mirror of https://github.com/opencv/opencv.git
parent
1d79e13133
commit
f614e35443
11 changed files with 2714 additions and 2323 deletions
@ -0,0 +1,138 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors "as is" and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#if !defined CUDA_DISABLER |
||||
|
||||
#include "opencv2/core/cuda/common.hpp" |
||||
#include "opencv2/core/cuda/emulation.hpp" |
||||
|
||||
namespace cv { namespace gpu { namespace cudev |
||||
{ |
||||
namespace hough |
||||
{ |
||||
__device__ int g_counter; |
||||
|
||||
template <int PIXELS_PER_THREAD> |
||||
__global__ void buildPointList(const PtrStepSzb src, unsigned int* list) |
||||
{ |
||||
__shared__ unsigned int s_queues[4][32 * PIXELS_PER_THREAD]; |
||||
__shared__ int s_qsize[4]; |
||||
__shared__ int s_globStart[4]; |
||||
|
||||
const int x = blockIdx.x * blockDim.x * PIXELS_PER_THREAD + threadIdx.x; |
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if (threadIdx.x == 0) |
||||
s_qsize[threadIdx.y] = 0; |
||||
__syncthreads(); |
||||
|
||||
if (y < src.rows) |
||||
{ |
||||
// fill the queue |
||||
const uchar* srcRow = src.ptr(y); |
||||
for (int i = 0, xx = x; i < PIXELS_PER_THREAD && xx < src.cols; ++i, xx += blockDim.x) |
||||
{ |
||||
if (srcRow[xx]) |
||||
{ |
||||
const unsigned int val = (y << 16) | xx; |
||||
const int qidx = Emulation::smem::atomicAdd(&s_qsize[threadIdx.y], 1); |
||||
s_queues[threadIdx.y][qidx] = val; |
||||
} |
||||
} |
||||
} |
||||
|
||||
__syncthreads(); |
||||
|
||||
// let one thread reserve the space required in the global list |
||||
if (threadIdx.x == 0 && threadIdx.y == 0) |
||||
{ |
||||
// find how many items are stored in each list |
||||
int totalSize = 0; |
||||
for (int i = 0; i < blockDim.y; ++i) |
||||
{ |
||||
s_globStart[i] = totalSize; |
||||
totalSize += s_qsize[i]; |
||||
} |
||||
|
||||
// calculate the offset in the global list |
||||
const int globalOffset = atomicAdd(&g_counter, totalSize); |
||||
for (int i = 0; i < blockDim.y; ++i) |
||||
s_globStart[i] += globalOffset; |
||||
} |
||||
|
||||
__syncthreads(); |
||||
|
||||
// copy local queues to global queue |
||||
const int qsize = s_qsize[threadIdx.y]; |
||||
int gidx = s_globStart[threadIdx.y] + threadIdx.x; |
||||
for(int i = threadIdx.x; i < qsize; i += blockDim.x, gidx += blockDim.x) |
||||
list[gidx] = s_queues[threadIdx.y][i]; |
||||
} |
||||
|
||||
int buildPointList_gpu(PtrStepSzb src, unsigned int* list) |
||||
{ |
||||
const int PIXELS_PER_THREAD = 16; |
||||
|
||||
void* counterPtr; |
||||
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) ); |
||||
|
||||
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) ); |
||||
|
||||
const dim3 block(32, 4); |
||||
const dim3 grid(divUp(src.cols, block.x * PIXELS_PER_THREAD), divUp(src.rows, block.y)); |
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(buildPointList<PIXELS_PER_THREAD>, cudaFuncCachePreferShared) ); |
||||
|
||||
buildPointList<PIXELS_PER_THREAD><<<grid, block>>>(src, list); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
|
||||
int totalCount; |
||||
cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) ); |
||||
|
||||
return totalCount; |
||||
} |
||||
} |
||||
}}} |
||||
|
||||
#endif /* CUDA_DISABLER */ |
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,255 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors "as is" and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#if !defined CUDA_DISABLER |
||||
|
||||
#include "opencv2/core/cuda/common.hpp" |
||||
#include "opencv2/core/cuda/emulation.hpp" |
||||
#include "opencv2/core/cuda/dynamic_smem.hpp" |
||||
|
||||
namespace cv { namespace gpu { namespace cudev |
||||
{ |
||||
namespace hough_circles |
||||
{ |
||||
__device__ int g_counter; |
||||
|
||||
//////////////////////////////////////////////////////////////////////// |
||||
// circlesAccumCenters |
||||
|
||||
__global__ void circlesAccumCenters(const unsigned int* list, const int count, const PtrStepi dx, const PtrStepi dy, |
||||
PtrStepi accum, const int width, const int height, const int minRadius, const int maxRadius, const float idp) |
||||
{ |
||||
const int SHIFT = 10; |
||||
const int ONE = 1 << SHIFT; |
||||
|
||||
const int tid = blockIdx.x * blockDim.x + threadIdx.x; |
||||
|
||||
if (tid >= count) |
||||
return; |
||||
|
||||
const unsigned int val = list[tid]; |
||||
|
||||
const int x = (val & 0xFFFF); |
||||
const int y = (val >> 16) & 0xFFFF; |
||||
|
||||
const int vx = dx(y, x); |
||||
const int vy = dy(y, x); |
||||
|
||||
if (vx == 0 && vy == 0) |
||||
return; |
||||
|
||||
const float mag = ::sqrtf(vx * vx + vy * vy); |
||||
|
||||
const int x0 = __float2int_rn((x * idp) * ONE); |
||||
const int y0 = __float2int_rn((y * idp) * ONE); |
||||
|
||||
int sx = __float2int_rn((vx * idp) * ONE / mag); |
||||
int sy = __float2int_rn((vy * idp) * ONE / mag); |
||||
|
||||
// Step from minRadius to maxRadius in both directions of the gradient |
||||
