
|
names, sizes, imgs, features, matches = \ |
||||||
|
self.subsetter.subset(self.img_handler.img_names, |
||||||
|
self.img_handler.img_sizes, |
||||||
|
imgs, features, matches) |
||||||
|
self.img_handler.img_names, self.img_handler.img_sizes = names, sizes |
||||||
|
return imgs, features, matches |
||||||
|
|
||||||
|
def estimate_camera_parameters(self, features, matches): |
||||||
|
return self.camera_estimator.estimate(features, matches) |
||||||
|
|
||||||
|
def refine_camera_parameters(self, features, matches, cameras): |
||||||
|
return self.camera_adjuster.adjust(features, matches, cameras) |
||||||
|
|
||||||
|
def perform_wave_correction(self, cameras): |
||||||
|
return self.wave_corrector.correct(cameras) |
||||||
|
|
||||||
|
def estimate_final_panorama_dimensions(self, cameras): |
||||||
|
return estimate_final_panorama_dimensions(cameras, self.warper, |
||||||
|
self.img_handler) |
||||||
|
|
||||||
|
def initialize_composition(self, corners, sizes): |
||||||
|
if self.timelapser.do_timelapse: |
||||||
|
self.timelapser.initialize(corners, sizes) |
||||||
|
else: |
||||||
|
self.blender.prepare(corners, sizes) |
||||||
|
|
||||||
|
def resize_low_resolution(self, imgs=None): |
||||||
|
return list(self.img_handler.resize_to_low_resolution(imgs)) |
||||||
|
|
||||||
|
def warp_low_resolution_images(self, imgs, cameras, final_scale): |
||||||
|
camera_aspect = self.img_handler.get_medium_to_low_ratio() |
||||||
|
scale = final_scale * self.img_handler.get_final_to_low_ratio() |
||||||
|
return list(self.warp_images(imgs, cameras, scale, camera_aspect)) |
||||||
|
|
||||||
|
def warp_final_resolution_images(self, imgs, cameras, scale): |
||||||
|
camera_aspect = self.img_handler.get_medium_to_final_ratio() |
||||||
|
return self.warp_images(imgs, cameras, scale, camera_aspect) |
||||||
|
|
||||||
|
def warp_images(self, imgs, cameras, scale, aspect=1): |
||||||
|
self._masks = [] |
||||||
|
self._corners = [] |
||||||
|
for img_warped, mask_warped, corner in \ |
||||||
|
self.warper.warp_images_and_image_masks( |
||||||
|
imgs, cameras, scale, aspect |
||||||
|
): |
||||||
|
self._masks.append(mask_warped) |
||||||
|
self._corners.append(corner) |
||||||
|
yield img_warped |
||||||
|
|
||||||
|
def estimate_exposure_errors(self, imgs): |
||||||
|
self.compensator.feed(self._corners, imgs, self._masks) |
||||||
|
|
||||||
|
def find_seam_masks(self, imgs): |
||||||
|
return self.seam_finder.find(imgs, self._corners, self._masks) |
||||||
|
|
||||||
|
def resize_final_resolution(self): |
||||||
|
return self.img_handler.resize_to_final_resolution() |
||||||
|
|
||||||
|
def compensate_exposure_errors(self, imgs): |
||||||
|
for idx, img in enumerate(imgs): |
||||||
|
yield self.compensator.apply(idx, self._corners[idx], |
||||||
|
img, self._masks[idx]) |
||||||
|
|
||||||
|
def resize_seam_masks(self, seam_masks): |
||||||
|
for idx, seam_mask in enumerate(seam_masks): |
||||||
|
yield SeamFinder.resize(seam_mask, self._masks[idx]) |
||||||
|
|
||||||
|
def blend_images(self, imgs, masks): |
||||||
|
for idx, (img, mask) in enumerate(zip(imgs, masks)): |
||||||
|
if self.timelapser.do_timelapse: |
||||||
|
self.timelapser.process_and_save_frame( |
||||||
|
self.img_handler.img_names[idx], img, self._corners[idx] |
||||||
|
) |
||||||
|
else: |
||||||
|
self.blender.feed(img, mask, self._corners[idx]) |
||||||
|
|
||||||
|
def create_final_panorama(self): |
||||||
|
if not self.timelapser.do_timelapse: |
||||||
|
return self.blender.blend() |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def validate_kwargs(kwargs): |
||||||
|
for arg in kwargs: |
||||||
|
if arg not in Stitcher.DEFAULT_SETTINGS: |
||||||
|
raise StitchingError("Invalid Argument: " + arg) |
||||||
|
|
||||||
|
def collect_garbage(self): |
||||||
|
del self.img_handler.img_names, self.img_handler.img_sizes, |
||||||
|
del self._corners, self._masks |
@ -0,0 +1,2 @@ |
|||||||
|
class StitchingError(Exception): |
||||||
|
pass |
@ -0,0 +1,95 @@ |
|||||||
|
from itertools import chain |
||||||
|
import math |
||||||
|
import cv2 as cv |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
from .feature_matcher import FeatureMatcher |
||||||
|
from .stitching_error import StitchingError |
||||||
|
|
||||||
|
|
||||||
|
class Subsetter: |
||||||
|
|
||||||
|
DEFAULT_CONFIDENCE_THRESHOLD = 1 |
||||||
|
DEFAULT_MATCHES_GRAPH_DOT_FILE = None |
||||||
|
|
||||||
|
def __init__(self, |
||||||
|
confidence_threshold=DEFAULT_CONFIDENCE_THRESHOLD, |
||||||
|
matches_graph_dot_file=DEFAULT_MATCHES_GRAPH_DOT_FILE): |
||||||
|
self.confidence_threshold = confidence_threshold |
||||||
|
self.save_file = matches_graph_dot_file |
||||||
|
|
||||||
|
def subset(self, img_names, img_sizes, imgs, features, matches): |
||||||
|
self.save_matches_graph_dot_file(img_names, matches) |
||||||
|
indices = self.get_indices_to_keep(features, matches) |
||||||
|
|
||||||
|
img_names = Subsetter.subset_list(img_names, indices) |
||||||
|
img_sizes = Subsetter.subset_list(img_sizes, indices) |
||||||
|
imgs = Subsetter.subset_list(imgs, indices) |
||||||
|
features = Subsetter.subset_list(features, indices) |
||||||
|
matches = Subsetter.subset_matches(matches, indices) |
||||||
|
return img_names, img_sizes, imgs, features, matches |
||||||
|
|
||||||
|
def save_matches_graph_dot_file(self, img_names, pairwise_matches): |
||||||
|
if self.save_file: |
||||||
|
with open(self.save_file, 'w') as filehandler: |
||||||
|
filehandler.write(self.get_matches_graph(img_names, |
||||||
|
pairwise_matches) |
||||||
|
) |
||||||
|
|
||||||
|
def get_matches_graph(self, img_names, pairwise_matches): |
||||||
|
return cv.detail.matchesGraphAsString(img_names, pairwise_matches, |
||||||
|
self.confidence_threshold) |
||||||
|
|
||||||
|
def get_indices_to_keep(self, features, pairwise_matches): |
||||||
|
indices = cv.detail.leaveBiggestComponent(features, |
||||||
|
pairwise_matches, |
||||||
|
self.confidence_threshold) |
||||||
|
indices_as_list = [int(idx) for idx in list(indices[:, 0])] |
||||||
|
|
||||||
|
if len(indices_as_list) < 2: |
||||||
|
raise StitchingError("No match exceeds the " |
||||||
|
"given confidence theshold.") |
||||||
|
|
||||||
|
return indices_as_list |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def subset_list(list_to_subset, indices): |
||||||
|
return [list_to_subset[i] for i in indices] |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def subset_matches(pairwise_matches, indices): |
||||||
|
indices_to_delete = Subsetter.get_indices_to_delete( |
||||||
|
math.sqrt(len(pairwise_matches)), |
||||||
|
indices |
||||||
|
) |
||||||
|
|
||||||
|
matches_matrix = FeatureMatcher.get_matches_matrix(pairwise_matches) |
||||||
|
matches_matrix_subset = Subsetter.subset_matrix(matches_matrix, |
||||||
|
indices_to_delete) |
||||||
|
matches_subset = Subsetter.matrix_rows_to_list(matches_matrix_subset) |
||||||
|
|
||||||
|
return matches_subset |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def get_indices_to_delete(nr_elements, indices_to_keep): |
||||||
|
return list(set(range(int(nr_elements))) - set(indices_to_keep)) |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def subset_matrix(matrix_to_subset, indices_to_delete): |
