|
|
|
@ -407,7 +407,7 @@ float CvNormalBayesClassifier::predict( const CvMat* samples, CvMat* results, Cv |
|
|
|
|
if( !CV_IS_MAT(results) || (CV_MAT_TYPE(results->type) != CV_32FC1 && |
|
|
|
|
CV_MAT_TYPE(results->type) != CV_32SC1) || |
|
|
|
|
(results->cols != 1 && results->rows != 1) || |
|
|
|
|
results->cols + results->rows - 1 != samples->rows ) |
|
|
|
|
results->cols + results->rows - 1 != samples->rows ) |
|
|
|
|
CV_Error( CV_StsBadArg, "The output array must be integer or floating-point vector " |
|
|
|
|
"with the number of elements = number of rows in the input matrix" ); |
|
|
|
|
} |
|
|
|
@ -415,9 +415,9 @@ float CvNormalBayesClassifier::predict( const CvMat* samples, CvMat* results, Cv |
|
|
|
|
if( results_prob ) |
|
|
|
|
{ |
|
|
|
|
if( !CV_IS_MAT(results_prob) || (CV_MAT_TYPE(results_prob->type) != CV_32FC1 && |
|
|
|
|
CV_MAT_TYPE(results_prob->type) != CV_64FC1) || |
|
|
|
|
CV_MAT_TYPE(results_prob->type) != CV_64FC1) || |
|
|
|
|
(results_prob->cols != 1 && results_prob->rows != 1) || |
|
|
|
|
results_prob->cols + results_prob->rows - 1 != samples->rows ) |
|
|
|
|
results_prob->cols + results_prob->rows - 1 != samples->rows ) |
|
|
|
|
CV_Error( CV_StsBadArg, "The output array must be double or float vector " |
|
|
|
|
"with the number of elements = number of rows in the input matrix" ); |
|
|
|
|
} |
|
|
|
|