Added tutorial for features2d using homography to find a planar object (Based on the well known find_obj.cpp

pull/13383/head
Ana Huaman 13 years ago
parent cff30dd2bb
commit f803fc259b
  1. 4
      doc/conf.py
  2. 148
      doc/tutorials/features2d/feature_homography/feature_homography.rst
  3. BIN
      doc/tutorials/features2d/feature_homography/images/Feature_Homography_Result.jpg
  4. BIN
      doc/tutorials/features2d/table_of_content_features2d/images/Feature_Description_Tutorial_Cover.jpg
  5. BIN
      doc/tutorials/features2d/table_of_content_features2d/images/Feature_Homography_Tutorial_Cover.jpg
  6. 6
      doc/tutorials/features2d/table_of_content_features2d/table_of_content_features2d.rst
  7. 55
      samples/cpp/tutorial_code/features2D/SURF_Homography.cpp

@ -366,7 +366,9 @@ extlinks = {'cvt_color': ('http://opencv.willowgarage.com/documentation/cpp/imgp
'descriptor_extractor': ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_extractors.html#descriptorextractor%s', None ),
'descriptor_extractor_compute' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_extractors.html#cv-descriptorextractor-compute%s', None ),
'surf_descriptor_extractor' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_extractors.html#surfdescriptorextractor%s', None ),
'draw_matches' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_drawing_function_of_keypoints_and_matches.html#cv-drawmatches%s', None )
'draw_matches' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_drawing_function_of_keypoints_and_matches.html#cv-drawmatches%s', None ),
'find_homography' : ('http://opencv.willowgarage.com/documentation/cpp/calib3d_camera_calibration_and_3d_reconstruction.html?#findHomography%s', None),
'perspective_transform' : ('http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?#perspectiveTransform%s', None )
}

@ -0,0 +1,148 @@
.. _feature_homography:
Features2D + Homography to find a known object
**********************************************
Goal
=====
In this tutorial you will learn how to:
.. container:: enumeratevisibleitemswithsquare
* Use the function :find_homography:`findHomography<>` to find the transform between matched keypoints.
* Use the function :perspective_transform:`perspectiveTransform<>` to map the points.
Theory
======
Code
====
This tutorial code's is shown lines below. You can also download it from `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/features2D/SURF_Homography.cpp>`_
.. code-block:: cpp
#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp"
using namespace cv;
void readme();
/** @function main */
int main( int argc, char** argv )
{
if( argc != 3 )
{ readme(); return -1; }
Mat img_object = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_scene = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
if( !img_object.data || !img_scene.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400;
SurfFeatureDetector detector( minHessian );
std::vector<KeyPoint> keypoints_object, keypoints_scene;
detector.detect( img_object, keypoints_object );
detector.detect( img_scene, keypoints_scene );
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_object, descriptors_scene;
extractor.compute( img_object, keypoints_object, descriptors_object );
extractor.compute( img_scene, keypoints_scene, descriptors_scene );
//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_object, descriptors_scene, matches );
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_object.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_object.rows; i++ )
{ if( matches[i].distance < 3*min_dist )
{ good_matches.push_back( matches[i]); }
}
Mat img_matches;
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for( int i = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
}
Mat H = findHomography( obj, scene, CV_RANSAC );
//-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 );
obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );
std::vector<Point2f> scene_corners(4);
perspectiveTransform( obj_corners, scene_corners, H);
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
line( img_matches, scene_corners[0] + Point2f( img_object.cols, 0), scene_corners[1] + Point2f( img_object.cols, 0), Scalar(0, 255, 0), 4 );
line( img_matches, scene_corners[1] + Point2f( img_object.cols, 0), scene_corners[2] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[2] + Point2f( img_object.cols, 0), scene_corners[3] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[3] + Point2f( img_object.cols, 0), scene_corners[0] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
//-- Show detected matches
imshow( "Good Matches & Object detection", img_matches );
waitKey(0);
return 0;
}
/** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }
Explanation
============
Result
======
#. And here is the result for the detected object (highlighted in green)
.. image:: images/Feature_Homography_Result.jpg
:align: center
:height: 200pt

