fixed grabCut: moved to double precision and added the noise to avoid zero determinant of covariance matrix

pull/13383/head
Maria Dimashova 14 years ago
parent 0acc00bf62
commit f76d393910
  1. 217
      modules/imgproc/src/grabcut.cpp

@ -51,6 +51,35 @@ This is implementation of image segmentation algorithm GrabCut described in
Carsten Rother, Vladimir Kolmogorov, Andrew Blake.
*/
class Noise3DGenerator
{
public:
Noise3DGenerator( float var=0.1f ) : rng(theRNG())
{
var = std::min( std::max( 0.01f, var ), 1.f ) ;
double meanData[] = { 0., 0., 0. };
double covData[] = { var, 0., 0.,
0., var, 0.,
0., 0., var };
Mat( 1, 3, CV_64FC1, meanData ).copyTo( mean );
Mat( 3, 3, CV_64FC1, covData ).copyTo( cov );
}
Vec3d generateNoise()
{
Mat noise( 1, 3, CV_64FC1 );
rng.fill( noise, RNG::NORMAL, Scalar::all(0.0), Scalar(1.0) );
noise = noise * cov + mean;
return Vec3d( noise.ptr<double>() );
}
private:
RNG& rng;
Mat mean;
Mat cov;
};
/*
GMM - Gaussian Mixture Model
*/
@ -60,27 +89,30 @@ public:
static const int componentsCount = 5;
GMM( Mat& _model );
float operator()( Vec3f color ) const;
float operator()( int ci, Vec3f color ) const;
int whichComponent( Vec3f color ) const;
double operator()( const Vec3d color ) const;
double operator()( int ci, const Vec3d color ) const;
int whichComponent( const Vec3d color ) const;
void initLearning();
void addSample( int ci, Vec3f color );
void addSample( int ci, const Vec3d color );
void endLearning();
private:
void calcInverseCovAndDeterm( int ci );
Mat model;
float* coefs;
float* mean;
float* cov;
double* coefs;
double* mean;
double* cov;
float inverseCovs[componentsCount][3][3];
float covDeterms[componentsCount];
double inverseCovs[componentsCount][3][3];
double covDeterms[componentsCount];
float sums[componentsCount][3];
float prods[componentsCount][3][3];
double sums[componentsCount][3];
double prods[componentsCount][3][3];
int sampleCounts[componentsCount];
int totalSampleCount;
Noise3DGenerator noiseGenerator;
};
GMM::GMM( Mat& _model )
@ -88,15 +120,15 @@ GMM::GMM( Mat& _model )
const int modelSize = 3/*mean*/ + 9/*covariance*/ + 1/*component weight*/;
if( _model.empty() )
{
_model.create( 1, modelSize*componentsCount, CV_32FC1 );
_model.create( 1, modelSize*componentsCount, CV_64FC1 );
_model.setTo(Scalar(0));
}
else if( (_model.type() != CV_32FC1) || (_model.rows != 1) || (_model.cols != modelSize*componentsCount) )
CV_Error( CV_StsBadArg, "_model must have CV_32FC1 type, rows == 1 and cols == 13*componentsCount" );
else if( (_model.type() != CV_64FC1) || (_model.rows != 1) || (_model.cols != modelSize*componentsCount) )
