|
|
|
@ -49,7 +49,14 @@ public: |
|
|
|
|
throw SkipTestException("OpenCL is not available/disabled in OpenCV"); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16) |
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) |
|
|
|
|
{ |
|
|
|
|
if (!checkMyriadTarget()) |
|
|
|
|
{ |
|
|
|
|
throw SkipTestException("Myriad is not available/disabled in OpenCV"); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) |
|
|
|
|
{ |
|
|
|
|
l1 = l1 == 0.0 ? 4e-3 : l1; |
|
|
|
|
lInf = lInf == 0.0 ? 2e-2 : lInf; |
|
|
|
@ -80,10 +87,7 @@ public: |
|
|
|
|
} |
|
|
|
|
Mat out = net.forward(outputLayer).clone(); |
|
|
|
|
|
|
|
|
|
if (outputLayer == "detection_out") |
|
|
|
|
normAssertDetections(outDefault, out, "First run", 0.2, l1, lInf); |
|
|
|
|
else |
|
|
|
|
normAssert(outDefault, out, "First run", l1, lInf); |
|
|
|
|
check(outDefault, out, outputLayer, l1, lInf, "First run"); |
|
|
|
|
|
|
|
|
|
// Test 2: change input.
|
|
|
|
|
float* inpData = (float*)inp.data; |
|
|
|
@ -97,18 +101,33 @@ public: |
|
|
|
|
net.setInput(inp); |
|
|
|
|
outDefault = netDefault.forward(outputLayer).clone(); |
|
|
|
|
out = net.forward(outputLayer).clone(); |
|
|
|
|
check(outDefault, out, outputLayer, l1, lInf, "Second run"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void check(Mat& ref, Mat& out, const std::string& outputLayer, double l1, double lInf, const char* msg) |
|
|
|
|
{ |
|
|
|
|
if (outputLayer == "detection_out") |
|
|
|
|
normAssertDetections(outDefault, out, "Second run", 0.2, l1, lInf); |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE) |
|
|
|
|
{ |
|
|
|
|
// Inference Engine produces detections terminated by a row which starts from -1.
|
|
|
|
|
out = out.reshape(1, out.total() / 7); |
|
|
|
|
int numDetections = 0; |
|
|
|
|
while (numDetections < out.rows && out.at<float>(numDetections, 0) != -1) |
|
|
|
|
{ |
|
|
|
|
numDetections += 1; |
|
|
|
|
} |
|
|
|
|
out = out.rowRange(0, numDetections); |
|
|
|
|
} |
|
|
|
|
normAssertDetections(ref, out, msg, 0.2, l1, lInf); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
normAssert(outDefault, out, "Second run", l1, lInf); |
|
|
|
|
normAssert(ref, out, msg, l1, lInf); |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, AlexNet) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt", |
|
|
|
|
Size(227, 227), "prob", |
|
|
|
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_alexnet.yml" : |
|
|
|
@ -158,8 +177,7 @@ TEST_P(DNNTestNetwork, ENet) |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE || |
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
Mat sample = imread(findDataFile("dnn/street.png", false)); |
|
|
|
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); |
|
|
|
@ -170,10 +188,11 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe) |
|
|
|
|
inp, "detection_out", "", l1, lInf); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// TODO: update MobileNet model.
|
|
|
|
|
TEST_P(DNNTestNetwork, MobileNet_SSD_TensorFlow) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE || |
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) |
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
Mat sample = imread(findDataFile("dnn/street.png", false)); |
|
|
|
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); |
|
|
|
@ -185,31 +204,38 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_TensorFlow) |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, SSD_VGG16) |
|
|
|
|
{ |
|
|
|
|
if ((backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) || |
|
|
|
|
(backend == DNN_BACKEND_HALIDE && target == DNN_TARGET_CPU) || |
|
|
|
|
(backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU)) |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE && target == DNN_TARGET_CPU) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
double scoreThreshold = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0252 : 0.0; |
|
|
|
|
Mat sample = imread(findDataFile("dnn/street.png", false)); |
|
|
|
|
Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false); |
|
|
|
|
processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", |
|
|
|
|
"dnn/ssd_vgg16.prototxt", Size(300, 300), "detection_out"); |
|
|
|
|
"dnn/ssd_vgg16.prototxt", inp, "detection_out", "", scoreThreshold); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, OpenPose_pose_coco) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE || |
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
processNet("dnn/openpose_pose_coco.caffemodel", "dnn/openpose_pose_coco.prototxt", |
|
|
|
|
Size(368, 368)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, OpenPose_pose_mpi) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE || |
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi.prototxt", |
|
|
|
|
Size(368, 368)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE || |
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
// The same .caffemodel but modified .prototxt
|
|
|
|
|
// See https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/pose/poseParameters.cpp
|
|
|
|
|
processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi_faster_4_stages.prototxt", |
|
|
|
@ -226,11 +252,13 @@ TEST_P(DNNTestNetwork, OpenFace) |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, opencv_face_detector) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE || |
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
Size inpSize; |
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) |
|
|
|
|
inpSize = Size(300, 300); |
|
|
|
|
Mat img = imread(findDataFile("gpu/lbpcascade/er.png", false)); |
|
|
|
|
Mat inp = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false); |
|
|
|
|
Mat inp = blobFromImage(img, 1.0, inpSize, Scalar(104.0, 177.0, 123.0), false, false); |
|
|
|
|
processNet("dnn/opencv_face_detector.caffemodel", "dnn/opencv_face_detector.prototxt", |
|
|
|
|
inp, "detection_out"); |
|
|
|
|
} |
|
|
|
@ -238,12 +266,13 @@ TEST_P(DNNTestNetwork, opencv_face_detector) |
|
|
|
|
TEST_P(DNNTestNetwork, Inception_v2_SSD_TensorFlow) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE || |
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) |
|
|
|
|
(backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL) || |
|
|
|
|
(backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
Mat sample = imread(findDataFile("dnn/street.png", false)); |
|
|
|
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); |
|
|
|
|
float l1 = (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) ? 0.008 : 0.0; |
|
|
|
|
float lInf = (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) ? 0.07 : 0.0; |
|
|
|
|
float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.008 : 0.0; |
|
|
|
|
float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.07 : 0.0; |
|
|
|
|
processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "dnn/ssd_inception_v2_coco_2017_11_17.pbtxt", |
|
|
|
|
inp, "detection_out", "", l1, lInf); |
|
|
|
|
} |
|
|
|
@ -252,7 +281,8 @@ TEST_P(DNNTestNetwork, DenseNet_121) |
|
|
|
|
{ |
|
|
|
|
if ((backend == DNN_BACKEND_HALIDE) || |
|
|
|
|
(backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) || |
|
|
|
|
(backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)) |
|
|
|
|
(backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL_FP16 || |
|
|
|
|
target == DNN_TARGET_MYRIAD))) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
processNet("dnn/DenseNet_121.caffemodel", "dnn/DenseNet_121.prototxt", Size(224, 224), "", "caffe"); |
|
|
|
|
} |
|
|
|
@ -266,6 +296,7 @@ const tuple<DNNBackend, DNNTarget> testCases[] = { |
|
|
|
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_CPU), |
|
|
|
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL), |
|
|
|
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL_FP16), |
|
|
|
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_MYRIAD), |
|
|
|
|
#endif |
|
|
|
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_DEFAULT, DNN_TARGET_OPENCL), |
|
|
|
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_DEFAULT, DNN_TARGET_OPENCL_FP16) |
|
|
|
|