|
|
|
@ -51,6 +51,35 @@ This is implementation of image segmentation algorithm GrabCut described in |
|
|
|
|
Carsten Rother, Vladimir Kolmogorov, Andrew Blake. |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
class Noise3DGenerator |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
Noise3DGenerator( float var=0.1f ) : rng(theRNG()) |
|
|
|
|
{ |
|
|
|
|
var = std::min( std::max( 0.01f, var ), 1.f ) ; |
|
|
|
|
|
|
|
|
|
double meanData[] = { 0., 0., 0. }; |
|
|
|
|
double covData[] = { var, 0., 0., |
|
|
|
|
0., var, 0., |
|
|
|
|
0., 0., var }; |
|
|
|
|
Mat( 1, 3, CV_64FC1, meanData ).copyTo( mean ); |
|
|
|
|
Mat( 3, 3, CV_64FC1, covData ).copyTo( cov ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Vec3d generateNoise() |
|
|
|
|
{ |
|
|
|
|
Mat noise( 1, 3, CV_64FC1 ); |
|
|
|
|
rng.fill( noise, RNG::NORMAL, Scalar::all(0.0), Scalar(1.0) ); |
|
|
|
|
noise = noise * cov + mean; |
|
|
|
|
return Vec3d( noise.ptr<double>() ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
private: |
|
|
|
|
RNG& rng; |
|
|
|
|
Mat mean; |
|
|
|
|
Mat cov; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
GMM - Gaussian Mixture Model |
|
|
|
|
*/ |
|
|
|
@ -60,27 +89,30 @@ public: |
|
|
|
|
static const int componentsCount = 5; |
|
|
|
|
|
|
|
|
|
GMM( Mat& _model ); |
|
|
|
|
float operator()( Vec3f color ) const; |
|
|
|
|
float operator()( int ci, Vec3f color ) const; |
|
|
|
|
int whichComponent( Vec3f color ) const; |
|
|
|
|
double operator()( const Vec3d color ) const; |
|
|
|
|
double operator()( int ci, const Vec3d color ) const; |
|
|
|
|
int whichComponent( const Vec3d color ) const; |
|
|
|
|
|
|
|
|
|
void initLearning(); |
|
|
|
|
void addSample( int ci, Vec3f color ); |
|
|
|
|
void addSample( int ci, const Vec3d color ); |
|
|
|
|
void endLearning(); |
|
|
|
|
|
|
|
|
|
private: |
|
|
|
|
void calcInverseCovAndDeterm( int ci ); |
|
|
|
|
Mat model; |
|
|
|
|
float* coefs; |
|
|
|
|
float* mean; |
|
|
|
|
float* cov; |
|
|
|
|
double* coefs; |
|
|
|
|
double* mean; |
|
|
|
|
double* cov; |
|
|
|
|
|
|
|
|
|
float inverseCovs[componentsCount][3][3]; |
|
|
|
|
float covDeterms[componentsCount]; |
|
|
|
|
double inverseCovs[componentsCount][3][3]; |
|
|
|
|
double covDeterms[componentsCount]; |
|
|
|
|
|
|
|
|
|
float sums[componentsCount][3]; |
|
|
|
|
float prods[componentsCount][3][3]; |
|
|
|
|
double sums[componentsCount][3]; |
|
|
|
|
double prods[componentsCount][3][3]; |
|
|
|
|
int sampleCounts[componentsCount]; |
|
|
|
|
int totalSampleCount; |
|
|
|
|
|
|
|
|
|
Noise3DGenerator noiseGenerator; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
GMM::GMM( Mat& _model ) |