CV_Error( CV_StsBadArg, "_model must have CV_64FC1 type, rows == 1 and cols == 13*componentsCount" );
model = _model;
coefs = model.ptr<float>(0);
coefs = model.ptr<double>(0);
mean = coefs + componentsCount;
cov = mean + 3*componentsCount;
@ -105,41 +137,39 @@ GMM::GMM( Mat& _model )
calcInverseCovAndDeterm( ci );
}
float GMM::operator()( Vec3f color ) const
double GMM::operator()( const Vec3d color ) const
{
float res = 0;
double res = 0;
for( int ci = 0; ci < componentsCount; ci++ )
res += coefs[ci] * (*this)(ci, color );
return res;
}
float GMM::operator()( int ci, Vec3f color ) const
double GMM::operator()( int ci, const Vec3d color ) const
{
float res = 0;
double res = 0;
if( coefs[ci] > 0 )
{
if( covDeterms[ci] > std::numeric_limits<float>::epsilon() )
{
Vec3f diff = color;
float* m = mean + 3*ci;
diff[0] -= m[0]; diff[1] -= m[1]; diff[2] -= m[2];
float mult = diff[0]*(diff[0]*inverseCovs[ci][0][0] + diff[1]*inverseCovs[ci][1][0] + diff[2]*inverseCovs[ci][2][0])
+ diff[1]*(diff[0]*inverseCovs[ci][0][1] + diff[1]*inverseCovs[ci][1][1] + diff[2]*inverseCovs[ci][2][1])
+ diff[2]*(diff[0]*inverseCovs[ci][0][2] + diff[1]*inverseCovs[ci][1][2] + diff[2]*inverseCovs[ci][2][2]);
res = 1.0f/sqrt(covDeterms[ci]) * exp(-0.5f*mult);
}
CV_Assert( covDeterms[ci] > std::numeric_limits<double>::epsilon() );
Vec3d diff = color;
double* m = mean + 3*ci;
diff[0] -= m[0]; diff[1] -= m[1]; diff[2] -= m[2];
double mult = diff[0]*(diff[0]*inverseCovs[ci][0][0] + diff[1]*inverseCovs[ci][1][0] + diff[2]*inverseCovs[ci][2][0])
+ diff[1]*(diff[0]*inverseCovs[ci][0][1] + diff[1]*inverseCovs[ci][1][1] + diff[2]*inverseCovs[ci][2][1])
+ diff[2]*(diff[0]*inverseCovs[ci][0][2] + diff[1]*inverseCovs[ci][1][2] + diff[2]*inverseCovs[ci][2][2]);
res = 1.0f/sqrt(covDeterms[ci]) * exp(-0.5f*mult);
}
return res;
}
int GMM::whichComponent( Vec3f color ) const
int GMM::whichComponent( const Vec3d color ) const
{
int k = 0;
float max = 0;
double max = 0;
for( int ci = 0; ci < componentsCount; ci++ )
{
float p = (*this)( ci, color );
double p = (*this)( ci, color );
if( p > max )
{
k = ci;
@ -162,12 +192,13 @@ void GMM::initLearning()
totalSampleCount = 0;
}
void GMM::addSample( int ci, Vec3f color )
void GMM::addSample( int ci, const Vec3d color )
{
sums[ci][0] += color[0]; sums[ci][1] += color[1]; sums[ci][2] += color[2];
prods[ci][0][0] += color[0]*color[0]; prods[ci][0][1] += color[0]*color[1]; prods[ci][0][2] += color[0]*color[2];
prods[ci][1][0] += color[1]*color[0]; prods[ci][1][1] += color[1]*color[1]; prods[ci][1][2] += color[1]*color[2];
prods[ci][2][0] += color[2]*color[0]; prods[ci][2][1] += color[2]*color[1]; prods[ci][2][2] += color[2]*color[2];
