Merge remote-tracking branch 'upstream/3.4' into merge-3.4

pull/18368/head
Alexander Alekhin 4 years ago
commit f52a2cf5e1
  1. 1
      CMakeLists.txt
  2. 4
      cmake/OpenCVModule.cmake
  3. 2
      doc/py_tutorials/py_imgproc/py_contours/py_contour_properties/py_contour_properties.markdown
  4. 14
      modules/core/src/matrix_wrap.cpp
  5. 37
      modules/core/src/ocl.cpp
  6. 13
      modules/dnn/src/ocl4dnn/src/math_functions.cpp
  7. 65
      modules/dnn/src/onnx/onnx_importer.cpp
  8. 2
      modules/dnn/src/opencl/prior_box.cl
  9. 17
      modules/dnn/test/test_onnx_importer.cpp
  10. 17
      modules/imgcodecs/src/loadsave.cpp
  11. 13
      modules/imgproc/src/connectedcomponents.cpp
  12. 14
      modules/imgproc/test/test_connectedcomponents.cpp
  13. 6
      modules/videoio/doc/videoio_overview.markdown
  14. 8
      samples/samples_utils.cmake

@ -464,6 +464,7 @@ OCV_OPTION(BUILD_OBJC "Enable Objective-C support"
# OpenCV installation options # OpenCV installation options
# =================================================== # ===================================================
OCV_OPTION(INSTALL_CREATE_DISTRIB "Change install rules to build the distribution package" OFF ) OCV_OPTION(INSTALL_CREATE_DISTRIB "Change install rules to build the distribution package" OFF )
OCV_OPTION(INSTALL_BIN_EXAMPLES "Install prebuilt examples" WIN32 IF BUILD_EXAMPLES)
OCV_OPTION(INSTALL_C_EXAMPLES "Install C examples" OFF ) OCV_OPTION(INSTALL_C_EXAMPLES "Install C examples" OFF )
OCV_OPTION(INSTALL_PYTHON_EXAMPLES "Install Python examples" OFF ) OCV_OPTION(INSTALL_PYTHON_EXAMPLES "Install Python examples" OFF )
OCV_OPTION(INSTALL_ANDROID_EXAMPLES "Install Android examples" OFF IF ANDROID ) OCV_OPTION(INSTALL_ANDROID_EXAMPLES "Install Android examples" OFF IF ANDROID )

@ -1364,8 +1364,8 @@ function(ocv_add_samples)
add_dependencies(${the_target} opencv_videoio_plugins) add_dependencies(${the_target} opencv_videoio_plugins)
endif() endif()
if(WIN32) if(INSTALL_BIN_EXAMPLES)
install(TARGETS ${the_target} RUNTIME DESTINATION "samples/${module_id}" COMPONENT samples) install(TARGETS ${the_target} RUNTIME DESTINATION "${OPENCV_SAMPLES_BIN_INSTALL_PATH}/${module_id}" COMPONENT samples)
endif() endif()
endforeach() endforeach()
endif() endif()

@ -78,7 +78,7 @@ pixelpoints = np.transpose(np.nonzero(mask))
Here, two methods, one using Numpy functions, next one using OpenCV function (last commented line) Here, two methods, one using Numpy functions, next one using OpenCV function (last commented line)
are given to do the same. Results are also same, but with a slight difference. Numpy gives are given to do the same. Results are also same, but with a slight difference. Numpy gives
coordinates in **(row, column)** format, while OpenCV gives coordinates in **(x,y)** format. So coordinates in **(row, column)** format, while OpenCV gives coordinates in **(x,y)** format. So
basically the answers will be interchanged. Note that, **row = x** and **column = y**. basically the answers will be interchanged. Note that, **row = y** and **column = x**.
7. Maximum Value, Minimum Value and their locations 7. Maximum Value, Minimum Value and their locations
--------------------------------------------------- ---------------------------------------------------