|
|
|
@ -88,15 +120,15 @@ GMM::GMM( Mat& _model ) |
|
|
|
|
const int modelSize = 3/*mean*/ + 9/*covariance*/ + 1/*component weight*/; |
|
|
|
|
if( _model.empty() ) |
|
|
|
|
{ |
|
|
|
|
_model.create( 1, modelSize*componentsCount, CV_32FC1 ); |
|
|
|
|
_model.create( 1, modelSize*componentsCount, CV_64FC1 ); |
|
|
|
|
_model.setTo(Scalar(0)); |
|
|
|
|
} |
|
|
|
|
else if( (_model.type() != CV_32FC1) || (_model.rows != 1) || (_model.cols != modelSize*componentsCount) ) |
|
|
|
|
CV_Error( CV_StsBadArg, "_model must have CV_32FC1 type, rows == 1 and cols == 13*componentsCount" ); |
|
|
|
|
else if( (_model.type() != CV_64FC1) || (_model.rows != 1) || (_model.cols != modelSize*componentsCount) ) |
|
|
|
|
CV_Error( CV_StsBadArg, "_model must have CV_64FC1 type, rows == 1 and cols == 13*componentsCount" ); |
|
|
|
|
|
|
|
|
|
model = _model; |
|
|
|
|
|
|
|
|
|
coefs = model.ptr<float>(0); |
|
|
|
|
coefs = model.ptr<double>(0); |
|
|
|
|
mean = coefs + componentsCount; |
|
|
|
|
cov = mean + 3*componentsCount; |
|
|
|
|
|
|
|
|
@ -105,41 +137,39 @@ GMM::GMM( Mat& _model ) |
|
|
|
|
calcInverseCovAndDeterm( ci ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float GMM::operator()( Vec3f color ) const |
|
|
|
|
double GMM::operator()( const Vec3d color ) const |
|
|
|
|
{ |
|
|
|
|
float res = 0; |
|
|
|
|
double res = 0; |
|
|
|
|
for( int ci = 0; ci < componentsCount; ci++ ) |
|
|
|
|
res += coefs[ci] * (*this)(ci, color ); |
|
|
|
|
return res; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float GMM::operator()( int ci, Vec3f color ) const |
|
|
|
|
double GMM::operator()( int ci, const Vec3d color ) const |
|
|
|
|
{ |
|
|
|
|
float res = 0; |
|
|
|
|
double res = 0; |
|
|
|
|
if( coefs[ci] > 0 ) |
|
|
|
|
{ |
|
|
|
|
if( covDeterms[ci] > std::numeric_limits<float>::epsilon() ) |
|
|
|
|
{ |
|
|
|
|
Vec3f diff = color; |
|
|
|
|
float* m = mean + 3*ci; |
|
|
|
|
diff[0] -= m[0]; diff[1] -= m[1]; diff[2] -= m[2]; |
|
|
|
|
float mult = diff[0]*(diff[0]*inverseCovs[ci][0][0] + diff[1]*inverseCovs[ci][1][0] + diff[2]*inverseCovs[ci][2][0]) |
|
|
|
|
+ diff[1]*(diff[0]*inverseCovs[ci][0][1] + diff[1]*inverseCovs[ci][1][1] + diff[2]*inverseCovs[ci][2][1]) |
|
|
|
|
+ diff[2]*(diff[0]*inverseCovs[ci][0][2] + diff[1]*inverseCovs[ci][1][2] + diff[2]*inverseCovs[ci][2][2]); |
|
|
|
|
res = 1.0f/sqrt(covDeterms[ci]) * exp(-0.5f*mult); |
|
|
|
|
} |
|
|
|
|
CV_Assert( covDeterms[ci] > std::numeric_limits<double>::epsilon() ); |
|
|
|
|
Vec3d diff = color; |
|
|
|
|
double* m = mean + 3*ci; |
|
|
|
|
diff[0] -= m[0]; diff[1] -= m[1]; diff[2] -= m[2]; |
|
|
|
|