Vec3d nClr = color + noiseGenerator.generateNoise();
sums[ci][0] += nClr[0]; sums[ci][1] += nClr[1]; sums[ci][2] += nClr[2];
prods[ci][0][0] += nClr[0]*nClr[0]; prods[ci][0][1] += nClr[0]*nClr[1]; prods[ci][0][2] += nClr[0]*nClr[2];
prods[ci][1][0] += nClr[1]*nClr[0]; prods[ci][1][1] += nClr[1]*nClr[1]; prods[ci][1][2] += nClr[1]*nClr[2];
prods[ci][2][0] += nClr[2]*nClr[0]; prods[ci][2][1] += nClr[2]*nClr[1]; prods[ci][2][2] += nClr[2]*nClr[2];
sampleCounts[ci]++;
totalSampleCount++;
}
@ -181,12 +212,12 @@ void GMM::endLearning()
coefs[ci] = 0;
else
{
coefs[ci] = (float)n/totalSampleCount;
coefs[ci] = (double)n/totalSampleCount;
float* m = mean + 3*ci;
double* m = mean + 3*ci;
m[0] = sums[ci][0]/n; m[1] = sums[ci][1]/n; m[2] = sums[ci][2]/n;
float* c = cov + 9*ci;
double* c = cov + 9*ci;
c[0] = prods[ci][0][0]/n - m[0]*m[0]; c[1] = prods[ci][0][1]/n - m[0]*m[1]; c[2] = prods[ci][0][2]/n - m[0]*m[2];
c[3] = prods[ci][1][0]/n - m[1]*m[0]; c[4] = prods[ci][1][1]/n - m[1]*m[1]; c[5] = prods[ci][1][2]/n - m[1]*m[2];
c[6] = prods[ci][2][0]/n - m[2]*m[0]; c[7] = prods[ci][2][1]/n - m[2]*m[1]; c[8] = prods[ci][2][2]/n - m[2]*m[2];
@ -200,22 +231,20 @@ void GMM::calcInverseCovAndDeterm( int ci )
{
if( coefs[ci] > 0 )
{
float *c = cov + 9*ci;
float dtrm =
double *c = cov + 9*ci;
double dtrm =
covDeterms[ci] = c[0]*(c[4]*c[8]-c[5]*c[7]) - c[1]*(c[3]*c[8]-c[5]*c[6]) + c[2]*(c[3]*c[7]-c[4]*c[6]);
if( dtrm > std::numeric_limits<float>::epsilon() )
{
inverseCovs[ci][0][0] = (c[4]*c[8] - c[5]*c[7]) / dtrm;
inverseCovs[ci][1][0] = -(c[3]*c[8] - c[5]*c[6]) / dtrm;
inverseCovs[ci][2][0] = (c[3]*c[7] - c[4]*c[6]) / dtrm;
inverseCovs[ci][0][1] = -(c[1]*c[8] - c[2]*c[7]) / dtrm;
inverseCovs[ci][1][1] = (c[0]*c[8] - c[2]*c[6]) / dtrm;
inverseCovs[ci][2][1] = -(c[0]*c[7] - c[1]*c[6]) / dtrm;
inverseCovs[ci][0][2] = (c[1]*c[5] - c[2]*c[4]) / dtrm;
inverseCovs[ci][1][2] = -(c[0]*c[5] - c[2]*c[3]) / dtrm;
inverseCovs[ci][2][2] = (c[0]*c[4] - c[1]*c[3]) / dtrm;
}
CV_Assert( dtrm > std::numeric_limits<double>::epsilon() );
inverseCovs[ci][0][0] = (c[4]*c[8] - c[5]*c[7]) / dtrm;
inverseCovs[ci][1][0] = -(c[3]*c[8] - c[5]*c[6]) / dtrm;
inverseCovs[ci][2][0] = (c[3]*c[7] - c[4]*c[6]) / dtrm;
inverseCovs[ci][0][1] = -(c[1]*c[8] - c[2]*c[7]) / dtrm;
inverseCovs[ci][1][1] = (c[0]*c[8] - c[2]*c[6]) / dtrm;
inverseCovs[ci][2][1] = -(c[0]*c[7] - c[1]*c[6]) / dtrm;
inverseCovs[ci][0][2] = (c[1]*c[5] - c[2]*c[4]) / dtrm;
inverseCovs[ci][1][2] = -(c[0]*c[5] - c[2]*c[3]) / dtrm;
inverseCovs[ci][2][2] = (c[0]*c[4] - c[1]*c[3]) / dtrm;
}
}
@ -223,32 +252,32 @@ void GMM::calcInverseCovAndDeterm( int ci )
Calculate beta - parameter of GrabCut algorithm.