for (int k1 = 0; k1 < 2; ++k1) |
||||
{ |
||||
int x1 = x0 + minRadius * sx; |
||||
int y1 = y0 + minRadius * sy; |
||||
|
||||
for (int r = minRadius; r <= maxRadius; x1 += sx, y1 += sy, ++r) |
||||
{ |
||||
const int x2 = x1 >> SHIFT; |
||||
const int y2 = y1 >> SHIFT; |
||||
|
||||
if (x2 < 0 || x2 >= width || y2 < 0 || y2 >= height) |
||||
break; |
||||
|
||||
::atomicAdd(accum.ptr(y2 + 1) + x2 + 1, 1); |
||||
} |
||||
|
||||
sx = -sx; |
||||
sy = -sy; |
||||
} |
||||
} |
||||
|
||||
void circlesAccumCenters_gpu(const unsigned int* list, int count, PtrStepi dx, PtrStepi dy, PtrStepSzi accum, int minRadius, int maxRadius, float idp) |
||||
{ |
||||
const dim3 block(256); |
||||
const dim3 grid(divUp(count, block.x)); |
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(circlesAccumCenters, cudaFuncCachePreferL1) ); |
||||
|
||||
circlesAccumCenters<<<grid, block>>>(list, count, dx, dy, accum, accum.cols - 2, accum.rows - 2, minRadius, maxRadius, idp); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////// |
||||
// buildCentersList |
||||
|
||||
__global__ void buildCentersList(const PtrStepSzi accum, unsigned int* centers, const int threshold) |
||||
{ |
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x; |
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if (x < accum.cols - 2 && y < accum.rows - 2) |
||||
{ |
||||
const int top = accum(y, x + 1); |
||||
|
||||
const int left = accum(y + 1, x); |
||||
const int cur = accum(y + 1, x + 1); |
||||
const int right = accum(y + 1, x + 2); |
||||
|
||||
const int bottom = accum(y + 2, x + 1); |
||||
|
||||
if (cur > threshold && cur > top && cur >= bottom && cur > left && cur >= right) |
||||
{ |
||||
const unsigned int val = (y << 16) | x; |
||||
const int idx = ::atomicAdd(&g_counter, 1); |
||||
centers[idx] = val; |
||||
} |
||||
} |
||||
} |
||||
|
||||
int buildCentersList_gpu(PtrStepSzi accum, unsigned int* centers, int threshold) |
||||
{ |
||||
void* counterPtr; |
||||
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) ); |
||||
|
||||
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) ); |
||||
|
||||
const dim3 block(32, 8); |
||||
const dim3 grid(divUp(accum.cols - 2, block.x), divUp(accum.rows - 2, block.y)); |
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(buildCentersList, cudaFuncCachePreferL1) ); |
||||
|
||||
buildCentersList<<<grid, block>>>(accum, centers, threshold); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
|
||||
int totalCount; |
||||
cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) ); |
||||
|
||||
return totalCount; |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////// |
||||
// circlesAccumRadius |
||||
|
||||
__global__ void circlesAccumRadius(const unsigned int* centers, const unsigned int* list, const int count, |
||||
float3* circles, const int maxCircles, const float dp, |
||||
const int minRadius, const int maxRadius, const int histSize, const int threshold) |
||||
{ |
||||
int* smem = DynamicSharedMem<int>(); |
||||
|
||||
for (int i = threadIdx.x; i < histSize + 2; i += blockDim.x) |
||||
smem[i] = 0; |
||||
__syncthreads(); |
||||
|
||||
unsigned int val = centers[blockIdx.x]; |
||||
|
||||
float cx = (val & 0xFFFF); |
||||
float cy = (val >> 16) & 0xFFFF; |
||||
|
||||
cx = (cx + 0.5f) * dp; |
||||
cy = (cy + 0.5f) * dp; |
||||
|
||||
for (int i = threadIdx.x; i < count; i += blockDim.x) |
||||
{ |
||||
val = list[i]; |
||||
|
||||
const int x = (val & 0xFFFF); |
||||
const int y = (val >> 16) & 0xFFFF; |
||||
|
||||
const float rad = ::sqrtf((cx - x) * (cx - x) + (cy - y) * (cy - y)); |
||||
if (rad >= minRadius && rad <= maxRadius) |
||||
{ |
||||
const int r = __float2int_rn(rad - minRadius); |
||||
|
||||
Emulation::smem::atomicAdd(&smem[r + 1], 1); |
||||
} |
||||
} |
||||
|
||||
__syncthreads(); |
||||
|
||||
for (int i = threadIdx.x; i < histSize; i += blockDim.x) |
||||
{ |
||||
const int curVotes = smem[i + 1]; |
||||
|
||||
if (curVotes >= threshold && curVotes > smem[i] && curVotes >= smem[i + 2]) |
||||
{ |
||||
const int ind = ::atomicAdd(&g_counter, 1); |
||||
if (ind < maxCircles) |
||||
circles[ind] = make_float3(cx, cy, i + minRadius); |
||||
} |
||||
} |
||||
} |
||||
|
||||
int circlesAccumRadius_gpu(const unsigned int* centers, int centersCount, const unsigned int* list, int count, |
||||
float3* circles, int maxCircles, float dp, int minRadius, int maxRadius, int threshold, bool has20) |
||||
{ |
||||
void* counterPtr; |
||||
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) ); |
||||
|
||||
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) ); |
||||
|
||||
const dim3 block(has20 ? 1024 : 512); |
||||
const dim3 grid(centersCount); |
||||
|
||||
const int histSize = maxRadius - minRadius + 1; |
||||
size_t smemSize = (histSize + 2) * sizeof(int); |
||||
|
||||
circlesAccumRadius<<<grid, block, smemSize>>>(centers, list, count, circles, maxCircles, dp, minRadius, maxRadius, histSize, threshold); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