double mult = diff[0]*(diff[0]*inverseCovs[ci][0][0] + diff[1]*inverseCovs[ci][1][0] + diff[2]*inverseCovs[ci][2][0]) |
|
|
|
|
+ diff[1]*(diff[0]*inverseCovs[ci][0][1] + diff[1]*inverseCovs[ci][1][1] + diff[2]*inverseCovs[ci][2][1]) |
|
|
|
|
+ diff[2]*(diff[0]*inverseCovs[ci][0][2] + diff[1]*inverseCovs[ci][1][2] + diff[2]*inverseCovs[ci][2][2]); |
|
|
|
|
res = 1.0f/sqrt(covDeterms[ci]) * exp(-0.5f*mult); |
|
|
|
|
} |
|
|
|
|
return res; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int GMM::whichComponent( Vec3f color ) const |
|
|
|
|
int GMM::whichComponent( const Vec3d color ) const |
|
|
|
|
{ |
|
|
|
|
int k = 0; |
|
|
|
|
float max = 0; |
|
|
|
|
double max = 0; |
|
|
|
|
|
|
|
|
|
for( int ci = 0; ci < componentsCount; ci++ ) |
|
|
|
|
{ |
|
|
|
|
float p = (*this)( ci, color ); |
|
|
|
|
double p = (*this)( ci, color ); |
|
|
|
|
if( p > max ) |
|
|
|
|
{ |
|
|
|
|
k = ci; |
|
|
|
@ -162,12 +192,13 @@ void GMM::initLearning() |
|
|
|
|
totalSampleCount = 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void GMM::addSample( int ci, Vec3f color ) |
|
|
|
|
void GMM::addSample( int ci, const Vec3d color ) |
|
|
|
|
{ |
|
|
|
|
sums[ci][0] += color[0]; sums[ci][1] += color[1]; sums[ci][2] += color[2]; |
|
|
|
|
prods[ci][0][0] += color[0]*color[0]; prods[ci][0][1] += color[0]*color[1]; prods[ci][0][2] += color[0]*color[2]; |
|
|
|
|
prods[ci][1][0] += color[1]*color[0]; prods[ci][1][1] += color[1]*color[1]; prods[ci][1][2] += color[1]*color[2]; |
|
|
|
|
prods[ci][2][0] += color[2]*color[0]; prods[ci][2][1] += color[2]*color[1]; prods[ci][2][2] += color[2]*color[2]; |
|
|
|
|
Vec3d nClr = color + noiseGenerator.generateNoise(); |
|
|
|
|
sums[ci][0] += nClr[0]; sums[ci][1] += nClr[1]; sums[ci][2] += nClr[2]; |
|
|
|
|
prods[ci][0][0] += nClr[0]*nClr[0]; prods[ci][0][1] += nClr[0]*nClr[1]; prods[ci][0][2] += nClr[0]*nClr[2]; |
|
|
|
|
prods[ci][1][0] += nClr[1]*nClr[0]; prods[ci][1][1] += nClr[1]*nClr[1]; prods[ci][1][2] += nClr[1]*nClr[2]; |
|
|
|
|
prods[ci][2][0] += nClr[2]*nClr[0]; prods[ci][2][1] += nClr[2]*nClr[1]; prods[ci][2][2] += nClr[2]*nClr[2]; |
|
|
|
|
sampleCounts[ci]++; |
|
|
|
|
totalSampleCount++; |
|
|
|
|
} |
|
|
|
@ -181,12 +212,12 @@ void GMM::endLearning() |
|
|
|
|
coefs[ci] = 0; |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
coefs[ci] = (float)n/totalSampleCount; |
|
|
|
|
coefs[ci] = (double)n/totalSampleCount; |
|
|
|
|
|
|
|
|
|
float* m = mean + 3*ci; |
|
|
|
|
double* m = mean + 3*ci; |
|
|
|
|
m[0] = sums[ci][0]/n; m[1] = sums[ci][1]/n; m[2] = sums[ci][2]/n; |
|
|
|
|
|
|
|
|
|
float* c = cov + 9*ci; |
|
|
|
|
double* c = cov + 9*ci; |
|
|
|
|
