parent
458bde5e24
commit
f610c88103
2 changed files with 120 additions and 0 deletions
@ -0,0 +1,103 @@ |
||||
#!/usr/bin/python |
||||
""" |
||||
Tracking of rotating point. |
||||
Rotation speed is constant. |
||||
Both state and measurements vectors are 1D (a point angle), |
||||
Measurement is the real point angle + gaussian noise. |
||||
The real and the estimated points are connected with yellow line segment, |
||||
the real and the measured points are connected with red line segment. |
||||
(if Kalman filter works correctly, |
||||
the yellow segment should be shorter than the red one). |
||||
Pressing any key (except ESC) will reset the tracking with a different speed. |
||||
Pressing ESC will stop the program. |
||||
""" |
||||
import urllib2 |
||||
import cv2 |
||||
from math import cos, sin, sqrt |
||||
import sys |
||||
import numpy as np |
||||
|
||||
if __name__ == "__main__": |
||||
|
||||
img_height = 500 |
||||
img_width = 500 |
||||
img = np.array((img_height, img_width, 3), np.uint8) |
||||
kalman = cv2.KalmanFilter(2, 1, 0) |
||||
state = np.zeros((2, 1)) # (phi, delta_phi) |
||||
process_noise = np.zeros((2, 1)) |
||||
measurement = np.zeros((1, 1)) |
||||
|
||||
code = -1L |
||||
|
||||
cv2.namedWindow("Kalman") |
||||
|
||||
while True: |
||||
state = 0.1 * np.random.randn(2, 1) |
||||
|
||||
transition_matrix = np.array([[1., 1.], [0., 1.]]) |
||||
kalman.setTransitionMatrix(transition_matrix) |
||||
measurement_matrix = 1. * np.ones((1, 2)) |
||||
kalman.setMeasurementMatrix(measurement_matrix) |
||||
|
||||
process_noise_cov = 1e-5 |
||||
kalman.setProcessNoiseCov(process_noise_cov * np.eye(2)) |
||||
|
||||
measurement_noise_cov = 1e-1 |
||||
kalman.setMeasurementNoiseCov(measurement_noise_cov * np.ones((1, 1))) |
||||
|
||||
kalman.setErrorCovPost(1. * np.ones((2, 2))) |
||||
|
||||
kalman.setStatePost(0.1 * np.random.randn(2, 1)) |
||||
|
||||
while True: |
||||
def calc_point(angle): |
||||
return (np.around(img_width/2 + img_width/3*cos(angle), 0).astype(int), |
||||
np.around(img_height/2 - img_width/3*sin(angle), 1).astype(int)) |
||||
|
||||
state_angle = state[0, 0] |
||||
state_pt = calc_point(state_angle) |
||||
|
||||
prediction = kalman.predict() |
||||
predict_angle = prediction[0, 0] |
||||
predict_pt = calc_point(predict_angle) |
||||
|
||||
|
||||
measurement = measurement_noise_cov * np.random.randn(1, 1) |
||||
|
||||
# generate measurement |
||||
measurement = np.dot(measurement_matrix, state) + measurement |
||||
|
||||
measurement_angle = measurement[0, 0] |
||||
measurement_pt = calc_point(measurement_angle) |
||||
|
||||
# plot points |
||||
def draw_cross(center, color, d): |
||||
cv2.line(img, (center[0] - d, center[1] - d), |
||||
(center[0] + d, center[1] + d), color, 1, cv2.LINE_AA, 0) |
||||
cv2.line(img, (center[0] + d, center[1] - d), |
||||
(center[0] - d, center[1] + d), color, 1, cv2.LINE_AA, 0) |
||||
|
||||
img = np.zeros((img_height, img_width, 3), np.uint8) |
||||
draw_cross(np.int32(state_pt), (255, 255, 255), 3) |
||||
draw_cross(np.int32(measurement_pt), (0, 0, 255), 3) |
||||
draw_cross(np.int32(predict_pt), (0, 255, 0), 3) |
||||
|
||||
cv2.line(img, state_pt, measurement_pt, (0, 0, 255), 3, cv2.LINE_AA, 0) |
||||
cv2.line(img, state_pt, predict_pt, (0, 255, 255), 3, cv2.LINE_AA, 0) |
||||
|
||||
kalman.correct(measurement) |
||||
|
||||
process_noise = process_noise_cov * np.random.randn(2, 1) |
||||
|
||||
state = np.dot(transition_matrix, state) + process_noise |
||||
|
||||
cv2.imshow("Kalman", img) |
||||
|
||||
code = cv2.waitKey(100) % 0x100 |
||||
if code != -1: |
||||
break |
||||
|
||||
if code in [27, ord('q'), ord('Q')]: |
||||
break |
||||
|
||||
cv2.destroyWindow("Kalman") |
Loading…
Reference in new issue