|
||||
int totalCount; |
||||
cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) ); |
||||
|
||||
totalCount = ::min(totalCount, maxCircles); |
||||
|
||||
return totalCount; |
||||
} |
||||
} |
||||
}}} |
||||
|
||||
|
||||
#endif /* CUDA_DISABLER */ |
@ -0,0 +1,212 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors "as is" and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#if !defined CUDA_DISABLER |
||||
|
||||
#include <thrust/device_ptr.h> |
||||
#include <thrust/sort.h> |
||||
|
||||
#include "opencv2/core/cuda/common.hpp" |
||||
#include "opencv2/core/cuda/emulation.hpp" |
||||
#include "opencv2/core/cuda/dynamic_smem.hpp" |
||||
|
||||
namespace cv { namespace gpu { namespace cudev |
||||
{ |
||||
namespace hough_lines |
||||
{ |
||||
__device__ int g_counter; |
||||
|
||||
//////////////////////////////////////////////////////////////////////// |
||||
// linesAccum |
||||
|
||||
__global__ void linesAccumGlobal(const unsigned int* list, const int count, PtrStepi accum, const float irho, const float theta, const int numrho) |
||||
{ |
||||
const int n = blockIdx.x; |
||||
const float ang = n * theta; |
||||
|
||||
float sinVal; |
||||
float cosVal; |
||||
sincosf(ang, &sinVal, &cosVal); |
||||
sinVal *= irho; |
||||
cosVal *= irho; |
||||
|
||||
const int shift = (numrho - 1) / 2; |
||||
|
||||
int* accumRow = accum.ptr(n + 1); |
||||
for (int i = threadIdx.x; i < count; i += blockDim.x) |
||||
{ |
||||
const unsigned int val = list[i]; |
||||
|
||||
const int x = (val & 0xFFFF); |
||||
const int y = (val >> 16) & 0xFFFF; |
||||
|
||||
int r = __float2int_rn(x * cosVal + y * sinVal); |
||||
r += shift; |
||||
|
||||
::atomicAdd(accumRow + r + 1, 1); |
||||
} |
||||
} |
||||
|
||||
__global__ void linesAccumShared(const unsigned int* list, const int count, PtrStepi accum, const float irho, const float theta, const int numrho) |
||||
{ |
||||
int* smem = DynamicSharedMem<int>(); |
||||
|
||||
for (int i = threadIdx.x; i < numrho + 1; i += blockDim.x) |
||||
smem[i] = 0; |
||||
|
||||
__syncthreads(); |
||||
|
||||
const int n = blockIdx.x; |
||||
const float ang = n * theta; |
||||
|
||||
float sinVal; |
||||
float cosVal; |
||||
sincosf(ang, &sinVal, &cosVal); |
||||
sinVal *= irho; |
||||
cosVal *= irho; |
||||
|
||||
const int shift = (numrho - 1) / 2; |
||||
|
||||
for (int i = threadIdx.x; i < count; i += blockDim.x) |
||||
{ |
||||
const unsigned int val = list[i]; |
||||
|
||||
const int x = (val & 0xFFFF); |
||||
const int y = (val >> 16) & 0xFFFF; |
||||
|
||||
int r = __float2int_rn(x * cosVal + y * sinVal); |
||||
r += shift; |
||||
|
||||
Emulation::smem::atomicAdd(&smem[r + 1], 1); |
||||
} |
||||
|
||||
__syncthreads(); |
||||
|
||||
int* accumRow = accum.ptr(n + 1); |
||||
for (int i = threadIdx.x; i < numrho + 1; i += blockDim.x) |
||||
accumRow[i] = smem[i]; |
||||
} |
||||
|
||||
void linesAccum_gpu(const unsigned int* list, int count, PtrStepSzi accum, float rho, float theta, size_t sharedMemPerBlock, bool has20) |
||||
{ |
||||
const dim3 block(has20 ? 1024 : 512); |
||||
const dim3 grid(accum.rows - 2); |
||||
|
||||
size_t smemSize = (accum.cols - 1) * sizeof(int); |
||||
|
||||
if (smemSize < sharedMemPerBlock - 1000) |
||||
linesAccumShared<<<grid, block, smemSize>>>(list, count, accum, 1.0f / rho, theta, accum.cols - 2); |
||||
else |
||||
linesAccumGlobal<<<grid, block>>>(list, count, accum, 1.0f / rho, theta, accum.cols - 2); |
||||
|
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////// |
||||
// linesGetResult |
||||
|
||||
__global__ void linesGetResult(const PtrStepSzi accum, float2* out, int* votes, const int maxSize, const float rho, const float theta, const int threshold, const int numrho) |
||||
{ |
||||
const int r = blockIdx.x * blockDim.x + threadIdx.x; |
||||
const int n = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if (r >= accum.cols - 2 || n >= accum.rows - 2) |
||||
return; |
||||
|
||||
const int curVotes = accum(n + 1, r + 1); |
||||
|
||||
if (curVotes > threshold && |
||||
curVotes > accum(n + 1, r) && |
||||
curVotes >= accum(n + 1, r + 2) && |
||||
curVotes > accum(n, r + 1) && |
||||
curVotes >= accum(n + 2, r + 1)) |
||||
{ |
||||
const float radius = (r - (numrho - 1) * 0.5f) * rho; |
||||
const float angle = n * theta; |
||||
|
||||
const int ind = ::atomicAdd(&g_counter, 1); |
||||
if (ind < maxSize) |
||||
{ |
||||
out[ind] = make_float2(radius, angle); |
||||
votes[ind] = curVotes; |
||||
} |
||||
} |
||||
} |
||||
|
||||
int linesGetResult_gpu(PtrStepSzi accum, float2* out, int* votes, int maxSize, float rho, float theta, int threshold, bool doSort) |
||||
{ |
||||
void* counterPtr; |
||||
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) ); |
||||
|
||||
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) ); |
||||
|
||||
const dim3 block(32, 8); |
||||
const dim3 grid(divUp(accum.cols - 2, block.x), divUp(accum.rows - 2, block.y)); |