c[0] = prods[ci][0][0]/n - m[0]*m[0]; c[1] = prods[ci][0][1]/n - m[0]*m[1]; c[2] = prods[ci][0][2]/n - m[0]*m[2]; |
|
|
|
|
c[3] = prods[ci][1][0]/n - m[1]*m[0]; c[4] = prods[ci][1][1]/n - m[1]*m[1]; c[5] = prods[ci][1][2]/n - m[1]*m[2]; |
|
|
|
|
c[6] = prods[ci][2][0]/n - m[2]*m[0]; c[7] = prods[ci][2][1]/n - m[2]*m[1]; c[8] = prods[ci][2][2]/n - m[2]*m[2]; |
|
|
|
@ -200,22 +231,20 @@ void GMM::calcInverseCovAndDeterm( int ci ) |
|
|
|
|
{ |
|
|
|
|
if( coefs[ci] > 0 ) |
|
|
|
|
{ |
|
|
|
|
float *c = cov + 9*ci; |
|
|
|
|
float dtrm = |
|
|
|
|
double *c = cov + 9*ci; |
|
|
|
|
double dtrm = |
|
|
|
|
covDeterms[ci] = c[0]*(c[4]*c[8]-c[5]*c[7]) - c[1]*(c[3]*c[8]-c[5]*c[6]) + c[2]*(c[3]*c[7]-c[4]*c[6]); |
|
|
|
|
|
|
|
|
|
if( dtrm > std::numeric_limits<float>::epsilon() ) |
|
|
|
|
{ |
|
|
|
|
inverseCovs[ci][0][0] = (c[4]*c[8] - c[5]*c[7]) / dtrm; |
|
|
|
|
inverseCovs[ci][1][0] = -(c[3]*c[8] - c[5]*c[6]) / dtrm; |
|
|
|
|
inverseCovs[ci][2][0] = (c[3]*c[7] - c[4]*c[6]) / dtrm; |
|
|
|
|
inverseCovs[ci][0][1] = -(c[1]*c[8] - c[2]*c[7]) / dtrm; |
|
|
|
|
inverseCovs[ci][1][1] = (c[0]*c[8] - c[2]*c[6]) / dtrm; |
|
|
|
|
inverseCovs[ci][2][1] = -(c[0]*c[7] - c[1]*c[6]) / dtrm; |
|
|
|
|
inverseCovs[ci][0][2] = (c[1]*c[5] - c[2]*c[4]) / dtrm; |
|
|
|
|
inverseCovs[ci][1][2] = -(c[0]*c[5] - c[2]*c[3]) / dtrm; |
|
|
|
|
inverseCovs[ci][2][2] = (c[0]*c[4] - c[1]*c[3]) / dtrm; |
|
|
|
|
} |
|
|
|
|
CV_Assert( dtrm > std::numeric_limits<double>::epsilon() ); |
|
|
|
|
inverseCovs[ci][0][0] = (c[4]*c[8] - c[5]*c[7]) / dtrm; |
|
|
|
|
inverseCovs[ci][1][0] = -(c[3]*c[8] - c[5]*c[6]) / dtrm; |
|
|
|
|
inverseCovs[ci][2][0] = (c[3]*c[7] - c[4]*c[6]) / dtrm; |
|
|
|
|
inverseCovs[ci][0][1] = -(c[1]*c[8] - c[2]*c[7]) / dtrm; |
|
|
|
|
inverseCovs[ci][1][1] = (c[0]*c[8] - c[2]*c[6]) / dtrm; |
|
|
|
|
inverseCovs[ci][2][1] = -(c[0]*c[7] - c[1]*c[6]) / dtrm; |
|
|
|
|
inverseCovs[ci][0][2] = (c[1]*c[5] - c[2]*c[4]) / dtrm; |
|
|
|
|
inverseCovs[ci][1][2] = -(c[0]*c[5] - c[2]*c[3]) / dtrm; |
|
|
|
|
inverseCovs[ci][2][2] = (c[0]*c[4] - c[1]*c[3]) / dtrm; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -223,32 +252,32 @@ void GMM::calcInverseCovAndDeterm( int ci ) |
|
|
|
|
Calculate beta - parameter of GrabCut algorithm. |
|
|
|
|
beta = 1/(2*avg(sqr(||color[i] - color[j]||))) |
|
|
|
|
*/ |
|
|
|
|
float calcBeta( const Mat& img ) |
|
|
|
|
double calcBeta( const Mat& img ) |
|
|
|
|
{ |
|
|
|
|
float beta = 0; |
|
|
|
|
double beta = 0; |
|
|
|
|
for( int y = 0; y < img.rows; y++ ) |
|
|
|
|
{ |
|
|
|
|
for( int x = 0; x < img.cols; x++ ) |
|
|
|
|
{ |
|
|
|
|
Vec3f color = img.at<Vec3b>(y,x); |
|
|
|
|