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 73 KiB

After

Width:  |  Height:  |  Size: 117 KiB

@ -140,7 +140,7 @@ Learn about how to use the feature points detectors, descriptors and matching f
===================== ==============================================
.. |FeatureFlann| image:: images/Feature_Detection_Tutorial_Cover.jpg
.. |FeatureFlann| image:: images/Feature_Flann_Matcher_Tutorial_Cover.jpg
:height: 90pt
:width: 90pt
@ -155,11 +155,11 @@ Learn about how to use the feature points detectors, descriptors and matching f
*Author:* |Author_AnaH|
In this tutorial, you will use *features2d* to detect interest points.
In this tutorial, you will use *features2d* and *calib3d* to detect an object in a scene.
===================== ==============================================
.. |FeatureHomo| image:: images/Feature_Detection_Tutorial_Cover.jpg
.. |FeatureHomo| image:: images/Feature_Homography_Tutorial_Cover.jpg
:height: 90pt
:width: 90pt

@ -24,10 +24,10 @@ int main( int argc, char** argv )
if( argc != 3 )
{ readme(); return -1; }
Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_object = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_scene = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
if( !img_1.data || !img_2.data )
if( !img_object.data || !img_scene.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
//-- Step 1: Detect the keypoints using SURF Detector
@ -35,28 +35,28 @@ int main( int argc, char** argv )
SurfFeatureDetector detector( minHessian );
std::vector<KeyPoint> keypoints_1, keypoints_2;
std::vector<KeyPoint> keypoints_object, keypoints_scene;
detector.detect( img_1, keypoints_1 );
detector.detect( img_2, keypoints_2 );
detector.detect( img_object, keypoints_object );
detector.detect( img_scene, keypoints_scene );
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_1, descriptors_2;
Mat descriptors_object, descriptors_scene;
extractor.compute( img_1, keypoints_1, descriptors_1 );
extractor.compute( img_2, keypoints_2, descriptors_2 );
extractor.compute( img_object, keypoints_object, descriptors_object );
extractor.compute( img_scene, keypoints_scene, descriptors_scene );
//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches );
matcher.match( descriptors_object, descriptors_scene, matches );
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_1.rows; i++ )
for( int i = 0; i < descriptors_object.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
@ -68,13 +68,13 @@ int main( int argc, char** argv )
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_1.rows; i++ )
for( int i = 0; i < descriptors_object.rows; i++ )
{ if( matches[i].distance < 3*min_dist )
{ good_matches.push_back( matches[i]); }
}
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
@ -86,33 +86,26 @@ int main( int argc, char** argv )
for( int i = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_1[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_2[ good_matches[i].trainIdx ].pt );
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
}
Mat H = findHomography( obj, scene, CV_RANSAC );
//-- Get the corners from the image_1 ( the object to be "detected" )
Point2f obj_corners[4] = { cvPoint(0,0), cvPoint( img_1.cols, 0 ), cvPoint( img_1.cols, img_1.rows ), cvPoint( 0, img_1.rows ) };
Point scene_corners[4];
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 );
obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );
std::vector<Point2f> scene_corners(4);
//-- Map these corners in the scene ( image_2)
for( int i = 0; i < 4; i++ )
{
double x = obj_corners[i].x;
double y = obj_corners[i].y;
perspectiveTransform( obj_corners, scene_corners, H);
double Z = 1./( H.at<double>(2,0)*x + H.at<double>(2,1)*y + H.at<double>(2,2) );
double X = ( H.at<double>(0,0)*x + H.at<double>(0,1)*y + H.at<double>(0,2) )*Z;
double Y = ( H.at<double>(1,0)*x + H.at<double>(1,1)*y + H.at<double>(1,2) )*Z;
scene_corners[i] = cvPoint( cvRound(X) + img_1.cols, cvRound(Y) );
}
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
line( img_matches, scene_corners[0], scene_corners[1], Scalar(0, 255, 0), 2 );
line( img_matches, scene_corners[1], scene_corners[2], Scalar( 0, 255, 0), 2 );
line( img_matches, scene_corners[2], scene_corners[3], Scalar( 0, 255, 0), 2 );
line( img_matches, scene_corners[3], scene_corners[0], Scalar( 0, 255, 0), 2 );
line( img_matches, scene_corners[0] + Point2f( img_object.cols, 0), scene_corners[1] + Point2f( img_object.cols, 0), Scalar(0, 255, 0), 4 );
line( img_matches, scene_corners[1] + Point2f( img_object.cols, 0), scene_corners[2] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[2] + Point2f( img_object.cols, 0), scene_corners[3] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[3] + Point2f( img_object.cols, 0), scene_corners[0] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
//-- Show detected matches
imshow( "Good Matches & Object detection", img_matches );

Loading…
Cancel
Save