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(linesGetResult, cudaFuncCachePreferL1) ); |
||||
|
||||
linesGetResult<<<grid, block>>>(accum, out, votes, maxSize, rho, theta, threshold, accum.cols - 2); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
|
||||
int totalCount; |
||||
cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) ); |
||||
|
||||
totalCount = ::min(totalCount, maxSize); |
||||
|
||||
if (doSort && totalCount > 0) |
||||
{ |
||||
thrust::device_ptr<float2> outPtr(out); |
||||
thrust::device_ptr<int> votesPtr(votes); |
||||
thrust::sort_by_key(votesPtr, votesPtr + totalCount, outPtr, thrust::greater<int>()); |
||||
} |
||||
|
||||
return totalCount; |
||||
} |
||||
} |
||||
}}} |
||||
|
||||
|
||||
#endif /* CUDA_DISABLER */ |
@ -0,0 +1,249 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors "as is" and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#if !defined CUDA_DISABLER |
||||
|
||||
#include "opencv2/core/cuda/common.hpp" |
||||
#include "opencv2/core/cuda/vec_math.hpp" |
||||
|
||||
namespace cv { namespace gpu { namespace cudev |
||||
{ |
||||
namespace hough_segments |
||||
{ |
||||
__device__ int g_counter; |
||||
|
||||
texture<uchar, cudaTextureType2D, cudaReadModeElementType> tex_mask(false, cudaFilterModePoint, cudaAddressModeClamp); |
||||
|
||||
__global__ void houghLinesProbabilistic(const PtrStepSzi accum, |
||||
int4* out, const int maxSize, |
||||
const float rho, const float theta, |
||||
const int lineGap, const int lineLength, |
||||
const int rows, const int cols) |
||||
{ |
||||
const int r = blockIdx.x * blockDim.x + threadIdx.x; |
||||
const int n = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if (r >= accum.cols - 2 || n >= accum.rows - 2) |
||||
return; |
||||
|
||||
const int curVotes = accum(n + 1, r + 1); |
||||
|
||||
if (curVotes >= lineLength && |
||||
curVotes > accum(n, r) && |
||||
curVotes > accum(n, r + 1) && |
||||
curVotes > accum(n, r + 2) && |
||||
curVotes > accum(n + 1, r) && |
||||
curVotes > accum(n + 1, r + 2) && |
||||
curVotes > accum(n + 2, r) && |
||||
curVotes > accum(n + 2, r + 1) && |
||||
curVotes > accum(n + 2, r + 2)) |
||||
{ |
||||
const float radius = (r - (accum.cols - 2 - 1) * 0.5f) * rho; |
||||
const float angle = n * theta; |
||||
|
||||
float cosa; |
||||
float sina; |
||||
sincosf(angle, &sina, &cosa); |
||||
|
||||
float2 p0 = make_float2(cosa * radius, sina * radius); |
||||
float2 dir = make_float2(-sina, cosa); |
||||
|
||||
float2 pb[4] = {make_float2(-1, -1), make_float2(-1, -1), make_float2(-1, -1), make_float2(-1, -1)}; |
||||
float a; |
||||
|
||||
if (dir.x != 0) |
||||
{ |
||||
a = -p0.x / dir.x; |
||||
pb[0].x = 0; |
||||
pb[0].y = p0.y + a * dir.y; |
||||
|
||||
a = (cols - 1 - p0.x) / dir.x; |
||||
pb[1].x = cols - 1; |
||||
pb[1].y = p0.y + a * dir.y; |
||||
} |
||||
if (dir.y != 0) |
||||
{ |
||||
a = -p0.y / dir.y; |
||||
pb[2].x = p0.x + a * dir.x; |
||||
pb[2].y = 0; |
||||
|
||||
a = (rows - 1 - p0.y) / dir.y; |
||||
pb[3].x = p0.x + a * dir.x; |
||||
pb[3].y = rows - 1; |
||||
} |
||||
|
||||
if (pb[0].x == 0 && (pb[0].y >= 0 && pb[0].y < rows)) |
||||
{ |
||||
p0 = pb[0]; |
||||
if (dir.x < 0) |
||||
dir = -dir; |
||||
} |
||||
else if (pb[1].x == cols - 1 && (pb[0].y >= 0 && pb[0].y < rows)) |
||||
{ |
||||
p0 = pb[1]; |
||||
if (dir.x > 0) |
||||
dir = -dir; |
||||
} |
||||
else if (pb[2].y == 0 && (pb[2].x >= 0 && pb[2].x < cols)) |
||||
{ |
||||
p0 = pb[2]; |
||||
if (dir.y < 0) |
||||
dir = -dir; |
||||
} |
||||
else if (pb[3].y == rows - 1 && (pb[3].x >= 0 && pb[3].x < cols)) |
||||
{ |
||||
p0 = pb[3]; |
||||
if (dir.y > 0) |
||||
dir = -dir; |
||||
} |
||||
|
||||
float2 d; |
||||
if (::fabsf(dir.x) > ::fabsf(dir.y)) |
||||
{ |
||||
d.x = dir.x > 0 ? 1 : -1; |
||||
d.y = dir.y / ::fabsf(dir.x); |
||||
} |
||||
else |
||||
{ |
||||
d.x = dir.x / ::fabsf(dir.y); |
||||
d.y = dir.y > 0 ? 1 : -1; |
||||
} |
||||
|
||||
float2 line_end[2]; |
||||
int gap; |
||||
bool inLine = false; |
||||
|
||||
float2 p1 = p0; |
||||
if (p1.x < 0 || p1.x >= cols || p1.y < 0 || p1.y >= rows) |
||||
return; |
||||
|
||||
for (;;) |
||||
{ |
||||
if (tex2D(tex_mask, p1.x, p1.y)) |
||||
{ |
||||
gap = 0; |
||||
|
||||
if (!inLine) |
||||
{ |
||||
line_end[0] = p1; |
||||
line_end[1] = p1; |
||||
inLine = true; |
||||
} |
||||
else |
||||
{ |
||||
line_end[1] = p1; |
||||
} |
||||
} |
||||
else if (inLine) |
||||
{ |
||||
if (++gap > lineGap) |
||||
{ |
||||
bool good_line = ::abs(line_end[1].x - line_end[0].x) >= lineLength || |
||||
::abs(line_end[1].y - line_end[0].y) >= lineLength; |
||||
|
||||
if (good_line) |
||||
{ |
||||
const int ind = ::atomicAdd(&g_counter, 1); |
||||
if (ind < maxSize) |
||||
out[ind] = make_int4(line_end[0].x, line_end[0].y, line_end[1].x, line_end[1].y); |
||||
} |
||||
|
||||
gap = 0; |
||||
inLine = false; |
||||
} |
||||
} |
||||
|
||||
p1 = p1 + d; |
||||
if (p1.x < 0 || p1.x >= cols || p1.y < 0 || p1.y >= rows) |
||||
{ |
||||
if (inLine) |
||||
{ |
||||