Vec3d color = img.at<Vec3b>(y,x); |
|
|
|
|
if( x>0 ) // left
|
|
|
|
|
{ |
|
|
|
|
Vec3f diff = color - (Vec3f)img.at<Vec3b>(y,x-1); |
|
|
|
|
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y,x-1); |
|
|
|
|
beta += diff.dot(diff); |
|
|
|
|
} |
|
|
|
|
if( y>0 && x>0 ) // upleft
|
|
|
|
|
{ |
|
|
|
|
Vec3f diff = color - (Vec3f)img.at<Vec3b>(y-1,x-1); |
|
|
|
|
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x-1); |
|
|
|
|
beta += diff.dot(diff); |
|
|
|
|
} |
|
|
|
|
if( y>0 ) // up
|
|
|
|
|
{ |
|
|
|
|
Vec3f diff = color - (Vec3f)img.at<Vec3b>(y-1,x); |
|
|
|
|
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x); |
|
|
|
|
beta += diff.dot(diff); |
|
|
|
|
} |
|
|
|
|
if( y>0 && x<img.cols-1) // upright
|
|
|
|
|
{ |
|
|
|
|
Vec3f diff = color - (Vec3f)img.at<Vec3b>(y-1,x+1); |
|
|
|
|
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x+1); |
|
|
|
|
beta += diff.dot(diff); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -261,46 +290,46 @@ float calcBeta( const Mat& img ) |
|
|
|
|
Calculate weights of noterminal vertices of graph. |
|
|
|
|
beta and gamma - parameters of GrabCut algorithm. |
|
|
|
|
*/ |
|
|
|
|
void calcNWeights( const Mat& img, Mat& leftW, Mat& upleftW, Mat& upW, Mat& uprightW, float beta, float gamma ) |
|
|
|
|
void calcNWeights( const Mat& img, Mat& leftW, Mat& upleftW, Mat& upW, Mat& uprightW, double beta, double gamma ) |
|
|
|
|
{ |
|
|
|
|
const float gammaDivSqrt2 = gamma / std::sqrt(2.0f); |
|
|
|
|
leftW.create( img.rows, img.cols, CV_32FC1 ); |
|
|
|
|
upleftW.create( img.rows, img.cols, CV_32FC1 ); |
|
|
|
|
upW.create( img.rows, img.cols, CV_32FC1 ); |
|
|
|
|
uprightW.create( img.rows, img.cols, CV_32FC1 ); |
|
|
|
|
const double gammaDivSqrt2 = gamma / std::sqrt(2.0f); |
|
|
|
|
leftW.create( img.rows, img.cols, CV_64FC1 ); |
|
|
|
|
upleftW.create( img.rows, img.cols, CV_64FC1 ); |
|
|
|
|
upW.create( img.rows, img.cols, CV_64FC1 ); |
|
|
|
|
uprightW.create( img.rows, img.cols, CV_64FC1 ); |
|
|
|
|
for( int y = 0; y < img.rows; y++ ) |
|
|
|
|
{ |
|
|
|
|
for( int x = 0; x < img.cols; x++ ) |
|
|
|
|
{ |
|
|
|
|
Vec3f color = img.at<Vec3b>(y,x); |
|
|
|
|
Vec3d color = img.at<Vec3b>(y,x); |
|
|
|
|
if( x-1>=0 ) // left
|
|
|
|
|
{ |
|
|
|
|
Vec3f diff = color - (Vec3f)img.at<Vec3b>(y,x-1); |
|
|
|
|
leftW.at<float>(y,x) = gamma * exp(-beta*diff.dot(diff)); |
|
|
|
|
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y,x-1); |
|
|
|
|
leftW.at<double>(y,x) = gamma * exp(-beta*diff.dot(diff)); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
leftW.at<float>(y,x) = 0; |
|
|
|
|
leftW.at<double>(y,x) = 0; |
|
|
|
|
if( x-1>=0 && y-1>=0 ) // upleft