||||||
|
for idx, idx_to_delete in enumerate(indices_to_delete): |
||||||
|
matrix_to_subset = Subsetter.delete_index_from_matrix( |
||||||
|
matrix_to_subset, |
||||||
|
idx_to_delete-idx # matrix shape reduced by one at each step |
||||||
|
) |
||||||
|
|
||||||
|
return matrix_to_subset |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def delete_index_from_matrix(matrix, idx): |
||||||
|
mask = np.ones(matrix.shape[0], bool) |
||||||
|
mask[idx] = 0 |
||||||
|
return matrix[mask, :][:, mask] |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def matrix_rows_to_list(matrix): |
||||||
|
return list(chain.from_iterable(matrix.tolist())) |
@ -0,0 +1,13 @@ |
|||||||
|
# Ignore everything |
||||||
|
* |
||||||
|
|
||||||
|
# But not these files... |
||||||
|
!.gitignore |
||||||
|
!test_matcher.py |
||||||
|
!test_stitcher.py |
||||||
|
!test_megapix_scaler.py |
||||||
|
!test_registration.py |
||||||
|
!test_composition.py |
||||||
|
!test_performance.py |
||||||
|
!stitching_detailed.py |
||||||
|
!SAMPLE_IMAGES_TO_DOWNLOAD.txt |
@ -0,0 +1,5 @@ |
|||||||
|
https://github.com/opencv/opencv_extra/tree/master/testdata/stitching |
||||||
|
|
||||||
|
s1.jpg s2.jpg |
||||||
|
boat1.jpg boat2.jpg boat3.jpg boat4.jpg boat5.jpg boat6.jpg |
||||||
|
budapest1.jpg budapest2.jpg budapest3.jpg budapest4.jpg budapest5.jpg budapest6.jpg |
@ -0,0 +1,406 @@ |
|||||||
|
""" |
||||||
|
Stitching sample (advanced) |
||||||
|
=========================== |
||||||
|
Show how to use Stitcher API from python. |
||||||
|
""" |
||||||
|
|
||||||
|
# Python 2/3 compatibility |
||||||
|
from __future__ import print_function |
||||||
|
|
||||||
|
from types import SimpleNamespace |
||||||
|
from collections import OrderedDict |
||||||
|
|
||||||
|
import cv2 as cv |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
EXPOS_COMP_CHOICES = OrderedDict() |
||||||
|
EXPOS_COMP_CHOICES['gain_blocks'] = cv.detail.ExposureCompensator_GAIN_BLOCKS |
||||||
|
EXPOS_COMP_CHOICES['gain'] = cv.detail.ExposureCompensator_GAIN |
||||||
|
EXPOS_COMP_CHOICES['channel'] = cv.detail.ExposureCompensator_CHANNELS |
||||||
|
EXPOS_COMP_CHOICES['channel_blocks'] = cv.detail.ExposureCompensator_CHANNELS_BLOCKS |
||||||
|
EXPOS_COMP_CHOICES['no'] = cv.detail.ExposureCompensator_NO |
||||||
|
|
||||||
|
BA_COST_CHOICES = OrderedDict() |
||||||
|
BA_COST_CHOICES['ray'] = cv.detail_BundleAdjusterRay |
||||||
|
BA_COST_CHOICES['reproj'] = cv.detail_BundleAdjusterReproj |
||||||
|
BA_COST_CHOICES['affine'] = cv.detail_BundleAdjusterAffinePartial |
||||||
|
BA_COST_CHOICES['no'] = cv.detail_NoBundleAdjuster |
||||||
|
|
||||||
|
FEATURES_FIND_CHOICES = OrderedDict() |
||||||
|
try: |
||||||
|
cv.xfeatures2d_SURF.create() # check if the function can be called |
||||||
|
FEATURES_FIND_CHOICES['surf'] = cv.xfeatures2d_SURF.create |
||||||
|
except (AttributeError, cv.error) as e: |
||||||
|
print("SURF not available") |
||||||
|
# if SURF not available, ORB is default |
||||||
|
FEATURES_FIND_CHOICES['orb'] = cv.ORB.create |
||||||
|
try: |
||||||
|
FEATURES_FIND_CHOICES['sift'] = cv.xfeatures2d_SIFT.create |
||||||
|
except AttributeError: |
||||||
|
print("SIFT not available") |
||||||
|
try: |
||||||
|
FEATURES_FIND_CHOICES['brisk'] = cv.BRISK_create |
||||||
|
except AttributeError: |
||||||
|
print("BRISK not available") |
||||||
|
try: |
||||||
|
FEATURES_FIND_CHOICES['akaze'] = cv.AKAZE_create |
||||||
|
except AttributeError: |
||||||
|
print("AKAZE not available") |
||||||
|
|
||||||
|
SEAM_FIND_CHOICES = OrderedDict() |
||||||
|
SEAM_FIND_CHOICES['dp_color'] = cv.detail_DpSeamFinder('COLOR') |
||||||
|
SEAM_FIND_CHOICES['dp_colorgrad'] = cv.detail_DpSeamFinder('COLOR_GRAD') |
||||||
|
SEAM_FIND_CHOICES['voronoi'] = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_VORONOI_SEAM) |
||||||
|
SEAM_FIND_CHOICES['no'] = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_NO) |
||||||
|
|
||||||
|
ESTIMATOR_CHOICES = OrderedDict() |
||||||
|
ESTIMATOR_CHOICES['homography'] = cv.detail_HomographyBasedEstimator |
||||||
|
ESTIMATOR_CHOICES['affine'] = cv.detail_AffineBasedEstimator |
||||||
|
|
||||||
|
WARP_CHOICES = ( |
||||||
|
'spherical', |
||||||
|
'plane', |
||||||
|
'affine', |
||||||
|
'cylindrical', |
||||||
|
'fisheye', |
||||||
|
'stereographic', |
||||||
|
'compressedPlaneA2B1', |
||||||
|
'compressedPlaneA1.5B1', |
||||||
|
'compressedPlanePortraitA2B1', |
||||||
|
'compressedPlanePortraitA1.5B1', |
||||||
|
'paniniA2B1', |
||||||
|
'paniniA1.5B1', |
||||||
|
'paniniPortraitA2B1', |
||||||
|
'paniniPortraitA1.5B1', |
||||||
|
'mercator', |
||||||
|
'transverseMercator', |
||||||
|
) |
||||||
|
|
||||||
|
WAVE_CORRECT_CHOICES = OrderedDict() |
||||||
|
WAVE_CORRECT_CHOICES['horiz'] = cv.detail.WAVE_CORRECT_HORIZ |
||||||
|
WAVE_CORRECT_CHOICES['no'] = None |
||||||
|
WAVE_CORRECT_CHOICES['vert'] = cv.detail.WAVE_CORRECT_VERT |
||||||
|
|
||||||
|
BLEND_CHOICES = ('multiband', 'feather', 'no',) |
||||||
|
|
||||||
|
def get_matcher(args): |
||||||
|
try_cuda = args.try_cuda |
||||||
|
matcher_type = args.matcher |
||||||
|
if args.match_conf is None: |
||||||
|
if args.features == 'orb': |
||||||
|
match_conf = 0.3 |
||||||
|
else: |
||||||
|
match_conf = 0.65 |
||||||
|
else: |
||||||
|
match_conf = args.match_conf |
||||||
|
range_width = args.rangewidth |
||||||
|
if matcher_type == "affine": |
||||||
|
matcher = cv.detail_AffineBestOf2NearestMatcher(False, try_cuda, match_conf) |
||||||
|
elif range_width == -1: |
||||||
|
matcher = cv.detail.BestOf2NearestMatcher_create(try_cuda, match_conf) |
||||||
|
else: |
||||||
|
matcher = cv.detail.BestOf2NearestRangeMatcher_create(range_width, try_cuda, match_conf) |
||||||
|
return matcher |
||||||
|
|
||||||
|
|
||||||
|
def get_compensator(args): |
||||||
|
expos_comp_type = EXPOS_COMP_CHOICES[args.expos_comp] |
||||||
|
expos_comp_nr_feeds = args.expos_comp_nr_feeds |
||||||
|
expos_comp_block_size = args.expos_comp_block_size |
||||||
|
# expos_comp_nr_filtering = args.expos_comp_nr_filtering |
||||||
|
if expos_comp_type == cv.detail.ExposureCompensator_CHANNELS: |
||||||
|
compensator = cv.detail_ChannelsCompensator(expos_comp_nr_feeds) |
||||||
|
# compensator.setNrGainsFilteringIterations(expos_comp_nr_filtering) |
||||||
|
elif expos_comp_type == cv.detail.ExposureCompensator_CHANNELS_BLOCKS: |
||||||
|
compensator = cv.detail_BlocksChannelsCompensator( |
||||||
|
expos_comp_block_size, expos_comp_block_size, |
||||||
|
expos_comp_nr_feeds |
||||||
|
) |
||||||
|
# compensator.setNrGainsFilteringIterations(expos_comp_nr_filtering) |
||||||
|
else: |
||||||
|
compensator = cv.detail.ExposureCompensator_createDefault(expos_comp_type) |
||||||
|
return compensator |
||||||
|
|
||||||
|
|
||||||
|
def main(): |
||||||
|
|
||||||
|
args = { |
||||||
|
"img_names":["boat5.jpg", "boat2.jpg", |
||||||
|
"boat3.jpg", "boat4.jpg", |
||||||
|
"boat1.jpg", "boat6.jpg"], |
||||||
|
"try_cuda": False, |
||||||
|
"work_megapix": 0.6, |
||||||
|
"features": "orb", |
||||||
|
"matcher": "homography", |
||||||
|
"estimator": "homography", |
||||||
|