@ -1248,6 +1248,7 @@ void _OutputArray::create(int d, const int* sizes, int mtype, int i,
{ {
CV_Assert( i < 0 ); CV_Assert( i < 0 );
Mat& m = *(Mat*)obj; Mat& m = *(Mat*)obj;
CV_Assert(!(m.empty() && fixedType() && fixedSize()) && "Can't reallocate empty Mat with locked layout (probably due to misused 'const' modifier)");
if (allowTransposed && !m.empty() && if (allowTransposed && !m.empty() &&
d == 2 && m.dims == 2 && d == 2 && m.dims == 2 &&
m.type() == mtype && m.rows == sizes[1] && m.cols == sizes[0] && m.type() == mtype && m.rows == sizes[1] && m.cols == sizes[0] &&
@ -1261,13 +1262,13 @@ void _OutputArray::create(int d, const int* sizes, int mtype, int i,
if(CV_MAT_CN(mtype) == m.channels() && ((1 << CV_MAT_TYPE(flags)) & fixedDepthMask) != 0 ) if(CV_MAT_CN(mtype) == m.channels() && ((1 << CV_MAT_TYPE(flags)) & fixedDepthMask) != 0 )
mtype = m.type(); mtype = m.type();
else else
CV_CheckTypeEQ(m.type(), CV_MAT_TYPE(mtype), ""); CV_CheckTypeEQ(m.type(), CV_MAT_TYPE(mtype), "Can't reallocate Mat with locked type (probably due to misused 'const' modifier)");
} }
if(fixedSize()) if(fixedSize())
{ {
CV_CheckEQ(m.dims, d, ""); CV_CheckEQ(m.dims, d, "Can't reallocate Mat with locked size (probably due to misused 'const' modifier)");
for(int j = 0; j < d; ++j) for(int j = 0; j < d; ++j)
CV_CheckEQ(m.size[j], sizes[j], ""); CV_CheckEQ(m.size[j], sizes[j], "Can't reallocate Mat with locked size (probably due to misused 'const' modifier)");
} }
m.create(d, sizes, mtype); m.create(d, sizes, mtype);
return; return;
@ -1277,6 +1278,7 @@ void _OutputArray::create(int d, const int* sizes, int mtype, int i,
{ {
CV_Assert( i < 0 ); CV_Assert( i < 0 );
UMat& m = *(UMat*)obj; UMat& m = *(UMat*)obj;
CV_Assert(!(m.empty() && fixedType() && fixedSize()) && "Can't reallocate empty UMat with locked layout (probably due to misused 'const' modifier)");
if (allowTransposed && !m.empty() && if (allowTransposed && !m.empty() &&
d == 2 && m.dims == 2 && d == 2 && m.dims == 2 &&
m.type() == mtype && m.rows == sizes[1] && m.cols == sizes[0] && m.type() == mtype && m.rows == sizes[1] && m.cols == sizes[0] &&
@ -1290,13 +1292,13 @@ void _OutputArray::create(int d, const int* sizes, int mtype, int i,
if(CV_MAT_CN(mtype) == m.channels() && ((1 << CV_MAT_TYPE(flags)) & fixedDepthMask) != 0 ) if(CV_MAT_CN(mtype) == m.channels() && ((1 << CV_MAT_TYPE(flags)) & fixedDepthMask) != 0 )
mtype = m.type(); mtype = m.type();
else else
CV_CheckTypeEQ(m.type(), CV_MAT_TYPE(mtype), ""); CV_CheckTypeEQ(m.type(), CV_MAT_TYPE(mtype), "Can't reallocate UMat with locked type (probably due to misused 'const' modifier)");
} }
if(fixedSize()) if(fixedSize())
{ {
CV_CheckEQ(m.dims, d, ""); CV_CheckEQ(m.dims, d, "Can't reallocate UMat with locked size (probably due to misused 'const' modifier)");
for(int j = 0; j < d; ++j) for(int j = 0; j < d; ++j)
CV_CheckEQ(m.size[j], sizes[j], ""); CV_CheckEQ(m.size[j], sizes[j], "Can't reallocate UMat with locked size (probably due to misused 'const' modifier)");
} }
m.create(d, sizes, mtype); m.create(d, sizes, mtype);
return; return;

