|
|
@ -406,12 +406,53 @@ void setKSize(LayerParams &layerParams, const tensorflow::NodeDef &layer) |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void setPadding(LayerParams &layerParams, const tensorflow::NodeDef &layer) |
|
|
|
void setPadMode(LayerParams &layerParams, const tensorflow::NodeDef &layer) |
|
|
|
{ |
|
|
|
{ |
|
|
|
if (hasLayerAttr(layer, "padding")) |
|
|
|
if (hasLayerAttr(layer, "padding")) |
|
|
|
layerParams.set("pad_mode", getLayerAttr(layer, "padding").s()); |
|
|
|
layerParams.set("pad_mode", getLayerAttr(layer, "padding").s()); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool getExplicitPadding(LayerParams &layerParams, const tensorflow::NodeDef &layer, int64_t (&pads)[8]) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
if (!layerParams.has("pad_mode") || |
|
|
|
|
|
|
|
layerParams.get("pad_mode").getStringValue() != "EXPLICIT") |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
return false; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CV_Assert(hasLayerAttr(layer, "explicit_paddings")); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const tensorflow::AttrValue& protoPads = getLayerAttr(layer, "explicit_paddings"); |
|
|
|
|
|
|
|
if (protoPads.list().i_size() != 8) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding configuration."); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int n = sizeof(pads) / sizeof(pads[0]); |
|
|
|
|
|
|
|
for (int i = 0; i < n; ++i) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
pads[i] = protoPads.list().i(i); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (getDataLayout(layer) != DATA_LAYOUT_NCHW) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
CV_LOG_DEBUG(NULL, "DNN/TF: Data format " << getLayerAttr(layer, "data_format").s() << ", assuming NHWC."); |
|
|
|
|
|
|
|
// Perhaps, we have NHWC padding dimensions order.
|
|
|
|
|
|
|
|
// N H W C
|
|
|
|
|
|
|
|
// 0 1 2 3 4 5 6 7
|
|
|
|
|
|
|
|
std::swap(pads[2], pads[6]); |
|
|
|
|
|
|
|
std::swap(pads[3], pads[7]); |
|
|
|
|
|
|
|
// N C W H
|
|
|
|
|
|
|
|
// 0 1 2 3 4 5 6 7
|
|
|
|
|
|
|
|
std::swap(pads[4], pads[6]); |
|
|
|
|
|
|
|
std::swap(pads[5], pads[7]); |
|
|
|
|
|
|
|
// N C H W
|
|
|
|
|
|
|
|
// 0 1 2 3 4 5 6 7
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return true; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
Pin parsePin(const std::string &name) |
|
|
|
Pin parsePin(const std::string &name) |
|
|
|
{ |
|
|
|
{ |
|
|
|
Pin pin(name); |
|
|
|
Pin pin(name); |
|
|
@ -516,6 +557,7 @@ protected: |
|
|
|
|
|
|
|
|
|
|
|
private: |
|
|
|
private: |
|
|
|
void addPermuteLayer(const int* order, const std::string& permName, Pin& inpId); |
|
|
|
void addPermuteLayer(const int* order, const std::string& permName, Pin& inpId); |
|
|
|
|
|
|
|
void setPadding(LayerParams &layerParams, const tensorflow::NodeDef &layer, std::string& inputName, float value = 0.); |
|
|
|
|
|
|
|
|
|
|
|
friend class LayerHandler; |
|
|
|
friend class LayerHandler; |
|
|
|
typedef void (TFImporter::*TFImporterNodeParser)(tensorflow::GraphDef&, const tensorflow::NodeDef&, LayerParams&); |
|
|
|
typedef void (TFImporter::*TFImporterNodeParser)(tensorflow::GraphDef&, const tensorflow::NodeDef&, LayerParams&); |
|
|
@ -558,6 +600,31 @@ private: |
|
|
|
void parseCustomLayer (tensorflow::GraphDef& net, const tensorflow::NodeDef& layer, LayerParams& layerParams); |
|
|
|
void parseCustomLayer (tensorflow::GraphDef& net, const tensorflow::NodeDef& layer, LayerParams& layerParams); |
|
|
|
}; |
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void TFImporter::setPadding(LayerParams &layerParams, const tensorflow::NodeDef &layer, std::string& inputName, float value) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
setPadMode(layerParams, layer); |
|
|
|
|
|
|
|
int64_t pads[8]; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (!getExplicitPadding(layerParams, layer, pads)) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
return; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LayerParams padLp; |
|
|
|
|
|
|
|
padLp.name = layer.name() + "/pad"; |
|
|
|
|
|
|
|
padLp.type = "Padding"; |
|
|
|
|
|
|
|
padLp.set("paddings", DictValue::arrayInt(pads, sizeof(pads) / sizeof(pads[0]))); |
|
|
|
|
|
|
|
padLp.set("value", value); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int id = dstNet.addLayer(padLp.name, padLp.type, padLp); |
|
|
|
|
|
|
|
layer_id[padLp.name] = id; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
connect(layer_id, dstNet, parsePin(inputName), id, 0); |
|
|
|
|
|
|
|
inputName = padLp.name; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
layerParams.set("pad_mode", "VALID"); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
class LayerHandler |
|
|
|
class LayerHandler |
|
|
|
{ |
|
|
|
{ |
|
|
|
public: |
|
|
|
public: |
|
|
@ -808,7 +875,7 @@ void TFImporter::parseConvolution(tensorflow::GraphDef& net, const tensorflow::N |
|
|
|
|
|
|
|
|
|
|
|
setStrides(layerParams, layer); |
|
|
|
setStrides(layerParams, layer); |
|
|
|
if (!layerParams.has("pad_w") && !layerParams.has("pad_h")) |
|
|
|
if (!layerParams.has("pad_w") && !layerParams.has("pad_h")) |
|
|
|
setPadding(layerParams, layer); |
|
|
|
setPadding(layerParams, layer, input); |
|
|
|
|
|
|
|
|
|
|
|
// The final node of dilated convolution subgraph.
