code review fixes

pull/322/head
marina.kolpakova 12 years ago
parent 14ac8a528e
commit f7ac73998a
  1. 2
      apps/sft/include/sft/common.hpp
  2. 3
      modules/python/src2/cv2.cpp
  3. 10
      modules/softcascade/include/opencv2/softcascade/softcascade.hpp
  4. 2
      modules/softcascade/misc/sft.py
  5. 6
      modules/softcascade/perf/perf_softcascade.cpp
  6. 32
      modules/softcascade/src/integral_channel_builder.cpp
  7. 2
      modules/softcascade/src/precomp.hpp
  8. 22
      modules/softcascade/src/soft_cascade_octave.cpp
  9. 36
      modules/softcascade/src/softcascade.cpp
  10. 4
      modules/softcascade/src/softcascade_init.cpp
  11. 4
      modules/softcascade/test/test_channel_features.cpp
  12. 18
      modules/softcascade/test/test_softcascade.cpp
  13. 6
      modules/softcascade/test/test_training.cpp

@ -46,8 +46,10 @@
#include <opencv2/core/core.hpp>
#include <opencv2/softcascade/softcascade.hpp>
namespace cv {using namespace scascade;}
namespace sft
{
using cv::Mat;
struct ICF;

@ -97,6 +97,7 @@ catch (const cv::Exception &e) \
}
using namespace cv;
typedef cv::scascade::ChannelFeatureBuilder scascade_ChannelFeatureBuilder;
typedef vector<uchar> vector_uchar;
typedef vector<int> vector_int;
@ -125,7 +126,7 @@ typedef Ptr<DescriptorExtractor> Ptr_DescriptorExtractor;
typedef Ptr<Feature2D> Ptr_Feature2D;
typedef Ptr<DescriptorMatcher> Ptr_DescriptorMatcher;
typedef Ptr<ChannelFeatureBuilder> Ptr_ChannelFeatureBuilder;
typedef Ptr<cv::scascade::ChannelFeatureBuilder> Ptr_ChannelFeatureBuilder;
typedef SimpleBlobDetector::Params SimpleBlobDetector_Params;

@ -45,7 +45,7 @@
#include "opencv2/core/core.hpp"
namespace cv {
namespace cv { namespace scascade {
// Representation of detectors result.
struct CV_EXPORTS Detection
@ -122,7 +122,7 @@ std::ostream& operator<<(std::ostream& out, const ChannelFeature& m);
// Public Interface for Integral Channel Feature.
// ========================================================================== //
class CV_EXPORTS_W ChannelFeatureBuilder : public Algorithm
class CV_EXPORTS_W ChannelFeatureBuilder : public cv::Algorithm
{
public:
virtual ~ChannelFeatureBuilder();
@ -136,7 +136,7 @@ public:
// ========================================================================== //
// Implementation of soft (stageless) cascaded detector.
// ========================================================================== //
class CV_EXPORTS_W SoftCascadeDetector : public Algorithm
class CV_EXPORTS_W SoftCascadeDetector : public cv::Algorithm
{
public:
@ -186,7 +186,7 @@ private:
// ========================================================================== //
// Public Interface for singe soft (stageless) cascade octave training.
// ========================================================================== //
class CV_EXPORTS SoftCascadeOctave : public Algorithm
class CV_EXPORTS SoftCascadeOctave : public cv::Algorithm
{
public:
enum
@ -211,6 +211,6 @@ public:
CV_EXPORTS bool initModule_softcascade(void);
}
} }
#endif

@ -24,7 +24,7 @@ def convert2detections(rects, confs, crop_factor = 0.125):
""" Create new instance of soft cascade."""
def cascade(min_scale, max_scale, nscales, f):
# where we use nms cv::SoftCascadeDetector::DOLLAR == 2
c = cv2.SoftCascadeDetector(min_scale, max_scale, nscales, 2)
c = cv2.scascade_SoftCascadeDetector(min_scale, max_scale, nscales, 2)
xml = cv2.FileStorage(f, 0)
dom = xml.getFirstTopLevelNode()
assert c.load(dom)