@ -3311,7 +3311,7 @@ KernelArg KernelArg::Constant(const Mat& m)
struct Kernel::Impl struct Kernel::Impl
{ {
Impl(const char* kname, const Program& prog) : Impl(const char* kname, const Program& prog) :
refcount(1), handle(NULL), isInProgress(false), nu(0) refcount(1), handle(NULL), isInProgress(false), isAsyncRun(false), nu(0)
{ {
cl_program ph = (cl_program)prog.ptr(); cl_program ph = (cl_program)prog.ptr();
cl_int retval = 0; cl_int retval = 0;
@ -3388,6 +3388,7 @@ struct Kernel::Impl
enum { MAX_ARRS = 16 }; enum { MAX_ARRS = 16 };
UMatData* u[MAX_ARRS]; UMatData* u[MAX_ARRS];
bool isInProgress; bool isInProgress;
bool isAsyncRun; // true if kernel was scheduled in async mode
int nu; int nu;
std::list<Image2D> images; std::list<Image2D> images;
bool haveTempDstUMats; bool haveTempDstUMats;
@ -3667,13 +3668,45 @@ bool Kernel::run(int dims, size_t _globalsize[], size_t _localsize[],
} }
static bool isRaiseErrorOnReuseAsyncKernel()
{
static bool initialized = false;
static bool value = false;
if (!initialized)
{
value = cv::utils::getConfigurationParameterBool("OPENCV_OPENCL_RAISE_ERROR_REUSE_ASYNC_KERNEL", false);
initialized = true;
}
return value;
}
bool Kernel::Impl::run(int dims, size_t globalsize[], size_t localsize[], bool Kernel::Impl::run(int dims, size_t globalsize[], size_t localsize[],
bool sync, int64* timeNS, const Queue& q) bool sync, int64* timeNS, const Queue& q)
{ {
CV_INSTRUMENT_REGION_OPENCL_RUN(name.c_str()); CV_INSTRUMENT_REGION_OPENCL_RUN(name.c_str());
if (!handle || isInProgress) if (!handle)
{
CV_LOG_ERROR(NULL, "OpenCL kernel has zero handle: " << name);
return false; return false;
}
if (isAsyncRun)
{
CV_LOG_ERROR(NULL, "OpenCL kernel can't be reused in async mode: " << name);
if (isRaiseErrorOnReuseAsyncKernel())
CV_Assert(0);
return false; // OpenCV 5.0: raise error
}
isAsyncRun = !sync;
if (isInProgress)
{
CV_LOG_ERROR(NULL, "Previous OpenCL kernel launch is not finished: " << name);
if (isRaiseErrorOnReuseAsyncKernel())
CV_Assert(0);
return false; // OpenCV 5.0: raise error
}
cl_command_queue qq = getQueue(q); cl_command_queue qq = getQueue(q);
if (haveTempDstUMats) if (haveTempDstUMats)