beta = 1/(2*avg(sqr(||color[i] - color[j]||)))
*/
float calcBeta( const Mat& img )
double calcBeta( const Mat& img )
{
float beta = 0;
double beta = 0;
for( int y = 0; y < img.rows; y++ )
{
for( int x = 0; x < img.cols; x++ )
{
Vec3f color = img.at<Vec3b>(y,x);
Vec3d color = img.at<Vec3b>(y,x);
if( x>0 ) // left
{
Vec3f diff = color - (Vec3f)img.at<Vec3b>(y,x-1);
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y,x-1);
beta += diff.dot(diff);
}
if( y>0 && x>0 ) // upleft
{
Vec3f diff = color - (Vec3f)img.at<Vec3b>(y-1,x-1);
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x-1);
beta += diff.dot(diff);
}
if( y>0 ) // up
{
Vec3f diff = color - (Vec3f)img.at<Vec3b>(y-1,x);
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x);
beta += diff.dot(diff);
}
if( y>0 && x<img.cols-1) // upright
{
Vec3f diff = color - (Vec3f)img.at<Vec3b>(y-1,x+1);
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x+1);
beta += diff.dot(diff);
}
}
@ -261,46 +290,46 @@ float calcBeta( const Mat& img )
Calculate weights of noterminal vertices of graph.
beta and gamma - parameters of GrabCut algorithm.
*/
void calcNWeights( const Mat& img, Mat& leftW, Mat& upleftW, Mat& upW, Mat& uprightW, float beta, float gamma )
void calcNWeights( const Mat& img, Mat& leftW, Mat& upleftW, Mat& upW, Mat& uprightW, double beta, double gamma )
{
const float gammaDivSqrt2 = gamma / std::sqrt(2.0f);
leftW.create( img.rows, img.cols, CV_32FC1 );
upleftW.create( img.rows, img.cols, CV_32FC1 );
upW.create( img.rows, img.cols, CV_32FC1 );
uprightW.create( img.rows, img.cols, CV_32FC1 );
const double gammaDivSqrt2 = gamma / std::sqrt(2.0f);
leftW.create( img.rows, img.cols, CV_64FC1 );
upleftW.create( img.rows, img.cols, CV_64FC1 );
upW.create( img.rows, img.cols, CV_64FC1 );
uprightW.create( img.rows, img.cols, CV_64FC1 );
for( int y = 0; y < img.rows; y++ )
{
for( int x = 0; x < img.cols; x++ )
{
Vec3f color = img.at<Vec3b>(y,x);
Vec3d color = img.at<Vec3b>(y,x);
if( x-1>=0 ) // left
{
Vec3f diff = color - (Vec3f)img.at<Vec3b>(y,x-1);
leftW.at<float>(y,x) = gamma * exp(-beta*diff.dot(diff));
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y,x-1);
leftW.at<double>(y,x) = gamma * exp(-beta*diff.dot(diff));
}
else
leftW.at<float>(y,x) = 0;
leftW.at<double>(y,x) = 0;
if( x-1>=0 && y-1>=0 ) // upleft
{
Vec3f diff = color - (Vec3f)img.at<Vec3b>(y-1,x-1);
upleftW.at<float>(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff));
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x-1);
upleftW.at<double>(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff));
}
else
upleftW.at<float>(y,x) = 0;
upleftW.at<double>(y,x) = 0;
if( y-1>=0 ) // up
{
Vec3f diff = color - (Vec3f)img.at<Vec3b>(y-1,x);
upW.at<float>(y,x) = gamma * exp(-beta*diff.dot(diff));
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x);
upW.at<double>(y,x) = gamma * exp(-beta*diff.dot(diff));
}
else
upW.at<float>(y,x) = 0;
upW.at<double>(y,x) = 0;
if( x+1<img.cols-1 && y-1>=0 ) // upright
{
Vec3f diff = color - (Vec3f)img.at<Vec3b>(y-1,x+1);
uprightW.at<float>(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff));
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x+1);
uprightW.at<double>(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff));
}
else
uprightW.at<float>(y,x) = 0;
uprightW.at<double>(y,x) = 0;
}
}
}
@ -394,8 +423,8 @@ void assignGMMsComponents( const Mat& img, const Mat& mask, const GMM& bgdGMM, c
{
for( p.x = 0; p.x < img.cols; p.x++ )
{
Vec3f color = img.at<Vec3b>(p);
compIdxs.at<int>(p) = mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD ?