"match_conf": None, |
||||||
|
"conf_thresh": 1.0, |
||||||
|
"ba": "ray", |
||||||
|
"ba_refine_mask": "xxxxx", |
||||||
|
"wave_correct": "horiz", |
||||||
|
"save_graph": None, |
||||||
|
"warp": "spherical", |
||||||
|
"seam_megapix": 0.1, |
||||||
|
"seam": "dp_color", |
||||||
|
"compose_megapix": 3, |
||||||
|
"expos_comp": "gain_blocks", |
||||||
|
"expos_comp_nr_feeds": 1, |
||||||
|
"expos_comp_nr_filtering": 2, |
||||||
|
"expos_comp_block_size": 32, |
||||||
|
"blend": "multiband", |
||||||
|
"blend_strength": 5, |
||||||
|
"output": "time_test.jpg", |
||||||
|
"timelapse": None, |
||||||
|
"rangewidth": -1 |
||||||
|
} |
||||||
|
|
||||||
|
args = SimpleNamespace(**args) |
||||||
|
img_names = args.img_names |
||||||
|
work_megapix = args.work_megapix |
||||||
|
seam_megapix = args.seam_megapix |
||||||
|
compose_megapix = args.compose_megapix |
||||||
|
conf_thresh = args.conf_thresh |
||||||
|
ba_refine_mask = args.ba_refine_mask |
||||||
|
wave_correct = WAVE_CORRECT_CHOICES[args.wave_correct] |
||||||
|
if args.save_graph is None: |
||||||
|
save_graph = False |
||||||
|
else: |
||||||
|
save_graph = True |
||||||
|
warp_type = args.warp |
||||||
|
blend_type = args.blend |
||||||
|
blend_strength = args.blend_strength |
||||||
|
result_name = args.output |
||||||
|
if args.timelapse is not None: |
||||||
|
timelapse = True |
||||||
|
if args.timelapse == "as_is": |
||||||
|
timelapse_type = cv.detail.Timelapser_AS_IS |
||||||
|
elif args.timelapse == "crop": |
||||||
|
timelapse_type = cv.detail.Timelapser_CROP |
||||||
|
else: |
||||||
|
print("Bad timelapse method") |
||||||
|
exit() |
||||||
|
else: |
||||||
|
timelapse = False |
||||||
|
finder = FEATURES_FIND_CHOICES[args.features]() |
||||||
|
seam_work_aspect = 1 |
||||||
|
full_img_sizes = [] |
||||||
|
features = [] |
||||||
|
images = [] |
||||||
|
is_work_scale_set = False |
||||||
|
is_seam_scale_set = False |
||||||
|
is_compose_scale_set = False |
||||||
|
for name in img_names: |
||||||
|
full_img = cv.imread(cv.samples.findFile(name)) |
||||||
|
if full_img is None: |
||||||
|
print("Cannot read image ", name) |
||||||
|
exit() |
||||||
|
full_img_sizes.append((full_img.shape[1], full_img.shape[0])) |
||||||
|
if work_megapix < 0: |
||||||
|
img = full_img |
||||||
|
work_scale = 1 |
||||||
|
is_work_scale_set = True |
||||||
|
else: |
||||||
|
if is_work_scale_set is False: |
||||||
|
work_scale = min(1.0, np.sqrt(work_megapix * 1e6 / (full_img.shape[0] * full_img.shape[1]))) |
||||||
|
is_work_scale_set = True |
||||||
|
img = cv.resize(src=full_img, dsize=None, fx=work_scale, fy=work_scale, interpolation=cv.INTER_LINEAR_EXACT) |
||||||
|
if is_seam_scale_set is False: |
||||||
|
seam_scale = min(1.0, np.sqrt(seam_megapix * 1e6 / (full_img.shape[0] * full_img.shape[1]))) |
||||||
|
seam_work_aspect = seam_scale / work_scale |
||||||
|
is_seam_scale_set = True |
||||||
|
img_feat = cv.detail.computeImageFeatures2(finder, img) |
||||||
|
features.append(img_feat) |
||||||
|
img = cv.resize(src=full_img, dsize=None, fx=seam_scale, fy=seam_scale, interpolation=cv.INTER_LINEAR_EXACT) |
||||||
|
images.append(img) |
||||||
|
|
||||||
|
matcher = get_matcher(args) |
||||||
|
p = matcher.apply2(features) |
||||||
|
matcher.collectGarbage() |
||||||
|
|
||||||
|
if save_graph: |
||||||
|
with open(args.save_graph, 'w') as fh: |
||||||
|
fh.write(cv.detail.matchesGraphAsString(img_names, p, conf_thresh)) |
||||||
|
|
||||||
|
indices = cv.detail.leaveBiggestComponent(features, p, conf_thresh) |
||||||
|
img_subset = [] |
||||||
|
img_names_subset = [] |
||||||
|
full_img_sizes_subset = [] |
||||||
|
for i in range(len(indices)): |
||||||
|
img_names_subset.append(img_names[indices[i, 0]]) |
||||||
|
img_subset.append(images[indices[i, 0]]) |
||||||
|
full_img_sizes_subset.append(full_img_sizes[indices[i, 0]]) |
||||||
|
images = img_subset |
||||||
|
img_names = img_names_subset |
||||||
|
full_img_sizes = full_img_sizes_subset |
||||||
|
num_images = len(img_names) |
||||||
|
if num_images < 2: |
||||||
|
print("Need more images") |
||||||
|
exit() |
||||||
|
|
||||||
|
estimator = ESTIMATOR_CHOICES[args.estimator]() |
||||||
|
b, cameras = estimator.apply(features, p, None) |
||||||
|
if not b: |
||||||
|
print("Homography estimation failed.") |
||||||
|
exit() |
||||||
|
for cam in cameras: |
||||||
|
cam.R = cam.R.astype(np.float32) |
||||||
|
|
||||||
|
adjuster = BA_COST_CHOICES[args.ba]() |
||||||
|
adjuster.setConfThresh(1) |
||||||
|
refine_mask = np.zeros((3, 3), np.uint8) |
||||||
|
if ba_refine_mask[0] == 'x': |
||||||
|
refine_mask[0, 0] = 1 |
||||||
|
if ba_refine_mask[1] == 'x': |
||||||
|
refine_mask[0, 1] = 1 |
||||||
|
if ba_refine_mask[2] == 'x': |
||||||
|
refine_mask[0, 2] = 1 |
||||||
|
if ba_refine_mask[3] == 'x': |
||||||
|
refine_mask[1, 1] = 1 |
||||||
|
if ba_refine_mask[4] == 'x': |
||||||
|
refine_mask[1, 2] = 1 |
||||||
|
adjuster.setRefinementMask(refine_mask) |
||||||
|
b, cameras = adjuster.apply(features, p, cameras) |
||||||
|
if not b: |
||||||
|
print("Camera parameters adjusting failed.") |
||||||
|
exit() |
||||||
|
focals = [] |
||||||
|
for cam in cameras: |
||||||
|
focals.append(cam.focal) |
||||||
|
focals.sort() |
||||||
|
if len(focals) % 2 == 1: |
||||||
|
warped_image_scale = focals[len(focals) // 2] |
||||||
|
else: |
||||||
|
warped_image_scale = (focals[len(focals) // 2] + focals[len(focals) // 2 - 1]) / 2 |
||||||
|
if wave_correct is not None: |
||||||
|
rmats = [] |
||||||
|
for cam in cameras: |
||||||
|
rmats.append(np.copy(cam.R)) |
||||||
|
rmats = cv.detail.waveCorrect(rmats, wave_correct) |
||||||
|
for idx, cam in enumerate(cameras): |
||||||
|
cam.R = rmats[idx] |
||||||
|
corners = [] |
||||||
|
masks_warped = [] |
||||||
|
images_warped = [] |
||||||
|
sizes = [] |
||||||
|
masks = [] |
||||||
|
for i in range(0, num_images): |
||||||
|
um = cv.UMat(255 * np.ones((images[i].shape[0], images[i].shape[1]), np.uint8)) |
||||||
|
masks.append(um) |
||||||
|
|
||||||
|
warper = cv.PyRotationWarper(warp_type, warped_image_scale * seam_work_aspect) # warper could be nullptr? |
||||||
|
for idx in range(0, num_images): |
||||||
|
K = cameras[idx].K().astype(np.float32) |
||||||
|
swa = seam_work_aspect |
||||||
|
K[0, 0] *= swa |
||||||
|
K[0, 2] *= swa |
||||||
|
K[1, 1] *= swa |
||||||
|
K[1, 2] *= swa |
||||||
|
corner, image_wp = warper.warp(images[idx], K, cameras[idx].R, cv.INTER_LINEAR, cv.BORDER_REFLECT) |
||||||
|
corners.append(corner) |
||||||
|
sizes.append((image_wp.shape[1], image_wp.shape[0])) |
||||||
|
images_warped.append(image_wp) |
||||||
|
p, mask_wp = warper.warp(masks[idx], K, cameras[idx].R, cv.INTER_NEAREST, cv.BORDER_CONSTANT) |
||||||
|
masks_warped.append(mask_wp.get()) |
||||||
|
|
||||||
|
images_warped_f = [] |
||||||
|
for img in images_warped: |
||||||
|
imgf = img.astype(np.float32) |
||||||
|
images_warped_f.append(imgf) |
||||||
|
|
||||||
|
compensator = get_compensator(args) |
||||||
|
compensator.feed(corners=corners, images=images_warped, masks=masks_warped) |
||||||
|
|
||||||
|
seam_finder = SEAM_FIND_CHOICES[args.seam] |
||||||
|
masks_warped = seam_finder.find(images_warped_f, corners, masks_warped) |