@ -46,6 +46,8 @@
#include <vector> #include <vector>
#include "opencl_kernels_dnn.hpp" #include "opencl_kernels_dnn.hpp"
#include "opencv2/core/utils/logger.hpp"
namespace cv { namespace dnn { namespace ocl4dnn { namespace cv { namespace dnn { namespace ocl4dnn {
enum gemm_data_type_t enum gemm_data_type_t
@ -238,10 +240,6 @@ static bool ocl4dnnFastImageGEMM(const CBLAS_TRANSPOSE TransA,
kernel_name += "_float"; kernel_name += "_float";
} }
ocl::Kernel oclk_gemm_float(kernel_name.c_str(), ocl::dnn::gemm_image_oclsrc, opts);
if (oclk_gemm_float.empty())
return false;
while (C_start_y < M) while (C_start_y < M)
{ {
blockC_width = std::min(static_cast<int>(N) - C_start_x, blocksize); blockC_width = std::min(static_cast<int>(N) - C_start_x, blocksize);
@ -348,6 +346,10 @@ static bool ocl4dnnFastImageGEMM(const CBLAS_TRANSPOSE TransA,
} }
local[1] = 1; local[1] = 1;
ocl::Kernel oclk_gemm_float(kernel_name.c_str(), ocl::dnn::gemm_image_oclsrc, opts);
if (oclk_gemm_float.empty())
return false;
cl_uint arg_idx = 0; cl_uint arg_idx = 0;
if (is_image_a) if (is_image_a)
oclk_gemm_float.set(arg_idx++, ocl::KernelArg::PtrReadOnly(A)); oclk_gemm_float.set(arg_idx++, ocl::KernelArg::PtrReadOnly(A));
@ -378,7 +380,10 @@ static bool ocl4dnnFastImageGEMM(const CBLAS_TRANSPOSE TransA,
oclk_gemm_float.set(arg_idx++, isFirstColBlock); oclk_gemm_float.set(arg_idx++, isFirstColBlock);
if (!oclk_gemm_float.run(2, global, local, false)) if (!oclk_gemm_float.run(2, global, local, false))
{
CV_LOG_WARNING(NULL, "OpenCL kernel enqueue failed: " << kernel_name);
return false; return false;
}
if (TransA == CblasNoTrans) if (TransA == CblasNoTrans)
A_start_x += blockA_width; A_start_x += blockA_width;