@ -10,7 +10,7 @@ typedef perf::TestBaseWithParam<fixture> detect;
namespace {
void extractRacts(std::vector<cv::Detection> objectBoxes, std::vector<Rect>& rects)
void extractRacts(std::vector<cv::scascade::Detection> objectBoxes, std::vector<Rect>& rects)
{
rects.clear();
for (int i = 0; i < (int)objectBoxes.size(); ++i)
@ -26,12 +26,12 @@ PERF_TEST_P(detect, SoftCascadeDetector,
cv::Mat colored = cv::imread(getDataPath(get<1>(GetParam())));
ASSERT_FALSE(colored.empty());
cv::SoftCascadeDetector cascade;
cv::scascade::SoftCascadeDetector cascade;
cv::FileStorage fs(getDataPath(get<0>(GetParam())), cv::FileStorage::READ);
ASSERT_TRUE(fs.isOpened());
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
std::vector<cv::Detection> objectBoxes;
std::vector<cv::scascade::Detection> objectBoxes;
cascade.detect(colored, cv::noArray(), objectBoxes);
TEST_CYCLE()

@ -44,7 +44,7 @@
namespace {
class ICFBuilder : public cv::ChannelFeatureBuilder
class ICFBuilder : public ChannelFeatureBuilder
{
virtual ~ICFBuilder() {}
virtual cv::AlgorithmInfo* info() const;
@ -109,29 +109,29 @@ class ICFBuilder : public cv::ChannelFeatureBuilder
CV_INIT_ALGORITHM(ICFBuilder, "ChannelFeatureBuilder.ICFBuilder", );
cv::ChannelFeatureBuilder::~ChannelFeatureBuilder() {}
cv::scascade::ChannelFeatureBuilder::~ChannelFeatureBuilder() {}
cv::Ptr<cv::ChannelFeatureBuilder> cv::ChannelFeatureBuilder::create()
cv::Ptr<ChannelFeatureBuilder> ChannelFeatureBuilder::create()
{
cv::Ptr<cv::ChannelFeatureBuilder> builder(new ICFBuilder());
cv::Ptr<ChannelFeatureBuilder> builder(new ICFBuilder());
return builder;
}
cv::ChannelFeature::ChannelFeature(int x, int y, int w, int h, int ch)
cv::scascade::ChannelFeature::ChannelFeature(int x, int y, int w, int h, int ch)
: bb(cv::Rect(x, y, w, h)), channel(ch) {}
bool cv::ChannelFeature::operator ==(cv::ChannelFeature b)
bool ChannelFeature::operator ==(ChannelFeature b)
{
return bb == b.bb && channel == b.channel;
}
bool cv::ChannelFeature::operator !=(cv::ChannelFeature b)
bool ChannelFeature::operator !=(ChannelFeature b)
{
return bb != b.bb || channel != b.channel;
}
float cv::ChannelFeature::operator() (const cv::Mat& integrals, const cv::Size& model) const
float cv::scascade::ChannelFeature::operator() (const cv::Mat& integrals, const cv::Size& model) const
{
int step = model.width + 1;
@ -148,22 +148,22 @@ float cv::ChannelFeature::operator() (const cv::Mat& integrals, const cv::Size&
return (float)(a - b + c - d);
}
void cv::write(cv::FileStorage& fs, const string&, const cv::ChannelFeature& f)
void cv::scascade::write(cv::FileStorage& fs, const string&, const ChannelFeature& f)
{
fs << "{" << "channel" << f.channel << "rect" << f.bb << "}";
}
std::ostream& cv::operator<<(std::ostream& out, const cv::ChannelFeature& m)
std::ostream& cv::scascade::operator<<(std::ostream& out, const ChannelFeature& m)
{
out << m.channel << " " << m.bb;
return out;
}
cv::ChannelFeature::~ChannelFeature(){}
cv::scascade::ChannelFeature::~ChannelFeature(){}
namespace {
class ChannelFeaturePool : public cv::FeaturePool
class ChannelFeaturePool : public FeaturePool
{
public:
ChannelFeaturePool(cv::Size m, int n) : FeaturePool(), model(m)
@ -183,7 +183,7 @@ private:
void fill(int desired);
cv::Size model;
std::vector<cv::ChannelFeature> pool;
std::vector<ChannelFeature> pool;
enum { N_CHANNELS = 10 };
};
@ -235,7 +235,7 @@ void ChannelFeaturePool::fill(int desired)
int ch = chRand(eng_ch);
cv::ChannelFeature f(x, y, w, h, ch);
ChannelFeature f(x, y, w, h, ch);
if (std::find(pool.begin(), pool.end(),f) == pool.end())
{
@ -246,8 +246,8 @@ void ChannelFeaturePool::fill(int desired)
}
cv::Ptr<cv::FeaturePool> cv::FeaturePool::create(const cv::Size& model, int nfeatures)
cv::Ptr<FeaturePool> cv::scascade::FeaturePool::create(const cv::Size& model, int nfeatures)
{
cv::Ptr<cv::FeaturePool> pool(new ChannelFeaturePool(model, nfeatures));
cv::Ptr<FeaturePool> pool(new ChannelFeaturePool(model, nfeatures));
return pool;
}