||||||
|
compose_scale = 1 |
||||||
|
corners = [] |
||||||
|
sizes = [] |
||||||
|
blender = None |
||||||
|
timelapser = None |
||||||
|
# https://github.com/opencv/opencv/blob/master/samples/cpp/stitching_detailed.cpp#L725 ? |
||||||
|
for idx, name in enumerate(img_names): |
||||||
|
full_img = cv.imread(name) |
||||||
|
if not is_compose_scale_set: |
||||||
|
if compose_megapix > 0: |
||||||
|
compose_scale = min(1.0, np.sqrt(compose_megapix * 1e6 / (full_img.shape[0] * full_img.shape[1]))) |
||||||
|
is_compose_scale_set = True |
||||||
|
compose_work_aspect = compose_scale / work_scale |
||||||
|
warped_image_scale *= compose_work_aspect |
||||||
|
warper = cv.PyRotationWarper(warp_type, warped_image_scale) |
||||||
|
for i in range(0, len(img_names)): |
||||||
|
cameras[i].focal *= compose_work_aspect |
||||||
|
cameras[i].ppx *= compose_work_aspect |
||||||
|
cameras[i].ppy *= compose_work_aspect |
||||||
|
sz = (int(round(full_img_sizes[i][0] * compose_scale)), |
||||||
|
int(round(full_img_sizes[i][1] * compose_scale))) |
||||||
|
K = cameras[i].K().astype(np.float32) |
||||||
|
roi = warper.warpRoi(sz, K, cameras[i].R) |
||||||
|
corners.append(roi[0:2]) |
||||||
|
sizes.append(roi[2:4]) |
||||||
|
if abs(compose_scale - 1) > 1e-1: |
||||||
|
img = cv.resize(src=full_img, dsize=None, fx=compose_scale, fy=compose_scale, |
||||||
|
interpolation=cv.INTER_LINEAR_EXACT) |
||||||
|
else: |
||||||
|
img = full_img |
||||||
|
_img_size = (img.shape[1], img.shape[0]) |
||||||
|
K = cameras[idx].K().astype(np.float32) |
||||||
|
corner, image_warped = warper.warp(img, K, cameras[idx].R, cv.INTER_LINEAR, cv.BORDER_REFLECT) |
||||||
|
mask = 255 * np.ones((img.shape[0], img.shape[1]), np.uint8) |
||||||
|
p, mask_warped = warper.warp(mask, K, cameras[idx].R, cv.INTER_NEAREST, cv.BORDER_CONSTANT) |
||||||
|
compensator.apply(idx, corners[idx], image_warped, mask_warped) |
||||||
|
image_warped_s = image_warped.astype(np.int16) |
||||||
|
dilated_mask = cv.dilate(masks_warped[idx], None) |
||||||
|
seam_mask = cv.resize(dilated_mask, (mask_warped.shape[1], mask_warped.shape[0]), 0, 0, cv.INTER_LINEAR_EXACT) |
||||||
|
mask_warped = cv.bitwise_and(seam_mask, mask_warped) |
||||||
|
if blender is None and not timelapse: |
||||||
|
blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO) |
||||||
|
dst_sz = cv.detail.resultRoi(corners=corners, sizes=sizes) |
||||||
|
blend_width = np.sqrt(dst_sz[2] * dst_sz[3]) * blend_strength / 100 |
||||||
|
if blend_width < 1: |
||||||
|
blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO) |
||||||
|
elif blend_type == "multiband": |
||||||
|
blender = cv.detail_MultiBandBlender() |
||||||
|
blender.setNumBands((np.log(blend_width) / np.log(2.) - 1.).astype(np.int64)) |
||||||
|
elif blend_type == "feather": |
||||||
|
blender = cv.detail_FeatherBlender() |
||||||
|
blender.setSharpness(1. / blend_width) |
||||||
|
blender.prepare(dst_sz) |
||||||
|
elif timelapser is None and timelapse: |
||||||
|
timelapser = cv.detail.Timelapser_createDefault(timelapse_type) |
||||||
|
timelapser.initialize(corners, sizes) |
||||||
|
if timelapse: |
||||||
|
ma_tones = np.ones((image_warped_s.shape[0], image_warped_s.shape[1]), np.uint8) |
||||||
|
timelapser.process(image_warped_s, ma_tones, corners[idx]) |
||||||
|
pos_s = img_names[idx].rfind("/") |
||||||
|
if pos_s == -1: |
||||||
|
fixed_file_name = "fixed_" + img_names[idx] |
||||||
|
else: |
||||||
|
fixed_file_name = img_names[idx][:pos_s + 1] + "fixed_" + img_names[idx][pos_s + 1:] |
||||||
|
cv.imwrite(fixed_file_name, timelapser.getDst()) |
||||||
|
else: |
||||||
|
blender.feed(cv.UMat(image_warped_s), mask_warped, corners[idx]) |
||||||
|
if not timelapse: |
||||||
|
result = None |
||||||
|
result_mask = None |
||||||
|
result, result_mask = blender.blend(result, result_mask) |
||||||
|
# cv.imwrite(result_name, result) |
||||||
|
return result |
||||||
|
# zoom_x = 600.0 / result.shape[1] |
||||||
|
# dst = cv.normalize(src=result, dst=None, alpha=255., norm_type=cv.NORM_MINMAX, dtype=cv.CV_8U) |
||||||
|
# dst = cv.resize(dst, dsize=None, fx=zoom_x, fy=zoom_x) |
||||||
|
# cv.imshow(result_name, dst) |
||||||
|
# cv.waitKey() |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__': |
||||||
|
import tracemalloc |
||||||
|
import time |
||||||
|
tracemalloc.start() |
||||||
|
start = time.time() |
||||||
|
result = main() |
||||||
|
current, peak = tracemalloc.get_traced_memory() |
||||||
|
print(f"Current memory usage is {current / 10**6}MB; Peak was {peak / 10**6}MB") |
||||||
|
tracemalloc.stop() |
||||||
|
end = time.time() |
||||||
|
print(end - start) |
@ -0,0 +1,67 @@ |
|||||||
|
import unittest |
||||||
|
import os |
||||||
|
import sys |
||||||
|
|
||||||
|
import numpy as np |
||||||
|
import cv2 as cv |
||||||
|
|
||||||
|
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), |
||||||
|
'..', '..'))) |
||||||
|
|
||||||
|
from opencv_stitching.stitcher import Stitcher |
||||||
|
|
||||||
|
|
||||||
|
class TestImageComposition(unittest.TestCase): |
||||||
|
|
||||||
|
# visual test: look especially in the sky |
||||||
|
def test_exposure_compensation(self): |
||||||
|
img = cv.imread("s1.jpg") |
||||||
|
img = increase_brightness(img, value=25) |
||||||
|
cv.imwrite("s1_bright.jpg", img) |
||||||
|
|
||||||
|
stitcher = Stitcher(compensator="no", blender_type="no") |
||||||
|
result = stitcher.stitch(["s1_bright.jpg", "s2.jpg"]) |
||||||
|
|
||||||
|
cv.imwrite("without_exposure_comp.jpg", result) |
||||||
|
|
||||||
|
stitcher = Stitcher(blender_type="no") |
||||||
|
result = stitcher.stitch(["s1_bright.jpg", "s2.jpg"]) |
||||||
|
|
||||||
|
cv.imwrite("with_exposure_comp.jpg", result) |
||||||
|
|
||||||
|
def test_timelapse(self): |
||||||
|
stitcher = Stitcher(timelapse='as_is') |
||||||
|
_ = stitcher.stitch(["s1.jpg", "s2.jpg"]) |
||||||
|
frame1 = cv.imread("fixed_s1.jpg") |
||||||
|
|
||||||
|
max_image_shape_derivation = 3 |
||||||
|
np.testing.assert_allclose(frame1.shape[:2], |
||||||
|
(700, 1811), |
||||||
|
atol=max_image_shape_derivation) |
||||||
|
|
||||||
|
left = cv.cvtColor(frame1[:, :1300, ], cv.COLOR_BGR2GRAY) |
||||||
|
right = cv.cvtColor(frame1[:, 1300:, ], cv.COLOR_BGR2GRAY) |
||||||
|
|
||||||
|
self.assertGreater(cv.countNonZero(left), 800000) |
||||||
|
self.assertEqual(cv.countNonZero(right), 0) |
||||||
|
|
||||||
|
|
||||||
|
def increase_brightness(img, value=30): |
||||||
|
hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV) |
||||||
|
h, s, v = cv.split(hsv) |
||||||
|
|
||||||
|
lim = 255 - value |
||||||
|
v[v > lim] = 255 |
||||||
|
v[v <= lim] += value |
||||||
|
|
||||||
|
final_hsv = cv.merge((h, s, v)) |
||||||
|
img = cv.cvtColor(final_hsv, cv.COLOR_HSV2BGR) |
||||||
|
return img |
||||||
|
|
||||||
|
|
||||||
|
def starttest(): |
||||||
|
unittest.main() |
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__": |
||||||
|
starttest() |
@ -0,0 +1,47 @@ |
|||||||
|
import unittest |
||||||
|
import os |
||||||
|
import sys |
||||||
|
|
||||||
|
import numpy as np |
||||||
|
|
||||||
|
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), |
||||||
|