@ -392,24 +392,21 @@ void ONNXImporter::populateNet(Net dstNet)
layerParams.set("ave_pool_padded_area", framework_name == "pytorch"); layerParams.set("ave_pool_padded_area", framework_name == "pytorch");
} }
else if (layer_type == "GlobalAveragePool" || layer_type == "GlobalMaxPool" || else if (layer_type == "GlobalAveragePool" || layer_type == "GlobalMaxPool" ||
layer_type == "ReduceMean" || layer_type == "ReduceSum") layer_type == "ReduceMean" || layer_type == "ReduceSum" || layer_type == "ReduceMax")
{ {
CV_Assert(node_proto.input_size() == 1); CV_Assert(node_proto.input_size() == 1);
layerParams.type = "Pooling"; layerParams.type = "Pooling";
String pool; String pool;
if (layer_type == "GlobalMaxPool") if (layer_type == "GlobalMaxPool" || layer_type == "ReduceMax")
pool = "MAX"; pool = "MAX";
else if (layer_type == "ReduceSum") else if (layer_type == "ReduceSum")
pool = "SUM"; pool = "SUM";
else else
pool = "AVE"; pool = "AVE";
layerParams.set("pool", pool); layerParams.set("pool", pool);
layerParams.set("global_pooling", layer_type == "GlobalAveragePool" || layer_type == "GlobalMaxPool"); layerParams.set("global_pooling", !layerParams.has("axes"));
if (layer_type == "ReduceMean" || layer_type == "ReduceSum") if (layerParams.has("axes") && (layer_type == "ReduceMean" || layer_type == "ReduceSum" || layer_type == "ReduceMax"))
{ {
if (!layerParams.has("axes"))
CV_Error(Error::StsNotImplemented, "Unsupported mode of " + layer_type + " operation.");
MatShape inpShape = outShapes[node_proto.input(0)]; MatShape inpShape = outShapes[node_proto.input(0)];
DictValue axes = layerParams.get("axes"); DictValue axes = layerParams.get("axes");
bool keepdims = layerParams.get<int>("keepdims"); bool keepdims = layerParams.get<int>("keepdims");
@ -487,6 +484,36 @@ void ONNXImporter::populateNet(Net dstNet)
layerParams.type = "Reshape"; layerParams.type = "Reshape";
layerParams.set("dim", DictValue::arrayInt(&targetShape[0], targetShape.size())); layerParams.set("dim", DictValue::arrayInt(&targetShape[0], targetShape.size()));
node_proto.set_input(0, node_proto.output(0));
node_proto.set_output(0, layerParams.name);
}
else if (!layerParams.has("axes") && (layer_type == "ReduceMean" || layer_type == "ReduceSum" || layer_type == "ReduceMax"))
{
CV_CheckEQ(layerParams.get<int>("keepdims"), 0, (layer_type + " layer only supports keepdims = false").c_str());
LayerParams reshapeLp;
reshapeLp.name = layerParams.name + "/reshape";
reshapeLp.type = "Reshape";
CV_Assert(layer_id.find(reshapeLp.name) == layer_id.end());
int newShape[] = {1, 1, 1, -1};
reshapeLp.set("dim", DictValue::arrayInt(&newShape[0], 4));
opencv_onnx::NodeProto proto;
proto.add_input(node_proto.input(0));
proto.add_output(reshapeLp.name);
addLayer(dstNet, reshapeLp, proto, layer_id, outShapes);
LayerParams poolLp = layerParams;
poolLp.name = layerParams.name + "/pool";
CV_Assert(layer_id.find(poolLp.name) == layer_id.end());
node_proto.set_input(0, reshapeLp.name);
node_proto.set_output(0, poolLp.name);
addLayer(dstNet, poolLp, node_proto, layer_id, outShapes);
layerParams.type = "Reshape";
int targetShape[] = {1};
layerParams.set("dim", DictValue::arrayInt(&targetShape[0], 1));
node_proto.set_input(0, node_proto.output(0)); node_proto.set_input(0, node_proto.output(0));
node_proto.set_output(0, layerParams.name); node_proto.set_output(0, layerParams.name);
} }
@ -653,7 +680,7 @@ void ONNXImporter::populateNet(Net dstNet)
LayerParams constParams; LayerParams constParams;
constParams.name = layerParams.name + "/const"; constParams.name = layerParams.name + "/const";
constParams.type = "Const"; constParams.type = "Const";
constParams.blobs.push_back(blob); constParams.blobs.push_back((isSub ? -1 : 1) * blob);
int id = dstNet.addLayer(constParams.name, constParams.type, constParams); int id = dstNet.addLayer(constParams.name, constParams.type, constParams);
layer_id.insert(std::make_pair(constParams.name, LayerInfo(id, 0))); layer_id.insert(std::make_pair(constParams.name, LayerInfo(id, 0)));
outShapes[constParams.name] = shape(blob); outShapes[constParams.name] = shape(blob);
@ -1024,6 +1051,16 @@ void ONNXImporter::populateNet(Net dstNet)
} }
else else
{ {
// Scale layer allocate output with the first input shape
if (total(outShapes[node_proto.input(0)]) < total(outShapes[node_proto.input(1)]))
{
opencv_onnx::NodeProto proto;
proto.add_input(node_proto.input(1));
proto.add_input(node_proto.input(0));
proto.add_output(layerParams.name);
node_proto = proto;
}
if (isDiv) if (isDiv)
{ {
LayerParams powerParams; LayerParams powerParams;
@ -1427,8 +1464,10 @@ void ONNXImporter::populateNet(Net dstNet)
case opencv_onnx::TensorProto_DataType_INT64: type = CV_32S; break; case opencv_onnx::TensorProto_DataType_INT64: type = CV_32S; break;
default: type = blob.type(); default: type = blob.type();
} }
blob.convertTo(blob, type); Mat dst;
addConstant(layerParams.name, blob, constBlobs, outShapes); blob.convertTo(dst, type);
dst.dims = blob.dims;
addConstant(layerParams.name, dst, constBlobs, outShapes);
continue; continue;
} }
else else
@ -1477,6 +1516,8 @@ void ONNXImporter::populateNet(Net dstNet)
{ {
outShape.erase(outShape.begin() + axis); outShape.erase(outShape.begin() + axis);
out.reshape(0, outShape); out.reshape(0, outShape);
} else {
out.dims = 1;
} }
addConstant(layerParams.name, out, constBlobs, outShapes); addConstant(layerParams.name, out, constBlobs, outShapes);
continue; continue;
@ -1557,7 +1598,9 @@ void ONNXImporter::populateNet(Net dstNet)
Mat shapes = getBlob(node_proto, constBlobs, node_proto.input_size() - 1); Mat shapes = getBlob(node_proto, constBlobs, node_proto.input_size() - 1);
CV_CheckEQ(shapes.size[0], 4, ""); CV_CheckEQ(shapes.size[0], 4, "");
CV_CheckEQ(shapes.size[1], 1, ""); CV_CheckEQ(shapes.size[1], 1, "");
CV_CheckTypeEQ(shapes.depth(), CV_32S, ""); CV_CheckDepth(shapes.depth(), shapes.depth() == CV_32S || shapes.depth() == CV_32F, "");
if (shapes.depth() == CV_32F)
shapes.convertTo(shapes, CV_32S);
int height = shapes.at<int>(2); int height = shapes.at<int>(2);
int width = shapes.at<int>(3); int width = shapes.at<int>(3);
if (node_proto.input_size() == 3) if (node_proto.input_size() == 3)

