mirror of https://github.com/opencv/opencv.git
Added tutorial for features2d using homography to find a planar object (Based on the well known find_obj.cpp
parent
cff30dd2bb
commit
f803fc259b
7 changed files with 178 additions and 35 deletions
@ -0,0 +1,148 @@ |
||||
.. _feature_homography: |
||||
|
||||
Features2D + Homography to find a known object |
||||
********************************************** |
||||
|
||||
Goal |
||||
===== |
||||
|
||||
In this tutorial you will learn how to: |
||||
|
||||
.. container:: enumeratevisibleitemswithsquare |
||||
|
||||
* Use the function :find_homography:`findHomography<>` to find the transform between matched keypoints. |
||||
* Use the function :perspective_transform:`perspectiveTransform<>` to map the points. |
||||
|
||||
|
||||
Theory |
||||
====== |
||||
|
||||
Code |
||||
==== |
||||
|
||||
This tutorial code's is shown lines below. You can also download it from `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/features2D/SURF_Homography.cpp>`_ |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
#include <stdio.h> |
||||
#include <iostream> |
||||
#include "opencv2/core/core.hpp" |
||||
#include "opencv2/features2d/features2d.hpp" |
||||
#include "opencv2/highgui/highgui.hpp" |
||||
#include "opencv2/calib3d/calib3d.hpp" |
||||
|
||||
using namespace cv; |
||||
|
||||
void readme(); |
||||
|
||||
/** @function main */ |
||||
int main( int argc, char** argv ) |
||||
{ |
||||
if( argc != 3 ) |
||||
{ readme(); return -1; } |
||||
|
||||
Mat img_object = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE ); |
||||
Mat img_scene = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE ); |
||||
|
||||
if( !img_object.data || !img_scene.data ) |
||||
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; } |
||||
|
||||
//-- Step 1: Detect the keypoints using SURF Detector |
||||
int minHessian = 400; |
||||
|
||||
SurfFeatureDetector detector( minHessian ); |
||||
|
||||
std::vector<KeyPoint> keypoints_object, keypoints_scene; |
||||
|
||||
detector.detect( img_object, keypoints_object ); |
||||
detector.detect( img_scene, keypoints_scene ); |
||||
|
||||
//-- Step 2: Calculate descriptors (feature vectors) |
||||
SurfDescriptorExtractor extractor; |
||||
|
||||
Mat descriptors_object, descriptors_scene; |
||||
|
||||
extractor.compute( img_object, keypoints_object, descriptors_object ); |
||||
extractor.compute( img_scene, keypoints_scene, descriptors_scene ); |
||||
|
||||
//-- Step 3: Matching descriptor vectors using FLANN matcher |
||||
FlannBasedMatcher matcher; |
||||
std::vector< DMatch > matches; |
||||
matcher.match( descriptors_object, descriptors_scene, matches ); |
||||
|
||||
double max_dist = 0; double min_dist = 100; |
||||
|
||||
//-- Quick calculation of max and min distances between keypoints |
||||
for( int i = 0; i < descriptors_object.rows; i++ ) |
||||
{ double dist = matches[i].distance; |
||||
if( dist < min_dist ) min_dist = dist; |
||||
if( dist > max_dist ) max_dist = dist; |
||||
} |
||||
|
||||
printf("-- Max dist : %f \n", max_dist ); |
||||
printf("-- Min dist : %f \n", min_dist ); |
||||
|
||||
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist ) |
||||
std::vector< DMatch > good_matches; |
||||
|
||||
for( int i = 0; i < descriptors_object.rows; i++ ) |
||||
{ if( matches[i].distance < 3*min_dist ) |
||||
{ good_matches.push_back( matches[i]); } |
||||
} |
||||
|
||||
Mat img_matches; |
||||
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene, |
||||
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), |
||||
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); |
||||
|
||||
//-- Localize the object |
||||
std::vector<Point2f> obj; |
||||
std::vector<Point2f> scene; |
||||
|
||||
for( int i = 0; i < good_matches.size(); i++ ) |
||||
{ |
||||
//-- Get the keypoints from the good matches |
||||
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt ); |
||||
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt ); |
||||
} |
||||
|
||||
Mat H = findHomography( obj, scene, CV_RANSAC ); |
||||
|
||||
//-- Get the corners from the image_1 ( the object to be "detected" ) |
||||
std::vector<Point2f> obj_corners(4); |
||||
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 ); |
||||
obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows ); |
||||
std::vector<Point2f> scene_corners(4); |
||||
|
||||
perspectiveTransform( obj_corners, scene_corners, H); |
||||
|
||||
//-- Draw lines between the corners (the mapped object in the scene - image_2 ) |
||||
line( img_matches, scene_corners[0] + Point2f( img_object.cols, 0), scene_corners[1] + Point2f( img_object.cols, 0), Scalar(0, 255, 0), 4 ); |
||||
line( img_matches, scene_corners[1] + Point2f( img_object.cols, 0), scene_corners[2] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 ); |
||||
line( img_matches, scene_corners[2] + Point2f( img_object.cols, 0), scene_corners[3] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 ); |
||||
line( img_matches, scene_corners[3] + Point2f( img_object.cols, 0), scene_corners[0] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 ); |
||||
|
||||
//-- Show detected matches |
||||
imshow( "Good Matches & Object detection", img_matches ); |
||||
|
||||
waitKey(0); |
||||
return 0; |
||||
} |
||||
|
||||
/** @function readme */ |
||||
void readme() |
||||
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; } |
||||
|
||||
Explanation |
||||
============ |
||||
|
||||
Result |
||||
====== |
||||
|
||||
|
||||
#. And here is the result for the detected object (highlighted in green) |
||||
|
||||
.. image:: images/Feature_Homography_Result.jpg |
||||
:align: center |
||||
:height: 200pt |
||||
|
After Width: | Height: | Size: 90 KiB |
Before Width: | Height: | Size: 73 KiB After Width: | Height: | Size: 117 KiB |
After Width: | Height: | Size: 51 KiB |
Loading…
Reference in new issue