'..', '..'))) |
||||||
|
|
||||||
|
from opencv_stitching.feature_matcher import FeatureMatcher |
||||||
|
# %% |
||||||
|
|
||||||
|
|
||||||
|
class TestMatcher(unittest.TestCase): |
||||||
|
|
||||||
|
def test_array_in_sqare_matrix(self): |
||||||
|
array = np.zeros(9) |
||||||
|
|
||||||
|
matrix = FeatureMatcher.array_in_sqare_matrix(array) |
||||||
|
|
||||||
|
np.testing.assert_array_equal(matrix, np.array([[0., 0., 0.], |
||||||
|
[0., 0., 0.], |
||||||
|
[0., 0., 0.]])) |
||||||
|
|
||||||
|
def test_get_all_img_combinations(self): |
||||||
|
nimgs = 3 |
||||||
|
|
||||||
|
combinations = list(FeatureMatcher.get_all_img_combinations(nimgs)) |
||||||
|
|
||||||
|
self.assertEqual(combinations, [(0, 1), (0, 2), (1, 2)]) |
||||||
|
|
||||||
|
def test_get_match_conf(self): |
||||||
|
explicit_match_conf = FeatureMatcher.get_match_conf(1, 'orb') |
||||||
|
implicit_match_conf_orb = FeatureMatcher.get_match_conf(None, 'orb') |
||||||
|
implicit_match_conf_other = FeatureMatcher.get_match_conf(None, 'surf') |
||||||
|
|
||||||
|
self.assertEqual(explicit_match_conf, 1) |
||||||
|
self.assertEqual(implicit_match_conf_orb, 0.3) |
||||||
|
self.assertEqual(implicit_match_conf_other, 0.65) |
||||||
|
|
||||||
|
|
||||||
|
def starttest(): |
||||||
|
unittest.main() |
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__": |
||||||
|
starttest() |
@ -0,0 +1,59 @@ |
|||||||
|
import unittest |
||||||
|
import os |
||||||
|
import sys |
||||||
|
|
||||||
|
import cv2 as cv |
||||||
|
|
||||||
|
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), |
||||||
|
'..', '..'))) |
||||||
|
|
||||||
|
from opencv_stitching.megapix_scaler import MegapixScaler |
||||||
|
from opencv_stitching.megapix_downscaler import MegapixDownscaler |
||||||
|
#%% |
||||||
|
|
||||||
|
|
||||||
|
class TestScaler(unittest.TestCase): |
||||||
|
|
||||||
|
def setUp(self): |
||||||
|
self.img = cv.imread("s1.jpg") |
||||||
|
self.size = (self.img.shape[1], self.img.shape[0]) |
||||||
|
|
||||||
|
def test_get_scale_by_resolution(self): |
||||||
|
scaler = MegapixScaler(0.6) |
||||||
|
|
||||||
|
scale = scaler.get_scale_by_resolution(1_200_000) |
||||||
|
|
||||||
|
self.assertEqual(scale, 0.7071067811865476) |
||||||
|
|
||||||
|
def test_get_scale_by_image(self): |
||||||
|
scaler = MegapixScaler(0.6) |
||||||
|
|
||||||
|
scaler.set_scale_by_img_size(self.size) |
||||||
|
|
||||||
|
self.assertEqual(scaler.scale, 0.8294067854101966) |
||||||
|
|
||||||
|
def test_get_scaled_img_size(self): |
||||||
|
scaler = MegapixScaler(0.6) |
||||||
|
scaler.set_scale_by_img_size(self.size) |
||||||
|
|
||||||
|
size = scaler.get_scaled_img_size(self.size) |
||||||
|
self.assertEqual(size, (1033, 581)) |
||||||
|
# 581*1033 = 600173 px = ~0.6 MP |
||||||
|
|
||||||
|
def test_force_of_downscaling(self): |
||||||
|
normal_scaler = MegapixScaler(2) |
||||||
|
downscaler = MegapixDownscaler(2) |
||||||
|
|
||||||
|
normal_scaler.set_scale_by_img_size(self.size) |
||||||
|
downscaler.set_scale_by_img_size(self.size) |
||||||
|
|
||||||
|
self.assertEqual(normal_scaler.scale, 1.5142826857233715) |
||||||
|
self.assertEqual(downscaler.scale, 1.0) |
||||||
|
|
||||||
|
|
||||||
|
def starttest(): |
||||||
|
unittest.main() |
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__": |
||||||
|
starttest() |
@ -0,0 +1,65 @@ |
|||||||
|
import unittest |
||||||
|
import os |
||||||
|
import sys |
||||||
|
import time |
||||||
|
import tracemalloc |
||||||
|
|
||||||
|
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), |
||||||
|
'..', '..'))) |
||||||
|
|
||||||
|
from opencv_stitching.stitcher import Stitcher |
||||||
|
from stitching_detailed import main |
||||||
|
# %% |
||||||
|
|
||||||
|
|
||||||
|
class TestStitcher(unittest.TestCase): |
||||||
|
|
||||||
|
def test_performance(self): |
||||||
|
|
||||||
|
print("Run new Stitcher class:") |
||||||
|
|
||||||
|
start = time.time() |
||||||
|
tracemalloc.start() |
||||||
|
|
||||||
|
stitcher = Stitcher(final_megapix=3) |
||||||
|
stitcher.stitch(["boat5.jpg", "boat2.jpg", |
||||||
|
"boat3.jpg", "boat4.jpg", |
||||||
|
"boat1.jpg", "boat6.jpg"]) |
||||||
|
stitcher.collect_garbage() |
||||||
|
|
||||||
|
_, peak_memory = tracemalloc.get_traced_memory() |
||||||
|
tracemalloc.stop() |
||||||
|
end = time.time() |
||||||
|
time_needed = end - start |
||||||
|
|
||||||
|
print(f"Peak was {peak_memory / 10**6} MB") |
||||||
|
print(f"Time was {time_needed} s") |
||||||
|
|
||||||
|
print("Run original stitching_detailed.py:") |
||||||
|
|
||||||
|
start = time.time() |
||||||
|
tracemalloc.start() |
||||||
|
|
||||||
|
main() |
||||||
|
|
||||||
|
_, peak_memory_detailed = tracemalloc.get_traced_memory() |
||||||
|
tracemalloc.stop() |
||||||
|
end = time.time() |
||||||
|
time_needed_detailed = end - start |
||||||
|
|
||||||
|
print(f"Peak was {peak_memory_detailed / 10**6} MB") |
||||||
|
print(f"Time was {time_needed_detailed} s") |
||||||
|
|
||||||
|
self.assertLessEqual(peak_memory / 10**6, |
||||||
|
peak_memory_detailed / 10**6) |
||||||
|
uncertainty_based_on_run = 0.25 |
||||||
|
self.assertLessEqual(time_needed - uncertainty_based_on_run, |
||||||
|
time_needed_detailed) |
||||||
|
|
||||||
|
|
||||||
|
def starttest(): |
||||||
|
unittest.main() |
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__": |
||||||
|
starttest() |
@ -0,0 +1,100 @@ |
|||||||
|
import unittest |
||||||
|
import os |
||||||
|
import sys |
||||||
|
|
||||||
|
import numpy as np |
||||||
|
import cv2 as cv |
||||||
|
|
||||||
|
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), |
||||||
|
'..', '..'))) |
||||||
|
|
||||||
|
from opencv_stitching.feature_detector import FeatureDetector |
||||||
|
from opencv_stitching.feature_matcher import FeatureMatcher |
||||||
|
from opencv_stitching.subsetter import Subsetter |
||||||
|
|
||||||
|
|
||||||
|
class TestImageRegistration(unittest.TestCase): |
||||||
|
|
||||||
|
def test_feature_detector(self): |
||||||
|
img1 = cv.imread("s1.jpg") |
||||||
|
|
||||||
|
default_number_of_keypoints = 500 |
||||||
|
detector = FeatureDetector("orb") |
||||||
|
features = detector.detect_features(img1) |
||||||
|
self.assertEqual(len(features.getKeypoints()), |
||||||
|
default_number_of_keypoints) |
||||||
|
|
||||||
|
other_keypoints = 1000 |
||||||
|
detector = FeatureDetector("orb", nfeatures=other_keypoints) |
||||||
|
features = detector.detect_features(img1) |
||||||
|
self.assertEqual(len(features.getKeypoints()), other_keypoints) |
||||||
|
|
||||||
|
def test_feature_matcher(self): |
||||||
|
img1, img2 = cv.imread("s1.jpg"), cv.imread("s2.jpg") |
||||||
|
|
||||||
|
detector = FeatureDetector("orb") |
||||||
|
features = [detector.detect_features(img1), |
||||||
|
detector.detect_features(img2)] |
||||||
|
|
||||||
|
matcher = FeatureMatcher() |
||||||
|
pairwise_matches = matcher.match_features(features) |
||||||
|
self.assertEqual(len(pairwise_matches), len(features)**2) |
||||||
|
self.assertGreater(pairwise_matches[1].confidence, 2) |
||||||
|
|
||||||
|
matches_matrix = FeatureMatcher.get_matches_matrix(pairwise_matches) |
||||||
|
self.assertEqual(matches_matrix.shape, (2, 2)) |
||||||
|