bool good_line = ::abs(line_end[1].x - line_end[0].x) >= lineLength || |
||||
::abs(line_end[1].y - line_end[0].y) >= lineLength; |
||||
|
||||
if (good_line) |
||||
{ |
||||
const int ind = ::atomicAdd(&g_counter, 1); |
||||
if (ind < maxSize) |
||||
out[ind] = make_int4(line_end[0].x, line_end[0].y, line_end[1].x, line_end[1].y); |
||||
} |
||||
|
||||
} |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
int houghLinesProbabilistic_gpu(PtrStepSzb mask, PtrStepSzi accum, int4* out, int maxSize, float rho, float theta, int lineGap, int lineLength) |
||||
{ |
||||
void* counterPtr; |
||||
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) ); |
||||
|
||||
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) ); |
||||
|
||||
const dim3 block(32, 8); |
||||
const dim3 grid(divUp(accum.cols - 2, block.x), divUp(accum.rows - 2, block.y)); |
||||
|
||||
bindTexture(&tex_mask, mask); |
||||
|
||||
houghLinesProbabilistic<<<grid, block>>>(accum, |
||||
out, maxSize, |
||||
rho, theta, |
||||
lineGap, lineLength, |
||||
mask.rows, mask.cols); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
|
||||
int totalCount; |
||||
cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) ); |
||||
|
||||
totalCount = ::min(totalCount, maxSize); |
||||
|
||||
return totalCount; |
||||
} |
||||
} |
||||
}}} |
||||
|
||||
|
||||
#endif /* CUDA_DISABLER */ |
@ -0,0 +1,297 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
|
||||
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
||||
|
||||
Ptr<gpu::HoughCirclesDetector> cv::gpu::createHoughCirclesDetector(float, float, int, int, int, int, int) { throw_no_cuda(); return Ptr<HoughCirclesDetector>(); } |
||||
|
||||
#else /* !defined (HAVE_CUDA) */ |
||||
|
||||
namespace cv { namespace gpu { namespace cudev |
||||
{ |
||||
namespace hough |
||||
{ |
||||
int buildPointList_gpu(PtrStepSzb src, unsigned int* list); |
||||
} |
||||
|
||||
namespace hough_circles |
||||
{ |
||||
void circlesAccumCenters_gpu(const unsigned int* list, int count, PtrStepi dx, PtrStepi dy, PtrStepSzi accum, int minRadius, int maxRadius, float idp); |
||||
int buildCentersList_gpu(PtrStepSzi accum, unsigned int* centers, int threshold); |
||||
int circlesAccumRadius_gpu(const unsigned int* centers, int centersCount, const unsigned int* list, int count, |
||||
float3* circles, int maxCircles, float dp, int minRadius, int maxRadius, int threshold, bool has20); |
||||
} |
||||
}}} |
||||
|
||||
namespace |
||||
{ |
||||
class HoughCirclesDetectorImpl : public HoughCirclesDetector |
||||
{ |
||||
public: |
||||
HoughCirclesDetectorImpl(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles); |
||||
|
||||
void detect(InputArray src, OutputArray circles); |
||||
|
||||
void setDp(float dp) { dp_ = dp; } |
||||
float getDp() const { return dp_; } |
||||
|
||||
void setMinDist(float minDist) { minDist_ = minDist; } |
||||
float getMinDist() const { return minDist_; } |
||||
|
||||
void setCannyThreshold(int cannyThreshold) { cannyThreshold_ = cannyThreshold; } |
||||
int getCannyThreshold() const { return cannyThreshold_; } |
||||
|
||||
void setVotesThreshold(int votesThreshold) { votesThreshold_ = votesThreshold; } |
||||
int getVotesThreshold() const { return votesThreshold_; } |
||||
|
||||
void setMinRadius(int minRadius) { minRadius_ = minRadius; } |
||||
int getMinRadius() const { return minRadius_; } |
||||
|
||||
void setMaxRadius(int maxRadius) { maxRadius_ = maxRadius; } |
||||
int getMaxRadius() const { return maxRadius_; } |
||||
|
||||
void setMaxCircles(int maxCircles) { maxCircles_ = maxCircles; } |
||||
int getMaxCircles() const { return maxCircles_; } |
||||
|
||||
void write(FileStorage& fs) const |
||||
{ |
||||
fs << "name" << "HoughCirclesDetector_GPU" |
||||
<< "dp" << dp_ |
||||
<< "minDist" << minDist_ |
||||
<< "cannyThreshold" << cannyThreshold_ |
||||
<< "votesThreshold" << votesThreshold_ |
||||
<< "minRadius" << minRadius_ |
||||
<< "maxRadius" << maxRadius_ |
||||
<< "maxCircles" << maxCircles_; |
||||
} |
||||
|
||||
void read(const FileNode& fn) |
||||
{ |
||||
CV_Assert( String(fn["name"]) == "HoughCirclesDetector_GPU" ); |
||||
dp_ = (float)fn["dp"]; |
||||
minDist_ = (float)fn["minDist"]; |
||||
cannyThreshold_ = (int)fn["cannyThreshold"]; |
||||
votesThreshold_ = (int)fn["votesThreshold"]; |
||||
minRadius_ = (int)fn["minRadius"]; |
||||
maxRadius_ = (int)fn["maxRadius"]; |
||||
maxCircles_ = (int)fn["maxCircles"]; |
||||
} |
||||
|
||||
private: |
||||
float dp_; |
||||
float minDist_; |
||||
int cannyThreshold_; |
||||
int votesThreshold_; |
||||
int minRadius_; |
||||
int maxRadius_; |
||||
int maxCircles_; |
||||
|
||||
GpuMat dx_, dy_; |
||||
GpuMat edges_; |
||||
GpuMat accum_; |
||||
GpuMat list_; |
||||
GpuMat result_; |
||||
Ptr<gpu::Filter> filterDx_; |
||||
Ptr<gpu::Filter> filterDy_; |
||||
Ptr<gpu::CannyEdgeDetector> canny_; |
||||
}; |
||||
|
||||
HoughCirclesDetectorImpl::HoughCirclesDetectorImpl(float dp, float minDist, int cannyThreshold, int votesThreshold, |