Vec3d color = img.at<Vec3b>(p);
compIdxs.at<int>(p) = mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD ?
bgdGMM.whichComponent(color) : fgdGMM.whichComponent(color);
}
}
@ -432,9 +461,9 @@ void learnGMMs( const Mat& img, const Mat& mask, const Mat& compIdxs, GMM& bgdGM
/*
Construct GCGraph
*/
void constructGCGraph( const Mat& img, const Mat& mask, const GMM& bgdGMM, const GMM& fgdGMM, float lambda,
void constructGCGraph( const Mat& img, const Mat& mask, const GMM& bgdGMM, const GMM& fgdGMM, double lambda,
const Mat& leftW, const Mat& upleftW, const Mat& upW, const Mat& uprightW,
GCGraph<float>& graph )
GCGraph<double>& graph )
{
int vtxCount = img.cols*img.rows,
edgeCount = 2*(4*img.cols*img.rows - 3*(img.cols + img.rows) + 2);
@ -449,7 +478,7 @@ void constructGCGraph( const Mat& img, const Mat& mask, const GMM& bgdGMM, const
Vec3b color = img.at<Vec3b>(p);
// set t-weights
float fromSource, toSink;
double fromSource, toSink;
if( mask.at<uchar>(p) == GC_PR_BGD || mask.at<uchar>(p) == GC_PR_FGD )
{
fromSource = -log( bgdGMM(color) );
@ -470,22 +499,22 @@ void constructGCGraph( const Mat& img, const Mat& mask, const GMM& bgdGMM, const
// set n-weights
if( p.x>0 )
{
float w = leftW.at<float>(p);
double w = leftW.at<double>(p);
graph.addEdges( vtxIdx, vtxIdx-1, w, w );
}
if( p.x>0 && p.y>0 )
{
float w = upleftW.at<float>(p);
double w = upleftW.at<double>(p);
graph.addEdges( vtxIdx, vtxIdx-img.cols-1, w, w );
}
if( p.y>0 )
{
float w = upW.at<float>(p);
double w = upW.at<double>(p);
graph.addEdges( vtxIdx, vtxIdx-img.cols, w, w );
}
if( p.x<img.cols-1 && p.y>0 )
{
float w = uprightW.at<float>(p);
double w = uprightW.at<double>(p);
graph.addEdges( vtxIdx, vtxIdx-img.cols+1, w, w );
}
}
@ -495,7 +524,7 @@ void constructGCGraph( const Mat& img, const Mat& mask, const GMM& bgdGMM, const
/*
Estimate segmentation using MaxFlow algorithm
*/
void estimateSegmentation( GCGraph<float>& graph, Mat& mask )
void estimateSegmentation( GCGraph<double>& graph, Mat& mask )
{
graph.maxFlow();
Point p;
@ -541,16 +570,16 @@ void cv::grabCut( const Mat& img, Mat& mask, Rect rect,
if( mode == GC_EVAL )
checkMask( img, mask );
const float gamma = 50;
const float lambda = 9*gamma;
const float beta = calcBeta( img );
const double gamma = 50;
const double lambda = 9*gamma;
const double beta = calcBeta( img );
Mat leftW, upleftW, upW, uprightW;
calcNWeights( img, leftW, upleftW, upW, uprightW, beta, gamma );
for( int i = 0; i < iterCount; i++ )
{
GCGraph<float> graph;
GCGraph<double> graph;
assignGMMsComponents( img, mask, bgdGMM, fgdGMM, compIdxs );
learnGMMs( img, mask, compIdxs, bgdGMM, fgdGMM );
constructGCGraph(img, mask, bgdGMM, fgdGMM, lambda, leftW, upleftW, upW, uprightW, graph );

Loading…
Cancel
Save