From f5b6bea2d4cabdae1901f910ee2eed02a080a203 Mon Sep 17 00:00:00 2001 From: Vitaly Tuzov <terfendail@mediana.jetos.com> Date: Mon, 12 Nov 2018 20:42:58 +0300 Subject: [PATCH] Raised bilateralFilter processing precision for CV_32F matrices containing NaNs --- .../include/opencv2/core/hal/intrin_avx.hpp | 5 + .../include/opencv2/core/hal/intrin_cpp.hpp | 19 ++++ .../include/opencv2/core/hal/intrin_neon.hpp | 7 ++ .../include/opencv2/core/hal/intrin_sse.hpp | 5 + .../include/opencv2/core/hal/intrin_vsx.hpp | 5 + modules/imgproc/src/bilateral_filter.cpp | 97 ++++++++++++------- 6 files changed, 104 insertions(+), 34 deletions(-) diff --git a/modules/core/include/opencv2/core/hal/intrin_avx.hpp b/modules/core/include/opencv2/core/hal/intrin_avx.hpp index f8cc7a4d00..30377048ae 100644 --- a/modules/core/include/opencv2/core/hal/intrin_avx.hpp +++ b/modules/core/include/opencv2/core/hal/intrin_avx.hpp @@ -905,6 +905,11 @@ OPENCV_HAL_IMPL_AVX_CMP_OP_64BIT(v_int64x4) OPENCV_HAL_IMPL_AVX_CMP_OP_FLT(v_float32x8, ps) OPENCV_HAL_IMPL_AVX_CMP_OP_FLT(v_float64x4, pd) +inline v_float32x8 v_not_nan(const v_float32x8& a) +{ return v_float32x8(_mm256_cmp_ps(a.val, a.val, _CMP_ORD_Q)); } +inline v_float64x4 v_not_nan(const v_float64x4& a) +{ return v_float64x4(_mm256_cmp_pd(a.val, a.val, _CMP_ORD_Q)); } + /** min/max **/ OPENCV_HAL_IMPL_AVX_BIN_FUNC(v_min, v_uint8x32, _mm256_min_epu8) OPENCV_HAL_IMPL_AVX_BIN_FUNC(v_max, v_uint8x32, _mm256_max_epu8) diff --git a/modules/core/include/opencv2/core/hal/intrin_cpp.hpp b/modules/core/include/opencv2/core/hal/intrin_cpp.hpp index 5712f167a8..1cfb14ae06 100644 --- a/modules/core/include/opencv2/core/hal/intrin_cpp.hpp +++ b/modules/core/include/opencv2/core/hal/intrin_cpp.hpp @@ -683,6 +683,25 @@ OPENCV_HAL_IMPL_CMP_OP(==) For all types except 64-bit integer values. */ OPENCV_HAL_IMPL_CMP_OP(!=) +template<int n> +inline v_reg<float, n> v_not_nan(const v_reg<float, n>& a) +{ +typedef typename V_TypeTraits<float>::int_type itype; +v_reg<float, n> c; +for (int i = 0; i < n; i++) + c.s[i] = V_TypeTraits<float>::reinterpret_from_int((itype)-(int)(a.s[i] == a.s[i])); + return c; +} +template<int n> +inline v_reg<double, n> v_not_nan(const v_reg<double, n>& a) +{ + typedef typename V_TypeTraits<double>::int_type itype; + v_reg<double, n> c; + for (int i = 0; i < n; i++) + c.s[i] = V_TypeTraits<double>::reinterpret_from_int((itype)-(int)(a.s[i] == a.s[i])); + return c; +} + //! @brief Helper macro //! @ingroup core_hal_intrin_impl #define OPENCV_HAL_IMPL_ARITHM_OP(func, bin_op, cast_op, _Tp2) \ diff --git a/modules/core/include/opencv2/core/hal/intrin_neon.hpp b/modules/core/include/opencv2/core/hal/intrin_neon.hpp index 50c9b154ee..2de4e45283 100644 --- a/modules/core/include/opencv2/core/hal/intrin_neon.hpp +++ b/modules/core/include/opencv2/core/hal/intrin_neon.hpp @@ -764,6 +764,13 @@ OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_int64x2, vreinterpretq_s64_u64, s64, u64) OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_float64x2, vreinterpretq_f64_u64, f64, u64) #endif +inline v_float32x4 v_not_nan(const v_float32x4& a) +{ return v_float32x4(vreinterpretq_f32_u32(vceqq_f32(a.val, a.val))); } +#if CV_SIMD128_64F +inline v_float64x2 v_not_nan(const v_float64x2& a) +{ return v_float64x2(vreinterpretq_f64_u64(vceqq_f64(a.val, a.val))); } +#endif + OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_add_wrap, vaddq_u8) OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int8x16, v_add_wrap, vaddq_s8) OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_add_wrap, vaddq_u16) diff --git a/modules/core/include/opencv2/core/hal/intrin_sse.hpp b/modules/core/include/opencv2/core/hal/intrin_sse.hpp index c49d0de377..283c5158d7 100644 --- a/modules/core/include/opencv2/core/hal/intrin_sse.hpp +++ b/modules/core/include/opencv2/core/hal/intrin_sse.hpp @@ -1041,6 +1041,11 @@ inline _Tpvec operator != (const _Tpvec& a, const _Tpvec& b) \ OPENCV_HAL_IMPL_SSE_64BIT_CMP_OP(v_uint64x2, v_reinterpret_as_u64) OPENCV_HAL_IMPL_SSE_64BIT_CMP_OP(v_int64x2, v_reinterpret_as_s64) +inline v_float32x4 v_not_nan(const v_float32x4& a) +{ return v_float32x4(_mm_cmpord_ps(a.val, a.val)); } +inline v_float64x2 v_not_nan(const v_float64x2& a) +{ return v_float64x2(_mm_cmpord_pd(a.val, a.val)); } + OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_uint8x16, v_add_wrap, _mm_add_epi8) OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_int8x16, v_add_wrap, _mm_add_epi8) OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_uint16x8, v_add_wrap, _mm_add_epi16) diff --git a/modules/core/include/opencv2/core/hal/intrin_vsx.hpp b/modules/core/include/opencv2/core/hal/intrin_vsx.hpp index b23e19950e..fe4a5db5df 100644 --- a/modules/core/include/opencv2/core/hal/intrin_vsx.hpp +++ b/modules/core/include/opencv2/core/hal/intrin_vsx.hpp @@ -607,6 +607,11 @@ OPENCV_HAL_IMPL_VSX_INT_CMP_OP(v_float64x2) OPENCV_HAL_IMPL_VSX_INT_CMP_OP(v_uint64x2) OPENCV_HAL_IMPL_VSX_INT_CMP_OP(v_int64x2) +inline v_float32x4 v_not_nan(const v_float32x4& a) +{ return v_float32x4(vec_cmpeq(a.val, a.val)); } +inline v_float64x2 v_not_nan(const v_float64x2& a) +{ return v_float64x2(vec_cmpeq(a.val, a.val)); } + /** min/max **/ OPENCV_HAL_IMPL_VSX_BIN_FUNC(v_min, vec_min) OPENCV_HAL_IMPL_VSX_BIN_FUNC(v_max, vec_max) diff --git a/modules/imgproc/src/bilateral_filter.cpp b/modules/imgproc/src/bilateral_filter.cpp index 5e39fa4de5..8678cbfa3d 100644 --- a/modules/imgproc/src/bilateral_filter.cpp +++ b/modules/imgproc/src/bilateral_filter.cpp @@ -430,36 +430,44 @@ public: for (; j <= size.width - v_float32::nlanes; j += v_float32::nlanes) { v_float32 val = vx_load(ksptr + j); - - v_float32 alpha = v_absdiff(val, vx_load(sptr + j)) * sindex; + v_float32 rval = vx_load(sptr + j); + v_float32 knan = v_not_nan(val); + v_float32 alpha = (v_absdiff(val, rval) * sindex) & v_not_nan(rval) & knan; v_int32 idx = v_trunc(alpha); alpha -= v_cvt_f32(idx); - v_float32 w = kweight * v_muladd(v_lut(expLUT + 1, idx), alpha, v_lut(expLUT, idx) * (v_one-alpha)); + v_float32 w = (kweight * v_muladd(v_lut(expLUT + 1, idx), alpha, v_lut(expLUT, idx) * (v_one-alpha))) & knan; v_store_aligned(wsum + j, vx_load_aligned(wsum + j) + w); - v_store_aligned(sum + j, v_muladd(val, w, vx_load_aligned(sum + j))); + v_store_aligned(sum + j, v_muladd(val & knan, w, vx_load_aligned(sum + j))); } #endif for (; j < size.width; j++) { float val = ksptr[j]; - float alpha = std::abs(val - sptr[j]) * scale_index; + float rval = sptr[j]; + float alpha = std::abs(val - rval) * scale_index; int idx = cvFloor(alpha); alpha -= idx; - float w = space_weight[k] * (expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx])); - wsum[j] += w; - sum[j] += val * w; + if (!cvIsNaN(val)) + { + float w = space_weight[k] * (cvIsNaN(rval) ? 1.f : (expLUT[idx] + alpha*(expLUT[idx + 1] - expLUT[idx]))); + wsum[j] += w; + sum[j] += val * w; + } } } j = 0; #if CV_SIMD for (; j <= size.width - v_float32::nlanes; j += v_float32::nlanes) - v_store(dptr + j, vx_load_aligned(sum + j) / vx_load_aligned(wsum + j)); + { + v_float32 v_val = vx_load(sptr + j); + v_store(dptr + j, (vx_load_aligned(sum + j) + (v_val & v_not_nan(v_val))) / (vx_load_aligned(wsum + j) + (v_one & v_not_nan(v_val)))); + } #endif for (; j < size.width; j++) { - CV_DbgAssert(fabs(wsum[j]) > 0); - dptr[j] = sum[j] / wsum[j]; + CV_DbgAssert(fabs(wsum[j]) >= 0); + dptr[j] = cvIsNaN(sptr[j]) ? sum[j] / wsum[j] : (sum[j] + sptr[j]) / (wsum[j] + 1.f); } } else @@ -488,45 +496,68 @@ public: v_load_deinterleave(ksptr, kb, kg, kr); v_load_deinterleave(rsptr, rb, rg, rr); - v_float32 alpha = (v_absdiff(kb, rb) + v_absdiff(kg, rg) + v_absdiff(kr, rr)) * sindex; + v_float32 knan = v_not_nan(kb) & v_not_nan(kg) & v_not_nan(kr); + v_float32 alpha = ((v_absdiff(kb, rb) + v_absdiff(kg, rg) + v_absdiff(kr, rr)) * sindex) & v_not_nan(rb) & v_not_nan(rg) & v_not_nan(rr) & knan; v_int32 idx = v_trunc(alpha); alpha -= v_cvt_f32(idx); - v_float32 w = kweight * v_muladd(v_lut(expLUT + 1, idx), alpha, v_lut(expLUT, idx) * (v_one - alpha)); + v_float32 w = (kweight * v_muladd(v_lut(expLUT + 1, idx), alpha, v_lut(expLUT, idx) * (v_one - alpha))) & knan; v_store_aligned(wsum + j, vx_load_aligned(wsum + j) + w); - v_store_aligned(sum_b + j, v_muladd(kb, w, vx_load_aligned(sum_b + j))); - v_store_aligned(sum_g + j, v_muladd(kg, w, vx_load_aligned(sum_g + j))); - v_store_aligned(sum_r + j, v_muladd(kr, w, vx_load_aligned(sum_r + j))); + v_store_aligned(sum_b + j, v_muladd(kb & knan, w, vx_load_aligned(sum_b + j))); + v_store_aligned(sum_g + j, v_muladd(kg & knan, w, vx_load_aligned(sum_g + j))); + v_store_aligned(sum_r + j, v_muladd(kr & knan, w, vx_load_aligned(sum_r + j))); } #endif for (; j < size.width; j++, ksptr += 3, rsptr += 3) { float b = ksptr[0], g = ksptr[1], r = ksptr[2]; - float alpha = (std::abs(b - rsptr[0]) + std::abs(g - rsptr[1]) + std::abs(r - rsptr[2])) * scale_index; + bool v_NAN = cvIsNaN(b) || cvIsNaN(g) || cvIsNaN(r); + float rb = rsptr[0], rg = rsptr[1], rr = rsptr[2]; + bool r_NAN = cvIsNaN(rb) || cvIsNaN(rg) || cvIsNaN(rr); + float alpha = (std::abs(b - rb) + std::abs(g - rg) + std::abs(r - rr)) * scale_index; int idx = cvFloor(alpha); alpha -= idx; - float w = space_weight[k] * (expLUT[idx] + alpha*(expLUT[idx + 1] - expLUT[idx])); - wsum[j] += w; - sum_b[j] += b*w; - sum_g[j] += g*w; - sum_r[j] += r*w; + if (!v_NAN) + { + float w = space_weight[k] * (r_NAN ? 1.f : (expLUT[idx] + alpha*(expLUT[idx + 1] - expLUT[idx]))); + wsum[j] += w; + sum_b[j] += b*w; + sum_g[j] += g*w; + sum_r[j] += r*w; + } } } j = 0; #if CV_SIMD - for (; j <= size.width - v_float32::nlanes; j += v_float32::nlanes, dptr += 3*v_float32::nlanes) + for (; j <= size.width - v_float32::nlanes; j += v_float32::nlanes, sptr += 3*v_float32::nlanes, dptr += 3*v_float32::nlanes) { - v_float32 w = v_one / vx_load_aligned(wsum + j); - v_store_interleave(dptr, vx_load_aligned(sum_b + j) * w, vx_load_aligned(sum_g + j) * w, vx_load_aligned(sum_r + j) * w); + v_float32 b, g, r; + v_load_deinterleave(sptr, b, g, r); + v_float32 mask = v_not_nan(b) & v_not_nan(g) & v_not_nan(r); + v_float32 w = v_one / (vx_load_aligned(wsum + j) + (v_one & mask)); + v_store_interleave(dptr, (vx_load_aligned(sum_b + j) + (b & mask)) * w, (vx_load_aligned(sum_g + j) + (g & mask)) * w, (vx_load_aligned(sum_r + j) + (r & mask)) * w); } #endif for (; j < size.width; j++) { - CV_DbgAssert(fabs(wsum[j]) > 0); - wsum[j] = 1.f / wsum[j]; - *(dptr++) = sum_b[j] * wsum[j]; - *(dptr++) = sum_g[j] * wsum[j]; - *(dptr++) = sum_r[j] * wsum[j]; + CV_DbgAssert(fabs(wsum[j]) >= 0); + float b = *(sptr++); + float g = *(sptr++); + float r = *(sptr++); + if (cvIsNaN(b) || cvIsNaN(g) || cvIsNaN(r)) + { + wsum[j] = 1.f / wsum[j]; + *(dptr++) = sum_b[j] * wsum[j]; + *(dptr++) = sum_g[j] * wsum[j]; + *(dptr++) = sum_r[j] * wsum[j]; + } + else + { + wsum[j] = 1.f / (wsum[j] + 1.f); + *(dptr++) = (sum_b[j] + b) * wsum[j]; + *(dptr++) = (sum_g[j] + g) * wsum[j]; + *(dptr++) = (sum_r[j] + r) * wsum[j]; + } } } } @@ -585,9 +616,7 @@ bilateralFilter_32f( const Mat& src, Mat& dst, int d, // temporary copy of the image with borders for easy processing Mat temp; copyMakeBorder( src, temp, radius, radius, radius, radius, borderType ); - minValSrc -= 5. * sigma_color; - patchNaNs( temp, minValSrc ); // this replacement of NaNs makes the assumption that depth values are nonnegative - // TODO: make replacement parameter avalible in the outside function interface + // allocate lookup tables std::vector<float> _space_weight(d*d); std::vector<int> _space_ofs(d*d); @@ -620,7 +649,7 @@ bilateralFilter_32f( const Mat& src, Mat& dst, int d, for( j = -radius; j <= radius; j++ ) { double r = std::sqrt((double)i*i + (double)j*j); - if( r > radius ) + if( r > radius || ( i == 0 && j == 0 ) ) continue; space_weight[maxk] = (float)std::exp(r*r*gauss_space_coeff); space_ofs[maxk++] = (int)(i*(temp.step/sizeof(float)) + j*cn);