@ -55,4 +55,6 @@
#include "opencv2/ml/ml.hpp"
#include "_random.hpp"
using namespace cv::scascade;
#endif

@ -44,19 +44,17 @@
#include <queue>
#include <string>
using cv::Dataset;
using cv::FeaturePool;
using cv::InputArray;
using cv::OutputArray;
using cv::Mat;
cv::FeaturePool::~FeaturePool(){}
cv::Dataset::~Dataset(){}
cv::scascade::FeaturePool::~FeaturePool(){}
cv::scascade::Dataset::~Dataset(){}
namespace {
class BoostedSoftCascadeOctave : public cv::Boost, public cv::SoftCascadeOctave
class BoostedSoftCascadeOctave : public cv::Boost, public SoftCascadeOctave
{
public:
@ -96,7 +94,7 @@ private:
Mat trainData;
cv::Ptr<cv::ChannelFeatureBuilder> builder;
cv::Ptr<ChannelFeatureBuilder> builder;
};
BoostedSoftCascadeOctave::BoostedSoftCascadeOctave(cv::Rect bb, int np, int nn, int ls, int shr, int poolSize)
@ -128,7 +126,7 @@ BoostedSoftCascadeOctave::BoostedSoftCascadeOctave(cv::Rect bb, int np, int nn,
params = _params;
builder = cv::ChannelFeatureBuilder::create();
builder = ChannelFeatureBuilder::create();
int w = boundingBox.width;
int h = boundingBox.height;
@ -195,7 +193,7 @@ void BoostedSoftCascadeOctave::processPositives(const Dataset* dataset)
{
int h = boundingBox.height;
cv::ChannelFeatureBuilder& _builder = *builder;
ChannelFeatureBuilder& _builder = *builder;
int total = 0;
for (int curr = 0; curr < dataset->available( Dataset::POSITIVE); ++curr)
@ -228,7 +226,7 @@ void BoostedSoftCascadeOctave::generateNegatives(const Dataset* dataset)
int total = 0;
Mat sum;
cv::ChannelFeatureBuilder& _builder = *builder;
ChannelFeatureBuilder& _builder = *builder;
for (int i = npositives; i < nnegatives + npositives; ++total)
{
int curr = iRand(idxEng);
@ -441,12 +439,12 @@ void BoostedSoftCascadeOctave::write( CvFileStorage* fs, std::string _name) cons
CV_INIT_ALGORITHM(BoostedSoftCascadeOctave, "SoftCascadeOctave.BoostedSoftCascadeOctave", );
cv::SoftCascadeOctave::~SoftCascadeOctave(){}
cv::scascade::SoftCascadeOctave::~SoftCascadeOctave(){}
cv::Ptr<cv::SoftCascadeOctave> cv::SoftCascadeOctave::create(cv::Rect boundingBox, int npositives, int nnegatives,
cv::Ptr<SoftCascadeOctave> cv::scascade::SoftCascadeOctave::create(cv::Rect boundingBox, int npositives, int nnegatives,
int logScale, int shrinkage, int poolSize)
{
cv::Ptr<cv::SoftCascadeOctave> octave(
cv::Ptr<SoftCascadeOctave> octave(
new BoostedSoftCascadeOctave(boundingBox, npositives, nnegatives, logScale, shrinkage, poolSize));
return octave;
}