conf_matrix = FeatureMatcher.get_confidence_matrix(pairwise_matches) |
||||||
|
self.assertTrue(np.array_equal( |
||||||
|
conf_matrix > 2, |
||||||
|
np.array([[False, True], [True, False]]) |
||||||
|
)) |
||||||
|
|
||||||
|
def test_subsetting(self): |
||||||
|
img1, img2 = cv.imread("s1.jpg"), cv.imread("s2.jpg") |
||||||
|
img3, img4 = cv.imread("boat1.jpg"), cv.imread("boat2.jpg") |
||||||
|
img5 = cv.imread("boat3.jpg") |
||||||
|
img_names = ["s1.jpg", "s2.jpg", "boat1.jpg", "boat2.jpg", "boat3.jpg"] |
||||||
|
|
||||||
|
detector = FeatureDetector("orb") |
||||||
|
features = [detector.detect_features(img1), |
||||||
|
detector.detect_features(img2), |
||||||
|
detector.detect_features(img3), |
||||||
|
detector.detect_features(img4), |
||||||
|
detector.detect_features(img5)] |
||||||
|
matcher = FeatureMatcher() |
||||||
|
pairwise_matches = matcher.match_features(features) |
||||||
|
subsetter = Subsetter(confidence_threshold=1, |
||||||
|
matches_graph_dot_file="dot_graph.txt") # view in https://dreampuf.github.io # noqa |
||||||
|
|
||||||
|
indices = subsetter.get_indices_to_keep(features, pairwise_matches) |
||||||
|
indices_to_delete = subsetter.get_indices_to_delete(len(img_names), |
||||||
|
indices) |
||||||
|
|
||||||
|
self.assertEqual(indices, [2, 3, 4]) |
||||||
|
self.assertEqual(indices_to_delete, [0, 1]) |
||||||
|
|
||||||
|
subsetted_image_names = subsetter.subset_list(img_names, indices) |
||||||
|
self.assertEqual(subsetted_image_names, |
||||||
|
['boat1.jpg', 'boat2.jpg', 'boat3.jpg']) |
||||||
|
|
||||||
|
matches_subset = subsetter.subset_matches(pairwise_matches, indices) |
||||||
|
# FeatureMatcher.get_confidence_matrix(pairwise_matches) |
||||||
|
# FeatureMatcher.get_confidence_matrix(subsetted_matches) |
||||||
|
self.assertEqual(pairwise_matches[13].confidence, |
||||||
|
matches_subset[1].confidence) |
||||||
|
|
||||||
|
graph = subsetter.get_matches_graph(img_names, pairwise_matches) |
||||||
|
self.assertTrue(graph.startswith("graph matches_graph{")) |
||||||
|
|
||||||
|
subsetter.save_matches_graph_dot_file(img_names, pairwise_matches) |
||||||
|
with open('dot_graph.txt', 'r') as file: |
||||||
|
graph = file.read() |
||||||
|
self.assertTrue(graph.startswith("graph matches_graph{")) |
||||||
|
|
||||||
|
|
||||||
|
def starttest(): |
||||||
|
unittest.main() |
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__": |
||||||
|
starttest() |
@ -0,0 +1,108 @@ |
|||||||
|
import unittest |
||||||
|
import os |
||||||
|
import sys |
||||||
|
|
||||||
|
import numpy as np |
||||||
|
import cv2 as cv |
||||||
|
|
||||||
|
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), |
||||||
|
'..', '..'))) |
||||||
|
|
||||||
|
from opencv_stitching.stitcher import Stitcher |
||||||
|
# %% |
||||||
|
|
||||||
|
|
||||||
|
class TestStitcher(unittest.TestCase): |
||||||
|
|
||||||
|
def test_stitcher_aquaduct(self): |
||||||
|
stitcher = Stitcher(n_features=250) |
||||||
|
result = stitcher.stitch(["s1.jpg", "s2.jpg"]) |
||||||
|
cv.imwrite("result.jpg", result) |
||||||
|
|
||||||
|
max_image_shape_derivation = 3 |
||||||
|
np.testing.assert_allclose(result.shape[:2], |
||||||
|
(700, 1811), |
||||||
|
atol=max_image_shape_derivation) |
||||||
|
|
||||||
|
@unittest.skip("skip boat test (high resuolution ran >30s)") |
||||||
|
def test_stitcher_boat1(self): |
||||||
|
settings = {"warper_type": "fisheye", |
||||||
|
"wave_correct_kind": "no", |
||||||
|
"finder": "dp_colorgrad", |
||||||
|
"compensator": "no", |
||||||
|
"conf_thresh": 0.3} |
||||||
|
|
||||||
|
stitcher = Stitcher(**settings) |
||||||
|
result = stitcher.stitch(["boat5.jpg", "boat2.jpg", |
||||||
|
"boat3.jpg", "boat4.jpg", |
||||||
|
"boat1.jpg", "boat6.jpg"]) |
||||||
|
|
||||||
|
cv.imwrite("boat_fisheye.jpg", result) |
||||||
|
|
||||||
|
max_image_shape_derivation = 600 |
||||||
|
np.testing.assert_allclose(result.shape[:2], |
||||||
|
(14488, 7556), |
||||||
|
atol=max_image_shape_derivation) |
||||||
|
|
||||||
|
@unittest.skip("skip boat test (high resuolution ran >30s)") |
||||||
|
def test_stitcher_boat2(self): |
||||||
|
settings = {"warper_type": "compressedPlaneA2B1", |
||||||
|
"finder": "dp_colorgrad", |
||||||
|
"compensator": "channel_blocks", |
||||||
|
"conf_thresh": 0.3} |
||||||
|
|
||||||
|
stitcher = Stitcher(**settings) |
||||||
|
result = stitcher.stitch(["boat5.jpg", "boat2.jpg", |
||||||
|
"boat3.jpg", "boat4.jpg", |
||||||
|
"boat1.jpg", "boat6.jpg"]) |
||||||
|
|
||||||
|
cv.imwrite("boat_plane.jpg", result) |
||||||
|
|
||||||
|
max_image_shape_derivation = 600 |
||||||
|
np.testing.assert_allclose(result.shape[:2], |
||||||
|
(7400, 12340), |
||||||
|
atol=max_image_shape_derivation) |
||||||
|
|
||||||
|
def test_stitcher_boat_aquaduct_subset(self): |
||||||
|
settings = {"final_megapix": 1} |
||||||
|
|
||||||
|
stitcher = Stitcher(**settings) |
||||||
|
result = stitcher.stitch(["boat5.jpg", |
||||||
|
"s1.jpg", "s2.jpg", |
||||||
|
"boat2.jpg", |
||||||
|
"boat3.jpg", "boat4.jpg", |
||||||
|
"boat1.jpg", "boat6.jpg"]) |
||||||
|
cv.imwrite("subset_low_res.jpg", result) |
||||||
|
|
||||||
|
max_image_shape_derivation = 100 |
||||||
|
np.testing.assert_allclose(result.shape[:2], |
||||||
|
(839, 3384), |
||||||
|
atol=max_image_shape_derivation) |
||||||
|
|
||||||
|
def test_stitcher_budapest(self): |
||||||
|
settings = {"matcher_type": "affine", |
||||||
|
"estimator": "affine", |
||||||
|
"adjuster": "affine", |
||||||
|
"warper_type": "affine", |
||||||
|
"wave_correct_kind": "no", |
||||||
|
"confidence_threshold": 0.3} |
||||||
|
|
||||||
|
stitcher = Stitcher(**settings) |
||||||
|
result = stitcher.stitch(["budapest1.jpg", "budapest2.jpg", |
||||||
|
"budapest3.jpg", "budapest4.jpg", |
||||||
|
"budapest5.jpg", "budapest6.jpg"]) |
||||||
|
|
||||||
|
cv.imwrite("budapest.jpg", result) |
||||||
|
|
||||||
|
max_image_shape_derivation = 50 |
||||||
|
np.testing.assert_allclose(result.shape[:2], |
||||||
|
(1155, 2310), |
||||||
|
atol=max_image_shape_derivation) |
||||||
|
|
||||||
|
|
||||||
|
def starttest(): |
||||||
|
unittest.main() |
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__": |
||||||
|
starttest() |
@ -0,0 +1,50 @@ |
|||||||
|
import os |
||||||
|
import cv2 as cv |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
|
||||||
|
class Timelapser: |
||||||
|
|
||||||
|
TIMELAPSE_CHOICES = ('no', 'as_is', 'crop',) |
||||||
|
DEFAULT_TIMELAPSE = 'no' |
||||||
|
|
||||||
|
def __init__(self, timelapse=DEFAULT_TIMELAPSE): |
||||||
|
self.do_timelapse = True |
||||||
|
self.timelapse_type = None |
||||||
|
self.timelapser = None |
||||||
|
|
||||||
|
if timelapse == "as_is": |
||||||
|
self.timelapse_type = cv.detail.Timelapser_AS_IS |
||||||
|
elif timelapse == "crop": |
||||||
|
self.timelapse_type = cv.detail.Timelapser_CROP |
||||||
|
else: |
||||||
|
self.do_timelapse = False |
||||||
|
|
||||||
|
if self.do_timelapse: |
||||||
|
self.timelapser = cv.detail.Timelapser_createDefault( |
||||||
|
self.timelapse_type |
||||||
|
) |
||||||
|
|
||||||
|
def initialize(self, *args): |
||||||
|
"""https://docs.opencv.org/master/dd/dac/classcv_1_1detail_1_1Timelapser.html#aaf0f7c4128009f02473332a0c41f6345""" # noqa |