@ -114,6 +114,6 @@ __kernel void clip(const int nthreads,
for (int index = get_global_id(0); index < nthreads; index += get_global_size(0)) for (int index = get_global_id(0); index < nthreads; index += get_global_size(0))
{ {
Dtype4 vec = vload4(index, dst); Dtype4 vec = vload4(index, dst);
vstore4(clamp(vec, 0.0f, 1.0f), index, dst); vstore4(clamp(vec, (Dtype)0.0f, (Dtype)1.0f), index, dst);
} }
} }

@ -275,6 +275,18 @@ TEST_P(Test_ONNX_layers, ReduceSum)
testONNXModels("reduce_sum"); testONNXModels("reduce_sum");
} }
TEST_P(Test_ONNX_layers, ReduceMaxGlobal)
{
testONNXModels("reduce_max");
}
TEST_P(Test_ONNX_layers, Scale)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
testONNXModels("scale");
}
TEST_P(Test_ONNX_layers, ReduceMean3D) TEST_P(Test_ONNX_layers, ReduceMean3D)
{ {
if (backend == DNN_BACKEND_CUDA) if (backend == DNN_BACKEND_CUDA)
@ -664,6 +676,11 @@ TEST_P(Test_ONNX_layers, MatmulWithTwoInputs)
testONNXModels("matmul_with_two_inputs"); testONNXModels("matmul_with_two_inputs");
} }
TEST_P(Test_ONNX_layers, ResizeOpset11_Torch1_6)
{
testONNXModels("resize_opset11_torch1.6");
}
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_ONNX_layers, dnnBackendsAndTargets()); INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_ONNX_layers, dnnBackendsAndTargets());
class Test_ONNX_nets : public Test_ONNX_layers class Test_ONNX_nets : public Test_ONNX_layers