|
|
|
|
|
{ |
|
|
|
|
Vec3f diff = color - (Vec3f)img.at<Vec3b>(y-1,x-1); |
|
|
|
|
upleftW.at<float>(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff)); |
|
|
|
|
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x-1); |
|
|
|
|
upleftW.at<double>(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff)); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
upleftW.at<float>(y,x) = 0; |
|
|
|
|
upleftW.at<double>(y,x) = 0; |
|
|
|
|
if( y-1>=0 ) // up
|
|
|
|
|
{ |
|
|
|
|
Vec3f diff = color - (Vec3f)img.at<Vec3b>(y-1,x); |
|
|
|
|
upW.at<float>(y,x) = gamma * exp(-beta*diff.dot(diff)); |
|
|
|
|
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x); |
|
|
|
|
upW.at<double>(y,x) = gamma * exp(-beta*diff.dot(diff)); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
upW.at<float>(y,x) = 0; |
|
|
|
|
upW.at<double>(y,x) = 0; |
|
|
|
|
if( x+1<img.cols-1 && y-1>=0 ) // upright
|
|
|
|
|
{ |
|
|
|
|
Vec3f diff = color - (Vec3f)img.at<Vec3b>(y-1,x+1); |
|
|
|
|
uprightW.at<float>(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff)); |
|
|
|
|
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x+1); |
|
|
|
|
uprightW.at<double>(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff)); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
uprightW.at<float>(y,x) = 0; |
|
|
|
|
uprightW.at<double>(y,x) = 0; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -394,8 +423,8 @@ void assignGMMsComponents( const Mat& img, const Mat& mask, const GMM& bgdGMM, c |
|
|
|
|
{ |
|
|
|
|
for( p.x = 0; p.x < img.cols; p.x++ ) |
|
|
|
|
{ |
|
|
|
|
Vec3f color = img.at<Vec3b>(p); |
|
|
|
|
compIdxs.at<int>(p) = mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD ? |
|
|
|
|
Vec3d color = img.at<Vec3b>(p); |
|
|
|
|
compIdxs.at<int>(p) = mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD ? |
|
|
|
|
bgdGMM.whichComponent(color) : fgdGMM.whichComponent(color); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -432,9 +461,9 @@ void learnGMMs( const Mat& img, const Mat& mask, const Mat& compIdxs, GMM& bgdGM |
|
|
|
|
/*
|
|
|
|
|
Construct GCGraph |
|
|
|
|
*/ |
|
|
|
|
void constructGCGraph( const Mat& img, const Mat& mask, const GMM& bgdGMM, const GMM& fgdGMM, float lambda, |
|
|
|
|
void constructGCGraph( const Mat& img, const Mat& mask, const GMM& bgdGMM, const GMM& fgdGMM, double lambda, |
|
|
|
|
const Mat& leftW, const Mat& upleftW, const Mat& upW, const Mat& uprightW, |
|
|
|
|
GCGraph<float>& graph ) |
|
|
|
|
GCGraph<double>& graph ) |
|
|
|
|
{ |
|
|
|
|
int vtxCount = img.cols*img.rows, |
|
|
|
|
edgeCount = 2*(4*img.cols*img.rows - 3*(img.cols + img.rows) + 2); |
|