||||||
|
self.timelapser.initialize(*args) |
||||||
|
|
||||||
|
def process_and_save_frame(self, img_name, img, corner): |
||||||
|
self.process_frame(img, corner) |
||||||
|
cv.imwrite(self.get_fixed_filename(img_name), self.get_frame()) |
||||||
|
|
||||||
|
def process_frame(self, img, corner): |
||||||
|
mask = np.ones((img.shape[0], img.shape[1]), np.uint8) |
||||||
|
img = img.astype(np.int16) |
||||||
|
self.timelapser.process(img, mask, corner) |
||||||
|
|
||||||
|
def get_frame(self): |
||||||
|
frame = self.timelapser.getDst() |
||||||
|
frame = np.float32(cv.UMat.get(frame)) |
||||||
|
frame = cv.convertScaleAbs(frame) |
||||||
|
return frame |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def get_fixed_filename(img_name): |
||||||
|
dirname, filename = os.path.split(img_name) |
||||||
|
return os.path.join(dirname, "fixed_" + filename) |
@ -0,0 +1,71 @@ |
|||||||
|
import cv2 as cv |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
|
||||||
|
class Warper: |
||||||
|
|
||||||
|
WARP_TYPE_CHOICES = ('spherical', 'plane', 'affine', 'cylindrical', |
||||||
|
'fisheye', 'stereographic', 'compressedPlaneA2B1', |
||||||
|
'compressedPlaneA1.5B1', |
||||||
|
'compressedPlanePortraitA2B1', |
||||||
|
'compressedPlanePortraitA1.5B1', |
||||||
|
'paniniA2B1', 'paniniA1.5B1', 'paniniPortraitA2B1', |
||||||
|
'paniniPortraitA1.5B1', 'mercator', |
||||||
|
'transverseMercator') |
||||||
|
|
||||||
|
DEFAULT_WARP_TYPE = 'spherical' |
||||||
|
|
||||||
|
def __init__(self, warper_type=DEFAULT_WARP_TYPE, scale=1): |
||||||
|
self.warper_type = warper_type |
||||||
|
self.warper = cv.PyRotationWarper(warper_type, scale) |
||||||
|
self.scale = scale |
||||||
|
|
||||||
|
def warp_images_and_image_masks(self, imgs, cameras, scale=None, aspect=1): |
||||||
|
self.update_scale(scale) |
||||||
|
for img, camera in zip(imgs, cameras): |
||||||
|
yield self.warp_image_and_image_mask(img, camera, scale, aspect) |
||||||
|
|
||||||
|
def warp_image_and_image_mask(self, img, camera, scale=None, aspect=1): |
||||||
|
self.update_scale(scale) |
||||||
|
corner, img_warped = self.warp_image(img, camera, aspect) |
||||||
|
mask = 255 * np.ones((img.shape[0], img.shape[1]), np.uint8) |
||||||
|
_, mask_warped = self.warp_image(mask, camera, aspect, mask=True) |
||||||
|
return img_warped, mask_warped, corner |
||||||
|
|
||||||
|
def warp_image(self, image, camera, aspect=1, mask=False): |
||||||
|
if mask: |
||||||
|
interp_mode = cv.INTER_NEAREST |
||||||
|
border_mode = cv.BORDER_CONSTANT |
||||||
|
else: |
||||||
|
interp_mode = cv.INTER_LINEAR |
||||||
|
border_mode = cv.BORDER_REFLECT |
||||||
|
|
||||||
|
corner, warped_image = self.warper.warp(image, |
||||||
|
Warper.get_K(camera, aspect), |
||||||
|
camera.R, |
||||||
|
interp_mode, |
||||||
|
border_mode) |
||||||
|
return corner, warped_image |
||||||
|
|
||||||
|
def warp_roi(self, width, height, camera, scale=None, aspect=1): |
||||||
|
self.update_scale(scale) |
||||||
|
roi = (width, height) |
||||||
|
K = Warper.get_K(camera, aspect) |
||||||
|
return self.warper.warpRoi(roi, K, camera.R) |
||||||
|
|
||||||
|
def update_scale(self, scale): |
||||||
|
if scale is not None and scale != self.scale: |
||||||
|
self.warper = cv.PyRotationWarper(self.warper_type, scale) # setScale not working: https://docs.opencv.org/master/d5/d76/classcv_1_1PyRotationWarper.html#a90b000bb75f95294f9b0b6ec9859eb55 |
||||||
|
self.scale = scale |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def get_K(camera, aspect=1): |
||||||
|
K = camera.K().astype(np.float32) |
||||||
|
""" Modification of intrinsic parameters needed if cameras were |
||||||
|
obtained on different scale than the scale of the Images which should |
||||||
|
be warped """ |
||||||
|
K[0, 0] *= aspect |
||||||
|
K[0, 2] *= aspect |
||||||
|
K[1, 1] *= aspect |
||||||
|
K[1, 2] *= aspect |
||||||
|
return K |
@ -0,0 +1,232 @@ |
|||||||
|
""" |
||||||
|
Stitching sample (advanced) |
||||||
|
=========================== |
||||||
|
|
||||||
|
Show how to use Stitcher API from python. |
||||||
|
""" |
||||||
|
|
||||||
|
# Python 2/3 compatibility |
||||||
|
from __future__ import print_function |
||||||
|
|
||||||
|
import argparse |
||||||
|
|
||||||
|
import cv2 as cv |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
from opencv_stitching.stitcher import Stitcher |
||||||
|
|
||||||
|
from opencv_stitching.image_handler import ImageHandler |
||||||
|
from opencv_stitching.feature_detector import FeatureDetector |
||||||
|
from opencv_stitching.feature_matcher import FeatureMatcher |
||||||
|
from opencv_stitching.subsetter import Subsetter |
||||||
|
from opencv_stitching.camera_estimator import CameraEstimator |
||||||
|
from opencv_stitching.camera_adjuster import CameraAdjuster |
||||||
|
from opencv_stitching.camera_wave_corrector import WaveCorrector |
||||||
|
from opencv_stitching.warper import Warper |
||||||
|
from opencv_stitching.exposure_error_compensator import ExposureErrorCompensator # noqa |
||||||
|
from opencv_stitching.seam_finder import SeamFinder |
||||||
|
from opencv_stitching.blender import Blender |
||||||
|
from opencv_stitching.timelapser import Timelapser |
||||||
|
|
||||||
|
parser = argparse.ArgumentParser( |
||||||
|
prog="opencv_stitching_tool.py", |
||||||
|
description="Rotation model images stitcher" |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'img_names', nargs='+', |
||||||
|
help="Files to stitch", type=str |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--medium_megapix', action='store', |
||||||
|
default=ImageHandler.DEFAULT_MEDIUM_MEGAPIX, |
||||||
|
help="Resolution for image registration step. " |
||||||
|
"The default is %s Mpx" % ImageHandler.DEFAULT_MEDIUM_MEGAPIX, |
||||||
|
type=float, dest='medium_megapix' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--detector', action='store', |
||||||
|
default=FeatureDetector.DEFAULT_DETECTOR, |
||||||
|
help="Type of features used for images matching. " |
||||||
|
"The default is '%s'." % FeatureDetector.DEFAULT_DETECTOR, |
||||||
|
choices=FeatureDetector.DETECTOR_CHOICES.keys(), |
||||||
|
type=str, dest='detector' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--nfeatures', action='store', |
||||||
|
default=500, |
||||||
|
help="Type of features used for images matching. " |
||||||
|
"The default is 500.", |
||||||
|
type=int, dest='nfeatures' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--matcher_type', action='store', default=FeatureMatcher.DEFAULT_MATCHER, |
||||||
|
help="Matcher used for pairwise image matching. " |
||||||
|
"The default is '%s'." % FeatureMatcher.DEFAULT_MATCHER, |
||||||
|
choices=FeatureMatcher.MATCHER_CHOICES, |
||||||
|
type=str, dest='matcher_type' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--range_width', action='store', |
||||||
|
default=FeatureMatcher.DEFAULT_RANGE_WIDTH, |
||||||
|
help="uses range_width to limit number of images to match with.", |
||||||
|
type=int, dest='range_width' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--try_use_gpu', |
||||||
|
action='store', |
||||||
|
default=False, |
||||||
|