||||
int minRadius, int maxRadius, int maxCircles) : |
||||
dp_(dp), minDist_(minDist), cannyThreshold_(cannyThreshold), votesThreshold_(votesThreshold), |
||||
minRadius_(minRadius), maxRadius_(maxRadius), maxCircles_(maxCircles) |
||||
{ |
||||
canny_ = gpu::createCannyEdgeDetector(std::max(cannyThreshold_ / 2, 1), cannyThreshold_); |
||||
|
||||
filterDx_ = gpu::createSobelFilter(CV_8UC1, CV_32S, 1, 0); |
||||
filterDy_ = gpu::createSobelFilter(CV_8UC1, CV_32S, 0, 1); |
||||
} |
||||
|
||||
void HoughCirclesDetectorImpl::detect(InputArray _src, OutputArray circles) |
||||
{ |
||||
using namespace cv::gpu::cudev::hough; |
||||
using namespace cv::gpu::cudev::hough_circles; |
||||
|
||||
GpuMat src = _src.getGpuMat(); |
||||
|
||||
CV_Assert( src.type() == CV_8UC1 ); |
||||
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() ); |
||||
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() ); |
||||
CV_Assert( dp_ > 0 ); |
||||
CV_Assert( minRadius_ > 0 && maxRadius_ > minRadius_ ); |
||||
CV_Assert( cannyThreshold_ > 0 ); |
||||
CV_Assert( votesThreshold_ > 0 ); |
||||
CV_Assert( maxCircles_ > 0 ); |
||||
|
||||
const float idp = 1.0f / dp_; |
||||
|
||||
filterDx_->apply(src, dx_); |
||||
filterDy_->apply(src, dy_); |
||||
|
||||
canny_->setLowThreshold(std::max(cannyThreshold_ / 2, 1)); |
||||
canny_->setHighThreshold(cannyThreshold_); |
||||
|
||||
canny_->detect(dx_, dy_, edges_); |
||||
|
||||
ensureSizeIsEnough(2, src.size().area(), CV_32SC1, list_); |
||||
unsigned int* srcPoints = list_.ptr<unsigned int>(0); |
||||
unsigned int* centers = list_.ptr<unsigned int>(1); |
||||
|
||||
const int pointsCount = buildPointList_gpu(edges_, srcPoints); |
||||
if (pointsCount == 0) |
||||
{ |
||||
circles.release(); |
||||
return; |
||||
} |
||||
|
||||
ensureSizeIsEnough(cvCeil(src.rows * idp) + 2, cvCeil(src.cols * idp) + 2, CV_32SC1, accum_); |
||||
accum_.setTo(Scalar::all(0)); |
||||
|
||||
circlesAccumCenters_gpu(srcPoints, pointsCount, dx_, dy_, accum_, minRadius_, maxRadius_, idp); |
||||
|
||||
int centersCount = buildCentersList_gpu(accum_, centers, votesThreshold_); |
||||
if (centersCount == 0) |
||||
{ |
||||
circles.release(); |
||||
return; |
||||
} |
||||
|
||||
if (minDist_ > 1) |
||||
{ |
||||
AutoBuffer<ushort2> oldBuf_(centersCount); |
||||
AutoBuffer<ushort2> newBuf_(centersCount); |
||||
int newCount = 0; |
||||
|
||||
ushort2* oldBuf = oldBuf_; |
||||
ushort2* newBuf = newBuf_; |
||||
|
||||
cudaSafeCall( cudaMemcpy(oldBuf, centers, centersCount * sizeof(ushort2), cudaMemcpyDeviceToHost) ); |
||||
|
||||
const int cellSize = cvRound(minDist_); |
||||
const int gridWidth = (src.cols + cellSize - 1) / cellSize; |
||||
const int gridHeight = (src.rows + cellSize - 1) / cellSize; |
||||
|
||||
std::vector< std::vector<ushort2> > grid(gridWidth * gridHeight); |
||||
|
||||
const float minDist2 = minDist_ * minDist_; |
||||
|
||||
for (int i = 0; i < centersCount; ++i) |
||||
{ |
||||
ushort2 p = oldBuf[i]; |
||||
|
||||
bool good = true; |
||||
|
||||
int xCell = static_cast<int>(p.x / cellSize); |
||||
int yCell = static_cast<int>(p.y / cellSize); |
||||
|
||||
int x1 = xCell - 1; |
||||
int y1 = yCell - 1; |
||||
int x2 = xCell + 1; |
||||
int y2 = yCell + 1; |
||||
|
||||
// boundary check
|
||||
x1 = std::max(0, x1); |
||||
y1 = std::max(0, y1); |
||||
x2 = std::min(gridWidth - 1, x2); |
||||
y2 = std::min(gridHeight - 1, y2); |
||||
|
||||
for (int yy = y1; yy <= y2; ++yy) |
||||
{ |
||||
for (int xx = x1; xx <= x2; ++xx) |
||||
{ |
||||
std::vector<ushort2>& m = grid[yy * gridWidth + xx]; |
||||
|
||||
for(size_t j = 0; j < m.size(); ++j) |
||||
{ |
||||
float dx = (float)(p.x - m[j].x); |
||||
float dy = (float)(p.y - m[j].y); |
||||
|
||||
if (dx * dx + dy * dy < minDist2) |
||||
{ |
||||
good = false; |
||||
goto break_out; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
break_out: |
||||
|
||||
if(good) |
||||
{ |
||||
grid[yCell * gridWidth + xCell].push_back(p); |
||||
|
||||
newBuf[newCount++] = p; |
||||
} |
||||
} |
||||
|
||||
cudaSafeCall( cudaMemcpy(centers, newBuf, newCount * sizeof(unsigned int), cudaMemcpyHostToDevice) ); |
||||
centersCount = newCount; |
||||
} |
||||
|
||||
ensureSizeIsEnough(1, maxCircles_, CV_32FC3, result_); |
||||
|
||||
int circlesCount = circlesAccumRadius_gpu(centers, centersCount, srcPoints, pointsCount, result_.ptr<float3>(), maxCircles_, |
||||
dp_, minRadius_, maxRadius_, votesThreshold_, deviceSupports(FEATURE_SET_COMPUTE_20)); |
||||
|
||||
if (circlesCount == 0) |
||||
{ |
||||
circles.release(); |
||||
return; |
||||
} |
||||
|
||||
result_.cols = circlesCount; |
||||
result_.copyTo(circles); |
||||
} |
||||
} |
||||
|
||||
Ptr<HoughCirclesDetector> cv::gpu::createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles) |
||||
{ |
||||
return new HoughCirclesDetectorImpl(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius, maxCircles); |
||||
} |
||||
|
||||