@ -145,13 +145,13 @@ struct Level
scaleshift = static_cast<int>(relScale * (1 << 16));
}
void addDetection(const int x, const int y, float confidence, std::vector<cv::Detection>& detections) const
void addDetection(const int x, const int y, float confidence, std::vector<Detection>& detections) const
{
// fix me
int shrinkage = 4;//(*octave).shrinkage;
cv::Rect rect(cvRound(x * shrinkage), cvRound(y * shrinkage), objSize.width, objSize.height);
detections.push_back(cv::Detection(rect, confidence));
detections.push_back(Detection(rect, confidence));
}
float rescale(cv::Rect& scaledRect, const float threshold, int idx) const
@ -177,13 +177,13 @@ struct ChannelStorage
int step;
int model_height;
cv::Ptr<cv::ChannelFeatureBuilder> builder;
cv::Ptr<ChannelFeatureBuilder> builder;
enum {HOG_BINS = 6, HOG_LUV_BINS = 10};
ChannelStorage(const cv::Mat& colored, int shr) : shrinkage(shr)
{
builder = cv::ChannelFeatureBuilder::create();
builder = ChannelFeatureBuilder::create();
(*builder)(colored, hog);
step = hog.step1();
@ -205,7 +205,7 @@ struct ChannelStorage
}
struct cv::SoftCascadeDetector::Fields
struct SoftCascadeDetector::Fields
{
float minScale;
float maxScale;
@ -409,17 +409,17 @@ struct cv::SoftCascadeDetector::Fields
}
};
cv::SoftCascadeDetector::SoftCascadeDetector(const double mins, const double maxs, const int nsc, const int rej)
SoftCascadeDetector::SoftCascadeDetector(const double mins, const double maxs, const int nsc, const int rej)
: fields(0), minScale(mins), maxScale(maxs), scales(nsc), rejCriteria(rej) {}
cv::SoftCascadeDetector::~SoftCascadeDetector() { delete fields;}
SoftCascadeDetector::~SoftCascadeDetector() { delete fields;}
void cv::SoftCascadeDetector::read(const FileNode& fn)
void SoftCascadeDetector::read(const FileNode& fn)
{
Algorithm::read(fn);
}
bool cv::SoftCascadeDetector::load(const FileNode& fn)
bool SoftCascadeDetector::load(const FileNode& fn)
{
if (fields) delete fields;
@ -429,12 +429,12 @@ bool cv::SoftCascadeDetector::load(const FileNode& fn)
namespace {
typedef std::vector<cv::Detection> dvector;
typedef std::vector<Detection> dvector;
struct ConfidenceGt
{
bool operator()(const cv::Detection& a, const cv::Detection& b) const
bool operator()(const Detection& a, const Detection& b) const
{
return a.confidence > b.confidence;
}
@ -455,10 +455,10 @@ void DollarNMS(dvector& objects)
for (dvector::iterator dIt = objects.begin(); dIt != objects.end(); ++dIt)
{
const cv::Detection &a = *dIt;
const Detection &a = *dIt;
for (dvector::iterator next = dIt + 1; next != objects.end(); )
{
const cv::Detection &b = *next;
const Detection &b = *next;
const float ovl = overlap(a.bb, b.bb) / std::min(a.bb.area(), b.bb.area());
@ -470,15 +470,15 @@ void DollarNMS(dvector& objects)
}
}
static void suppress(int type, std::vector<cv::Detection>& objects)
static void suppress(int type, std::vector<Detection>& objects)
{
CV_Assert(type == cv::SoftCascadeDetector::DOLLAR);
CV_Assert(type == SoftCascadeDetector::DOLLAR);
DollarNMS(objects);
}
}
void cv::SoftCascadeDetector::detectNoRoi(const cv::Mat& image, std::vector<Detection>& objects) const
void SoftCascadeDetector::detectNoRoi(const cv::Mat& image, std::vector<Detection>& objects) const
{
Fields& fld = *fields;
// create integrals
@ -505,7 +505,7 @@ void cv::SoftCascadeDetector::detectNoRoi(const cv::Mat& image, std::vector<Dete
// if (rejCriteria != NO_REJECT) suppress(rejCriteria, objects);
}
void cv::SoftCascadeDetector::detect(cv::InputArray _image, cv::InputArray _rois, std::vector<Detection>& objects) const
void SoftCascadeDetector::detect(cv::InputArray _image, cv::InputArray _rois, std::vector<Detection>& objects) const
{
// only color images are suppered
cv::Mat image = _image.getMat();
@ -557,7 +557,7 @@ void cv::SoftCascadeDetector::detect(cv::InputArray _image, cv::InputArray _rois
if (rejCriteria != NO_REJECT) suppress(rejCriteria, objects);
}
void cv::SoftCascadeDetector::detect(InputArray _image, InputArray _rois, OutputArray _rects, OutputArray _confs) const
void SoftCascadeDetector::detect(InputArray _image, InputArray _rois, OutputArray _rects, OutputArray _confs) const
{
std::vector<Detection> objects;
detect( _image, _rois, objects);

@ -42,7 +42,7 @@
#include "precomp.hpp"
namespace cv
namespace cv { namespace scascade
{
CV_INIT_ALGORITHM(SoftCascadeDetector, "SoftCascade.SoftCascadeDetector",
@ -58,4 +58,4 @@ bool initModule_softcascade(void)
return (sc1->info() != 0);
}
}
} }