help="Try to use CUDA. The default value is no. " |
||||||
|
"All default values are for CPU mode.", |
||||||
|
type=bool, dest='try_use_gpu' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--match_conf', action='store', |
||||||
|
help="Confidence for feature matching step. " |
||||||
|
"The default is 0.3 for ORB and 0.65 for other feature types.", |
||||||
|
type=float, dest='match_conf' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--confidence_threshold', action='store', |
||||||
|
default=Subsetter.DEFAULT_CONFIDENCE_THRESHOLD, |
||||||
|
help="Threshold for two images are from the same panorama confidence. " |
||||||
|
"The default is '%s'." % Subsetter.DEFAULT_CONFIDENCE_THRESHOLD, |
||||||
|
type=float, dest='confidence_threshold' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--matches_graph_dot_file', action='store', |
||||||
|
default=Subsetter.DEFAULT_MATCHES_GRAPH_DOT_FILE, |
||||||
|
help="Save matches graph represented in DOT language to <file_name> file.", |
||||||
|
type=str, dest='matches_graph_dot_file' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--estimator', action='store', |
||||||
|
default=CameraEstimator.DEFAULT_CAMERA_ESTIMATOR, |
||||||
|
help="Type of estimator used for transformation estimation. " |
||||||
|
"The default is '%s'." % CameraEstimator.DEFAULT_CAMERA_ESTIMATOR, |
||||||
|
choices=CameraEstimator.CAMERA_ESTIMATOR_CHOICES.keys(), |
||||||
|
type=str, dest='estimator' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--adjuster', action='store', |
||||||
|
default=CameraAdjuster.DEFAULT_CAMERA_ADJUSTER, |
||||||
|
help="Bundle adjustment cost function. " |
||||||
|
"The default is '%s'." % CameraAdjuster.DEFAULT_CAMERA_ADJUSTER, |
||||||
|
choices=CameraAdjuster.CAMERA_ADJUSTER_CHOICES.keys(), |
||||||
|
type=str, dest='adjuster' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--refinement_mask', action='store', |
||||||
|
default=CameraAdjuster.DEFAULT_REFINEMENT_MASK, |
||||||
|
help="Set refinement mask for bundle adjustment. It looks like 'x_xxx', " |
||||||
|
"where 'x' means refine respective parameter and '_' means don't " |
||||||
|
"refine, and has the following format:<fx><skew><ppx><aspect><ppy>. " |
||||||
|
"The default mask is '%s'. " |
||||||
|
"If bundle adjustment doesn't support estimation of selected " |
||||||
|
"parameter then the respective flag is ignored." |
||||||
|
"" % CameraAdjuster.DEFAULT_REFINEMENT_MASK, |
||||||
|
type=str, dest='refinement_mask' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--wave_correct_kind', action='store', |
||||||
|
default=WaveCorrector.DEFAULT_WAVE_CORRECTION, |
||||||
|
help="Perform wave effect correction. " |
||||||
|
"The default is '%s'" % WaveCorrector.DEFAULT_WAVE_CORRECTION, |
||||||
|
choices=WaveCorrector.WAVE_CORRECT_CHOICES.keys(), |
||||||
|
type=str, dest='wave_correct_kind' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--warper_type', action='store', default=Warper.DEFAULT_WARP_TYPE, |
||||||
|
help="Warp surface type. The default is '%s'." % Warper.DEFAULT_WARP_TYPE, |
||||||
|
choices=Warper.WARP_TYPE_CHOICES, |
||||||
|
type=str, dest='warper_type' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--low_megapix', action='store', default=ImageHandler.DEFAULT_LOW_MEGAPIX, |
||||||
|
help="Resolution for seam estimation and exposure estimation step. " |
||||||
|
"The default is %s Mpx." % ImageHandler.DEFAULT_LOW_MEGAPIX, |
||||||
|
type=float, dest='low_megapix' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--compensator', action='store', |
||||||
|
default=ExposureErrorCompensator.DEFAULT_COMPENSATOR, |
||||||
|
help="Exposure compensation method. " |
||||||
|
"The default is '%s'." % ExposureErrorCompensator.DEFAULT_COMPENSATOR, |
||||||
|
choices=ExposureErrorCompensator.COMPENSATOR_CHOICES.keys(), |
||||||
|
type=str, dest='compensator' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--nr_feeds', action='store', |
||||||
|
default=ExposureErrorCompensator.DEFAULT_NR_FEEDS, |
||||||
|
help="Number of exposure compensation feed.", |
||||||
|
type=np.int32, dest='nr_feeds' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--block_size', action='store', |
||||||
|
default=ExposureErrorCompensator.DEFAULT_BLOCK_SIZE, |
||||||
|
help="BLock size in pixels used by the exposure compensator. " |
||||||
|
"The default is '%s'." % ExposureErrorCompensator.DEFAULT_BLOCK_SIZE, |
||||||
|
type=np.int32, dest='block_size' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--finder', action='store', default=SeamFinder.DEFAULT_SEAM_FINDER, |
||||||
|
help="Seam estimation method. " |
||||||
|
"The default is '%s'." % SeamFinder.DEFAULT_SEAM_FINDER, |
||||||
|
choices=SeamFinder.SEAM_FINDER_CHOICES.keys(), |
||||||
|
type=str, dest='finder' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--final_megapix', action='store', |
||||||
|
default=ImageHandler.DEFAULT_FINAL_MEGAPIX, |
||||||
|
help="Resolution for compositing step. Use -1 for original resolution. " |
||||||
|
"The default is %s" % ImageHandler.DEFAULT_FINAL_MEGAPIX, |
||||||
|
type=float, dest='final_megapix' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--blender_type', action='store', default=Blender.DEFAULT_BLENDER, |
||||||
|
help="Blending method. The default is '%s'." % Blender.DEFAULT_BLENDER, |
||||||
|
choices=Blender.BLENDER_CHOICES, |
||||||
|
type=str, dest='blender_type' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--blend_strength', action='store', default=Blender.DEFAULT_BLEND_STRENGTH, |
||||||
|
help="Blending strength from [0,100] range. " |
||||||
|
"The default is '%s'." % Blender.DEFAULT_BLEND_STRENGTH, |
||||||
|
type=np.int32, dest='blend_strength' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--timelapse', action='store', default=Timelapser.DEFAULT_TIMELAPSE, |
||||||
|
help="Output warped images separately as frames of a time lapse movie, " |
||||||
|
"with 'fixed_' prepended to input file names. " |
||||||
|
"The default is '%s'." % Timelapser.DEFAULT_TIMELAPSE, |
||||||
|
choices=Timelapser.TIMELAPSE_CHOICES, |
||||||
|
type=str, dest='timelapse' |
||||||
|
) |
||||||
|
parser.add_argument( |
||||||
|
'--output', action='store', default='result.jpg', |
||||||
|
help="The default is 'result.jpg'", |
||||||
|
type=str, dest='output' |
||||||
|
) |
||||||
|
|
||||||
|
__doc__ += '\n' + parser.format_help() |
||||||
|
|
||||||
|
if __name__ == '__main__': |
||||||
|
print(__doc__) |
||||||
|
args = parser.parse_args() |
||||||
|
args_dict = vars(args) |
||||||
|
|
||||||
|
# Extract In- and Output |
||||||
|
img_names = args_dict.pop("img_names") |
||||||
|
img_names = [cv.samples.findFile(img_name) for img_name in img_names] |
||||||
|
output = args_dict.pop("output") |
||||||
|
|
||||||
|
stitcher = Stitcher(**args_dict) |
||||||
|
panorama = stitcher.stitch(img_names) |
||||||
|
|
||||||
|
cv.imwrite(output, panorama) |
||||||
|
|
||||||
|
zoom_x = 600.0 / panorama.shape[1] |
||||||
|
preview = cv.resize(panorama, dsize=None, fx=zoom_x, fy=zoom_x) |
||||||
|
|
||||||
|
cv.imshow(output, preview) |
||||||
|
cv.waitKey() |
||||||
|
cv.destroyAllWindows() |
Loading…
Reference in new issue