|
|
@ -449,7 +478,7 @@ void constructGCGraph( const Mat& img, const Mat& mask, const GMM& bgdGMM, const |
|
|
|
|
Vec3b color = img.at<Vec3b>(p); |
|
|
|
|
|
|
|
|
|
// set t-weights
|
|
|
|
|
float fromSource, toSink; |
|
|
|
|
double fromSource, toSink; |
|
|
|
|
if( mask.at<uchar>(p) == GC_PR_BGD || mask.at<uchar>(p) == GC_PR_FGD ) |
|
|
|
|
{ |
|
|
|
|
fromSource = -log( bgdGMM(color) ); |
|
|
|
@ -470,22 +499,22 @@ void constructGCGraph( const Mat& img, const Mat& mask, const GMM& bgdGMM, const |
|
|
|
|
// set n-weights
|
|
|
|
|
if( p.x>0 ) |
|
|
|
|
{ |
|
|
|
|
float w = leftW.at<float>(p); |
|
|
|
|
double w = leftW.at<double>(p); |
|
|
|
|
graph.addEdges( vtxIdx, vtxIdx-1, w, w ); |
|
|
|
|
} |
|
|
|
|
if( p.x>0 && p.y>0 ) |
|
|
|
|
{ |
|
|
|
|
float w = upleftW.at<float>(p); |
|
|
|
|
double w = upleftW.at<double>(p); |
|
|
|
|
graph.addEdges( vtxIdx, vtxIdx-img.cols-1, w, w ); |
|
|
|
|
} |
|
|
|
|
if( p.y>0 ) |
|
|
|
|
{ |
|
|
|
|
float w = upW.at<float>(p); |
|
|
|
|
double w = upW.at<double>(p); |
|
|
|
|
graph.addEdges( vtxIdx, vtxIdx-img.cols, w, w ); |
|
|
|
|
} |
|
|
|
|
if( p.x<img.cols-1 && p.y>0 ) |
|
|
|
|
{ |
|
|
|
|
float w = uprightW.at<float>(p); |
|
|
|
|
double w = uprightW.at<double>(p); |
|
|
|
|
graph.addEdges( vtxIdx, vtxIdx-img.cols+1, w, w ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -495,7 +524,7 @@ void constructGCGraph( const Mat& img, const Mat& mask, const GMM& bgdGMM, const |
|
|
|
|
/*
|
|
|
|
|
Estimate segmentation using MaxFlow algorithm |
|
|
|
|
*/ |
|
|
|
|
void estimateSegmentation( GCGraph<float>& graph, Mat& mask ) |
|
|
|
|
void estimateSegmentation( GCGraph<double>& graph, Mat& mask ) |
|
|
|
|
{ |
|
|
|
|
graph.maxFlow(); |
|
|
|
|
Point p; |
|
|
|
@ -541,16 +570,16 @@ void cv::grabCut( const Mat& img, Mat& mask, Rect rect, |
|
|
|
|
if( mode == GC_EVAL ) |
|
|
|
|
checkMask( img, mask ); |
|
|
|
|
|
|
|
|
|
const float gamma = 50; |
|
|
|
|
const float lambda = 9*gamma; |
|
|
|
|
const float beta = calcBeta( img ); |
|
|
|
|
const double gamma = 50; |
|
|
|
|
const double lambda = 9*gamma; |
|
|
|
|
const double beta = calcBeta( img ); |
|
|
|
|
|
|
|
|
|
Mat leftW, upleftW, upW, uprightW; |
|
|
|
|
calcNWeights( img, leftW, upleftW, upW, uprightW, beta, gamma ); |
|
|
|
|
|
|
|
|
|
for( int i = 0; i < iterCount; i++ ) |
|
|
|
|
{ |
|
|
|
|
GCGraph<float> graph; |
|
|
|
|
GCGraph<double> graph; |
|
|
|
|
assignGMMsComponents( img, mask, bgdGMM, fgdGMM, compIdxs ); |
|
|
|
|
learnGMMs( img, mask, compIdxs, bgdGMM, fgdGMM ); |
|
|
|
|
constructGCGraph(img, mask, bgdGMM, fgdGMM, lambda, leftW, upleftW, upW, uprightW, graph ); |
|
|
|
|