#endif /* !defined (HAVE_CUDA) */ |
@ -0,0 +1,202 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
|
||||
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
||||
|
||||
Ptr<gpu::HoughLinesDetector> cv::gpu::createHoughLinesDetector(float, float, int, bool, int) { throw_no_cuda(); return Ptr<HoughLinesDetector>(); } |
||||
|
||||
#else /* !defined (HAVE_CUDA) */ |
||||
|
||||
namespace cv { namespace gpu { namespace cudev |
||||
{ |
||||
namespace hough |
||||
{ |
||||
int buildPointList_gpu(PtrStepSzb src, unsigned int* list); |
||||
} |
||||
|
||||
namespace hough_lines |
||||
{ |
||||
void linesAccum_gpu(const unsigned int* list, int count, PtrStepSzi accum, float rho, float theta, size_t sharedMemPerBlock, bool has20); |
||||
int linesGetResult_gpu(PtrStepSzi accum, float2* out, int* votes, int maxSize, float rho, float theta, int threshold, bool doSort); |
||||
} |
||||
}}} |
||||
|
||||
namespace |
||||
{ |
||||
class HoughLinesDetectorImpl : public HoughLinesDetector |
||||
{ |
||||
public: |
||||
HoughLinesDetectorImpl(float rho, float theta, int threshold, bool doSort, int maxLines) : |
||||
rho_(rho), theta_(theta), threshold_(threshold), doSort_(doSort), maxLines_(maxLines) |
||||
{ |
||||
} |
||||
|
||||
void detect(InputArray src, OutputArray lines); |
||||
void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray()); |
||||
|
||||
void setRho(float rho) { rho_ = rho; } |
||||
float getRho() const { return rho_; } |
||||
|
||||
void setTheta(float theta) { theta_ = theta; } |
||||
float getTheta() const { return theta_; } |
||||
|
||||
void setThreshold(int threshold) { threshold_ = threshold; } |
||||
int getThreshold() const { return threshold_; } |
||||
|
||||
void setDoSort(bool doSort) { doSort_ = doSort; } |
||||
bool getDoSort() const { return doSort_; } |
||||
|
||||
void setMaxLines(int maxLines) { maxLines_ = maxLines; } |
||||
int getMaxLines() const { return maxLines_; } |
||||
|
||||
void write(FileStorage& fs) const |
||||
{ |
||||
fs << "name" << "HoughLinesDetector_GPU" |
||||
<< "rho" << rho_ |
||||
<< "theta" << theta_ |
||||
<< "threshold" << threshold_ |
||||
<< "doSort" << doSort_ |
||||
<< "maxLines" << maxLines_; |
||||
} |
||||
|
||||
void read(const FileNode& fn) |
||||
{ |
||||
CV_Assert( String(fn["name"]) == "HoughLinesDetector_GPU" ); |
||||
rho_ = (float)fn["rho"]; |
||||
theta_ = (float)fn["theta"]; |
||||
threshold_ = (int)fn["threshold"]; |
||||
doSort_ = (int)fn["doSort"] != 0; |
||||
maxLines_ = (int)fn["maxLines"]; |
||||
} |
||||
|
||||
private: |
||||
float rho_; |
||||
float theta_; |
||||
int threshold_; |
||||
bool doSort_; |
||||
int maxLines_; |
||||
|
||||
GpuMat accum_; |
||||
GpuMat list_; |
||||
GpuMat result_; |
||||
}; |
||||
|
||||
void HoughLinesDetectorImpl::detect(InputArray _src, OutputArray lines) |
||||
{ |
||||
using namespace cv::gpu::cudev::hough; |
||||
using namespace cv::gpu::cudev::hough_lines; |
||||
|
||||
GpuMat src = _src.getGpuMat(); |
||||
|
||||
CV_Assert( src.type() == CV_8UC1 ); |
||||
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() ); |
||||
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() ); |
||||
|
||||
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, list_); |
||||
unsigned int* srcPoints = list_.ptr<unsigned int>(); |
||||
|
||||
const int pointsCount = buildPointList_gpu(src, srcPoints); |
||||
if (pointsCount == 0) |
||||
{ |
||||
lines.release(); |
||||
return; |
||||
} |
||||
|
||||
const int numangle = cvRound(CV_PI / theta_); |
||||
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho_); |
||||
CV_Assert( numangle > 0 && numrho > 0 ); |
||||
|
||||
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, accum_); |
||||
accum_.setTo(Scalar::all(0)); |
||||
|
||||
DeviceInfo devInfo; |
||||
linesAccum_gpu(srcPoints, pointsCount, accum_, rho_, theta_, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20)); |
||||
|
||||
ensureSizeIsEnough(2, maxLines_, CV_32FC2, result_); |
||||
|
||||
int linesCount = linesGetResult_gpu(accum_, result_.ptr<float2>(0), result_.ptr<int>(1), maxLines_, rho_, theta_, threshold_, doSort_); |
||||
|
||||
if (linesCount == 0) |
||||
{ |
||||
lines.release(); |
||||
return; |
||||
} |
||||
|
||||
result_.cols = linesCount; |
||||
result_.copyTo(lines); |
||||
} |
||||
|
||||
void HoughLinesDetectorImpl::downloadResults(InputArray _d_lines, OutputArray h_lines, OutputArray h_votes) |
||||
{ |
||||
GpuMat d_lines = _d_lines.getGpuMat(); |
||||
|
||||
if (d_lines.empty()) |
||||
{ |
||||
h_lines.release(); |
||||
if (h_votes.needed()) |
||||
h_votes.release(); |
||||
return; |
||||
} |
||||
|
||||
CV_Assert( d_lines.rows == 2 && d_lines.type() == CV_32FC2 ); |
||||
|
||||
d_lines.row(0).download(h_lines); |
||||
|
||||
if (h_votes.needed()) |
||||
{ |
||||
GpuMat d_votes(1, d_lines.cols, CV_32SC1, d_lines.ptr<int>(1)); |
||||
d_votes.download(h_votes); |
||||
} |
||||
} |
||||
} |
||||
|
||||