@ -197,7 +197,19 @@ struct ImageCodecInitializer
std::vector<ImageEncoder> encoders; std::vector<ImageEncoder> encoders;
}; };
static ImageCodecInitializer codecs; static
ImageCodecInitializer& getCodecs()
{
#ifdef CV_CXX11
static ImageCodecInitializer g_codecs;
return g_codecs;
#else
// C++98 doesn't guarantee correctness of multi-threaded initialization of static global variables
// (memory leak here is not critical, use C++11 to avoid that)
static ImageCodecInitializer* g_codecs = new ImageCodecInitializer();
return *g_codecs;
#endif
}
/** /**
* Find the decoders * Find the decoders
@ -211,6 +223,7 @@ static ImageDecoder findDecoder( const String& filename ) {
size_t i, maxlen = 0; size_t i, maxlen = 0;
/// iterate through list of registered codecs /// iterate through list of registered codecs
ImageCodecInitializer& codecs = getCodecs();
for( i = 0; i < codecs.decoders.size(); i++ ) for( i = 0; i < codecs.decoders.size(); i++ )
{ {
size_t len = codecs.decoders[i]->signatureLength(); size_t len = codecs.decoders[i]->signatureLength();
@ -248,6 +261,7 @@ static ImageDecoder findDecoder( const Mat& buf )
if( buf.rows*buf.cols < 1 || !buf.isContinuous() ) if( buf.rows*buf.cols < 1 || !buf.isContinuous() )
return ImageDecoder(); return ImageDecoder();
ImageCodecInitializer& codecs = getCodecs();
for( i = 0; i < codecs.decoders.size(); i++ ) for( i = 0; i < codecs.decoders.size(); i++ )
{ {
size_t len = codecs.decoders[i]->signatureLength(); size_t len = codecs.decoders[i]->signatureLength();
@ -280,6 +294,7 @@ static ImageEncoder findEncoder( const String& _ext )
for( ext++; len < 128 && isalnum(ext[len]); len++ ) for( ext++; len < 128 && isalnum(ext[len]); len++ )
; ;
ImageCodecInitializer& codecs = getCodecs();
for( size_t i = 0; i < codecs.encoders.size(); i++ ) for( size_t i = 0; i < codecs.encoders.size(); i++ )
{ {
String description = codecs.encoders[i]->getDescription(); String description = codecs.encoders[i]->getDescription();

@ -145,14 +145,21 @@ namespace cv{
void finish(){ void finish(){
for (int l = 0; l < statsv.rows; ++l){ for (int l = 0; l < statsv.rows; ++l){
int *row =& statsv.at<int>(l, 0); int *row =& statsv.at<int>(l, 0);
double area = ((unsigned*)row)[CC_STAT_AREA];
double *centroid = &centroidsv.at<double>(l, 0);
if (area > 0){
row[CC_STAT_WIDTH] = row[CC_STAT_WIDTH] - row[CC_STAT_LEFT] + 1; row[CC_STAT_WIDTH] = row[CC_STAT_WIDTH] - row[CC_STAT_LEFT] + 1;
row[CC_STAT_HEIGHT] = row[CC_STAT_HEIGHT] - row[CC_STAT_TOP] + 1; row[CC_STAT_HEIGHT] = row[CC_STAT_HEIGHT] - row[CC_STAT_TOP] + 1;
Point2ui64& integral = integrals[l]; Point2ui64& integral = integrals[l];
double *centroid = &centroidsv.at<double>(l, 0);
double area = ((unsigned*)row)[CC_STAT_AREA];
centroid[0] = double(integral.x) / area; centroid[0] = double(integral.x) / area;
centroid[1] = double(integral.y) / area; centroid[1] = double(integral.y) / area;
} else {
row[CC_STAT_WIDTH] = 0;
row[CC_STAT_HEIGHT] = 0;
row[CC_STAT_LEFT] = -1;
centroid[0] = std::numeric_limits<double>::quiet_NaN();
centroid[1] = std::numeric_limits<double>::quiet_NaN();
}
} }
} }

@ -225,5 +225,19 @@ TEST(Imgproc_ConnectedComponents, parallel_wu_labels)
EXPECT_EQ(nbPixels, area); EXPECT_EQ(nbPixels, area);
} }
TEST(Imgproc_ConnectedComponents, missing_background_pixels)
{
cv::Mat m = Mat::ones(10, 10, CV_8U);
cv::Mat labels;
cv::Mat stats;
cv::Mat centroids;
EXPECT_NO_THROW(cv::connectedComponentsWithStats(m, labels, stats, centroids, 8, CV_32S, cv::CCL_WU) );
EXPECT_EQ(stats.at<int32_t>(0, cv::CC_STAT_WIDTH), 0);
EXPECT_EQ(stats.at<int32_t>(0, cv::CC_STAT_HEIGHT), 0);
EXPECT_EQ(stats.at<int32_t>(0, cv::CC_STAT_LEFT), -1);
EXPECT_TRUE(std::isnan(centroids.at<double>(0, 0)));
EXPECT_TRUE(std::isnan(centroids.at<double>(0, 1)));
}
}} // namespace }} // namespace