@ -44,13 +44,13 @@
TEST(ChannelFeatureBuilderTest, info)
{
cv::Ptr<cv::ChannelFeatureBuilder> builder = cv::ChannelFeatureBuilder::create();
cv::Ptr<cv::scascade::ChannelFeatureBuilder> builder = cv::scascade::ChannelFeatureBuilder::create();
ASSERT_TRUE(builder->info() != 0);
}
TEST(ChannelFeatureBuilderTest, compute)
{
cv::Ptr<cv::ChannelFeatureBuilder> builder = cv::ChannelFeatureBuilder::create();
cv::Ptr<cv::scascade::ChannelFeatureBuilder> builder = cv::scascade::ChannelFeatureBuilder::create();
cv::Mat colored = cv::imread(cvtest::TS::ptr()->get_data_path() + "cascadeandhog/images/image_00000000_0.png");
cv::Mat ints;

@ -44,11 +44,12 @@
#include <fstream>
#include "test_precomp.hpp"
typedef cv::scascade::Detection Detection;
TEST(SoftCascadeDetector, readCascade)
{
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/cascades/inria_caltech-17.01.2013.xml";
cv::SoftCascadeDetector cascade;
cv::scascade::SoftCascadeDetector cascade;
cv::FileStorage fs(xml, cv::FileStorage::READ);
ASSERT_TRUE(fs.isOpened());
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
@ -56,9 +57,8 @@ TEST(SoftCascadeDetector, readCascade)
TEST(SoftCascadeDetector, detect)
{
typedef cv::Detection Detection;
std::string xml = cvtest::TS::ptr()->get_data_path()+ "cascadeandhog/cascades/inria_caltech-17.01.2013.xml";
cv::SoftCascadeDetector cascade;
cv::scascade::SoftCascadeDetector cascade;
cv::FileStorage fs(xml, cv::FileStorage::READ);
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
@ -73,9 +73,8 @@ TEST(SoftCascadeDetector, detect)
TEST(SoftCascadeDetector, detectSeparate)
{
typedef cv::Detection Detection;
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/cascades/inria_caltech-17.01.2013.xml";
cv::SoftCascadeDetector cascade;
cv::scascade::SoftCascadeDetector cascade;
cv::FileStorage fs(xml, cv::FileStorage::READ);
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
@ -90,9 +89,8 @@ TEST(SoftCascadeDetector, detectSeparate)
TEST(SoftCascadeDetector, detectRoi)
{
typedef cv::Detection Detection;
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/cascades/inria_caltech-17.01.2013.xml";
cv::SoftCascadeDetector cascade;
cv::scascade::SoftCascadeDetector cascade;
cv::FileStorage fs(xml, cv::FileStorage::READ);
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
@ -109,9 +107,8 @@ TEST(SoftCascadeDetector, detectRoi)
TEST(SoftCascadeDetector, detectNoRoi)
{
typedef cv::Detection Detection;
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/cascades/inria_caltech-17.01.2013.xml";
cv::SoftCascadeDetector cascade;
cv::scascade::SoftCascadeDetector cascade;
cv::FileStorage fs(xml, cv::FileStorage::READ);
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
@ -128,9 +125,8 @@ TEST(SoftCascadeDetector, detectNoRoi)
TEST(SoftCascadeDetector, detectEmptyRoi)
{
typedef cv::Detection Detection;
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/cascades/inria_caltech-17.01.2013.xml";
cv::SoftCascadeDetector cascade;
cv::scascade::SoftCascadeDetector cascade;
cv::FileStorage fs(xml, cv::FileStorage::READ);
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));

@ -58,7 +58,7 @@ using namespace std;
namespace {
typedef vector<string> svector;
class ScaledDataset : public cv::Dataset
class ScaledDataset : public cv::scascade::Dataset
{
public:
ScaledDataset(const string& path, const int octave);
@ -210,7 +210,7 @@ TEST(DISABLED_SoftCascade, training)
float octave = powf(2.f, (float)(*it));
cv::Size model = cv::Size( cvRound(64 * octave) / shrinkage, cvRound(128 * octave) / shrinkage );
cv::Ptr<cv::FeaturePool> pool = cv::FeaturePool::create(model, nfeatures);
cv::Ptr<cv::scascade::FeaturePool> pool = cv::scascade::FeaturePool::create(model, nfeatures);
nfeatures = pool->size();
int npositives = 20;
int nnegatives = 40;
@ -218,7 +218,7 @@ TEST(DISABLED_SoftCascade, training)
cv::Rect boundingBox = cv::Rect( cvRound(20 * octave), cvRound(20 * octave),
cvRound(64 * octave), cvRound(128 * octave));
typedef cv::SoftCascadeOctave Octave;
typedef cv::scascade::SoftCascadeOctave Octave;
cv::Ptr<Octave> boost = Octave::create(boundingBox, npositives, nnegatives, *it, shrinkage, nfeatures);
std::string path = cvtest::TS::ptr()->get_data_path() + "softcascade/sample_training_set";

Loading…
Cancel
Save