Ptr<HoughLinesDetector> cv::gpu::createHoughLinesDetector(float rho, float theta, int threshold, bool doSort, int maxLines) |
||||
{ |
||||
return new HoughLinesDetectorImpl(rho, theta, threshold, doSort, maxLines); |
||||
} |
||||
|
||||
#endif /* !defined (HAVE_CUDA) */ |
@ -0,0 +1,183 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
|
||||
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
||||
|
||||
Ptr<gpu::HoughSegmentDetector> cv::gpu::createHoughSegmentDetector(float, float, int, int, int) { throw_no_cuda(); return Ptr<HoughSegmentDetector>(); } |
||||
|
||||
#else /* !defined (HAVE_CUDA) */ |
||||
|
||||
namespace cv { namespace gpu { namespace cudev |
||||
{ |
||||
namespace hough |
||||
{ |
||||
int buildPointList_gpu(PtrStepSzb src, unsigned int* list); |
||||
} |
||||
|
||||
namespace hough_lines |
||||
{ |
||||
void linesAccum_gpu(const unsigned int* list, int count, PtrStepSzi accum, float rho, float theta, size_t sharedMemPerBlock, bool has20); |
||||
} |
||||
|
||||
namespace hough_segments |
||||
{ |
||||
int houghLinesProbabilistic_gpu(PtrStepSzb mask, PtrStepSzi accum, int4* out, int maxSize, float rho, float theta, int lineGap, int lineLength); |
||||
} |
||||
}}} |
||||
|
||||
namespace |
||||
{ |
||||
class HoughSegmentDetectorImpl : public HoughSegmentDetector |
||||
{ |
||||
public: |
||||
HoughSegmentDetectorImpl(float rho, float theta, int minLineLength, int maxLineGap, int maxLines) : |
||||
rho_(rho), theta_(theta), minLineLength_(minLineLength), maxLineGap_(maxLineGap), maxLines_(maxLines) |
||||
{ |
||||
} |
||||
|
||||
void detect(InputArray src, OutputArray lines); |
||||
|
||||
void setRho(float rho) { rho_ = rho; } |
||||
float getRho() const { return rho_; } |
||||
|
||||
void setTheta(float theta) { theta_ = theta; } |
||||
float getTheta() const { return theta_; } |
||||
|
||||
void setMinLineLength(int minLineLength) { minLineLength_ = minLineLength; } |
||||
int getMinLineLength() const { return minLineLength_; } |
||||
|
||||
void setMaxLineGap(int maxLineGap) { maxLineGap_ = maxLineGap; } |
||||
int getMaxLineGap() const { return maxLineGap_; } |
||||
|
||||
void setMaxLines(int maxLines) { maxLines_ = maxLines; } |
||||
int getMaxLines() const { return maxLines_; } |
||||
|
||||
void write(FileStorage& fs) const |
||||
{ |
||||
fs << "name" << "PHoughLinesDetector_GPU" |
||||
<< "rho" << rho_ |
||||
<< "theta" << theta_ |
||||
<< "minLineLength" << minLineLength_ |
||||
<< "maxLineGap" << maxLineGap_ |
||||
<< "maxLines" << maxLines_; |
||||
} |
||||
|
||||
void read(const FileNode& fn) |
||||
{ |
||||
CV_Assert( String(fn["name"]) == "PHoughLinesDetector_GPU" ); |
||||
rho_ = (float)fn["rho"]; |
||||
theta_ = (float)fn["theta"]; |
||||
minLineLength_ = (int)fn["minLineLength"]; |
||||
maxLineGap_ = (int)fn["maxLineGap"]; |
||||
maxLines_ = (int)fn["maxLines"]; |
||||
} |
||||
|
||||
private: |
||||
float rho_; |
||||
float theta_; |
||||
int minLineLength_; |
||||
int maxLineGap_; |
||||
int maxLines_; |
||||
|
||||
GpuMat accum_; |
||||
GpuMat list_; |
||||
GpuMat result_; |
||||
}; |
||||
|
||||
void HoughSegmentDetectorImpl::detect(InputArray _src, OutputArray lines) |
||||
{ |
||||
using namespace cv::gpu::cudev::hough; |
||||
using namespace cv::gpu::cudev::hough_lines; |
||||
using namespace cv::gpu::cudev::hough_segments; |
||||
|
||||
GpuMat src = _src.getGpuMat(); |
||||
|
||||
CV_Assert( src.type() == CV_8UC1 ); |
||||
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() ); |
||||
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() ); |
||||
|
||||
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, list_); |
||||
unsigned int* srcPoints = list_.ptr<unsigned int>(); |
||||
|
||||
const int pointsCount = buildPointList_gpu(src, srcPoints); |
||||
if (pointsCount == 0) |
||||
{ |
||||
lines.release(); |
||||
return; |
||||
} |
||||
|
||||
const int numangle = cvRound(CV_PI / theta_); |
||||
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho_); |
||||
CV_Assert( numangle > 0 && numrho > 0 ); |
||||
|
||||
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, accum_); |
||||
accum_.setTo(Scalar::all(0)); |
||||
|
||||
DeviceInfo devInfo; |
||||
linesAccum_gpu(srcPoints, pointsCount, accum_, rho_, theta_, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20)); |
||||
|
||||
ensureSizeIsEnough(1, maxLines_, CV_32SC4, result_); |
||||
|
||||
int linesCount = houghLinesProbabilistic_gpu(src, accum_, result_.ptr<int4>(), maxLines_, rho_, theta_, maxLineGap_, minLineLength_); |
||||
|
||||
if (linesCount == 0) |
||||
{ |
||||
lines.release(); |
||||
return; |
||||
} |
||||
|
||||
result_.cols = linesCount; |
||||
result_.copyTo(lines); |
||||
} |
||||
} |
||||
|
||||
Ptr<HoughSegmentDetector> cv::gpu::createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines) |
||||
{ |
||||
return new HoughSegmentDetectorImpl(rho, theta, minLineLength, maxLineGap, maxLines); |
||||
} |
||||
|
||||
#endif /* !defined (HAVE_CUDA) */ |
Loading…
Reference in new issue