@ -80,7 +80,7 @@ for the operating system. Thus you can't use VideoCapture or VideoWriter with t
To get access to their devices, manufactures provide their own C++ API and library that you have to To get access to their devices, manufactures provide their own C++ API and library that you have to
include and link with your OpenCV application. include and link with your OpenCV application.
Is common case that this libraries read/write images from/to a memory buffer. If it so, it is It is a common case that these libraries read/write images from/to a memory buffer. If it so, it is
possible to make a `Mat` header for memory buffer (user-allocated data) and process it possible to make a `Mat` header for memory buffer (user-allocated data) and process it
in-place using OpenCV functions. See cv::Mat::Mat() for more details. in-place using OpenCV functions. See cv::Mat::Mat() for more details.
@ -88,9 +88,9 @@ The FFmpeg library
------------------ ------------------
OpenCV can use the FFmpeg library (http://ffmpeg.org/) as backend to record, convert and stream audio and video. OpenCV can use the FFmpeg library (http://ffmpeg.org/) as backend to record, convert and stream audio and video.
FFMpeg is a complete, cross-reference solution. If you enable FFmpeg while configuring OpenCV than FFmpeg is a complete, cross-reference solution. If you enable FFmpeg while configuring OpenCV than
CMake will download and install the binaries in `OPENCV_SOURCE_CODE/3rdparty/ffmpeg/`. To use CMake will download and install the binaries in `OPENCV_SOURCE_CODE/3rdparty/ffmpeg/`. To use
FFMpeg at runtime, you must deploy the FFMepg binaries with your application. FFmpeg at runtime, you must deploy the FFMepg binaries with your application.
@note FFmpeg is licensed under the GNU Lesser General Public License (LGPL) version 2.1 or later. @note FFmpeg is licensed under the GNU Lesser General Public License (LGPL) version 2.1 or later.
See `OPENCV_SOURCE_CODE/3rdparty/ffmpeg/readme.txt` and http://ffmpeg.org/legal.html for details and See `OPENCV_SOURCE_CODE/3rdparty/ffmpeg/readme.txt` and http://ffmpeg.org/legal.html for details and

@ -15,8 +15,12 @@ function(ocv_define_sample out_target source sub)
if(WIN32 AND MSVC AND NOT BUILD_SHARED_LIBS) if(WIN32 AND MSVC AND NOT BUILD_SHARED_LIBS)
set_target_properties(${the_target} PROPERTIES LINK_FLAGS "/NODEFAULTLIB:atlthunk.lib /NODEFAULTLIB:atlsd.lib /DEBUG") set_target_properties(${the_target} PROPERTIES LINK_FLAGS "/NODEFAULTLIB:atlthunk.lib /NODEFAULTLIB:atlsd.lib /DEBUG")
endif() endif()
if(WIN32) # Should be usable in stand-alone build scenario
install(TARGETS ${the_target} RUNTIME DESTINATION "samples/${sub}" COMPONENT samples) if((NOT DEFINED INSTALL_BIN_EXAMPLES AND WIN32) OR INSTALL_BIN_EXAMPLES)
if(NOT DEFINED OPENCV_SAMPLES_BIN_INSTALL_PATH)
set(OPENCV_SAMPLES_BIN_INSTALL_PATH "samples")
endif()
install(TARGETS ${the_target} RUNTIME DESTINATION "${OPENCV_SAMPLES_BIN_INSTALL_PATH}/${sub}" COMPONENT samples)
endif() endif()
# Add single target to build all samples in the group: 'make opencv_samples_cpp' # Add single target to build all samples in the group: 'make opencv_samples_cpp'
set(parent_target opencv_samples_${sub}) set(parent_target opencv_samples_${sub})

Loading…
Cancel
Save