|
|
|
|
// The final node of dilated convolution subgraph.
|
|
|
|
next_layers = getNextLayers(net, name, "BatchToSpaceND"); |
|
|
|
next_layers = getNextLayers(net, name, "BatchToSpaceND"); |
|
|
@ -1253,20 +1320,21 @@ void TFImporter::parseMaxPool(tensorflow::GraphDef& net, const tensorflow::NodeD |
|
|
|
{ |
|
|
|
{ |
|
|
|
const std::string& name = layer.name(); |
|
|
|
const std::string& name = layer.name(); |
|
|
|
const int num_inputs = layer.input_size(); |
|
|
|
const int num_inputs = layer.input_size(); |
|
|
|
|
|
|
|
std::string inputName = layer.input(0); |
|
|
|
|
|
|
|
|
|
|
|
CV_CheckGT(num_inputs, 0, ""); |
|
|
|
CV_CheckGT(num_inputs, 0, ""); |
|
|
|
layerParams.set("pool", "max"); |
|
|
|
layerParams.set("pool", "max"); |
|
|
|
|
|
|
|
|
|
|
|
setKSize(layerParams, layer); |
|
|
|
setKSize(layerParams, layer); |
|
|
|
setStrides(layerParams, layer); |
|
|
|
setStrides(layerParams, layer); |
|
|
|
setPadding(layerParams, layer); |
|
|
|
setPadding(layerParams, layer, inputName, -std::numeric_limits<float>::infinity()); |
|
|
|
// Test_TensorFlow_nets.EAST_text_detection/1, NGRAPH/CPU
|
|
|
|
// Test_TensorFlow_nets.EAST_text_detection/1, NGRAPH/CPU
|
|
|
|
layerParams.set("ceil_mode", false); |
|
|
|
layerParams.set("ceil_mode", false); |
|
|
|
|
|
|
|
|
|
|
|
int id = dstNet.addLayer(name, "Pooling", layerParams); |
|
|
|
int id = dstNet.addLayer(name, "Pooling", layerParams); |
|
|
|
layer_id[name] = id; |
|
|
|
layer_id[name] = id; |
|
|
|
|
|
|
|
|
|
|
|
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, num_inputs); |
|
|
|
connectToAllBlobs(layer_id, dstNet, parsePin(inputName), id, num_inputs); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void TFImporter::parseAvgPool(tensorflow::GraphDef& net, const tensorflow::NodeDef& layer, LayerParams& layerParams) |
|
|
|
void TFImporter::parseAvgPool(tensorflow::GraphDef& net, const tensorflow::NodeDef& layer, LayerParams& layerParams) |
|
|
@ -1279,7 +1347,7 @@ void TFImporter::parseAvgPool(tensorflow::GraphDef& net, const tensorflow::NodeD |
|
|
|
layerParams.set("ave_pool_padded_area", false); |
|
|
|
layerParams.set("ave_pool_padded_area", false); |
|
|
|
setKSize(layerParams, layer); |
|
|
|
setKSize(layerParams, layer); |
|
|
|
setStrides(layerParams, layer); |
|
|
|
setStrides(layerParams, layer); |
|
|
|
setPadding(layerParams, layer); |
|
|
|
setPadMode(layerParams, layer); |
|
|
|
|
|
|
|
|
|
|
|
int id = dstNet.addLayer(name, "Pooling", layerParams); |
|
|
|
int id = dstNet.addLayer(name, "Pooling", layerParams); |
|
|
|
layer_id[name] = id; |
|
|
|
layer_id[name] = id; |
|
|
@ -1694,7 +1762,7 @@ void TFImporter::parseConv2DBackpropInput(tensorflow::GraphDef& net, const tenso |
|
|
|
// input: "weights"
|
|
|
|
// input: "weights"
|
|
|
|
// input: "input"
|
|
|
|
// input: "input"
|
|
|
|
|
|
|
|
|
|
|
|
const std::string& name = layer.name(); |
|
|
|
std::string name = layer.name(); |
|
|
|
const int num_inputs = layer.input_size(); |
|
|
|
const int num_inputs = layer.input_size(); |
|
|
|
|
|
|
|
|
|
|
|
CV_CheckEQ(num_inputs, 3, "Expected output shape, weights and input nodes"); |
|
|
|
CV_CheckEQ(num_inputs, 3, "Expected output shape, weights and input nodes"); |
|
|
@ -1725,7 +1793,21 @@ void TFImporter::parseConv2DBackpropInput(tensorflow::GraphDef& net, const tenso |
|
|
|
layerParams.set("num_output", kshape[1]); |
|
|
|
layerParams.set("num_output", kshape[1]); |
|
|
|
|
|
|
|
|
|
|
|
setStrides(layerParams, layer); |
|
|
|
setStrides(layerParams, layer); |
|
|
|
setPadding(layerParams, layer); |
|
|
|
setPadMode(layerParams, layer); |
|
|
|
|
|
|
|
int64_t pads[8]; |
|
|
|
|
|
|
|
bool explicit_pads = getExplicitPadding(layerParams, layer, pads); |
|
|
|
|
|
|
|
int64_t begs[4] = {}; |
|
|
|
|
|
|
|
int64_t ends[4] = {-1, -1, -1, -1}; |
|
|
|
|
|
|
|
if (explicit_pads) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
name += "/deconv"; |
|
|
|
|
|
|
|
layerParams.set("pad_mode", "VALID"); |
|
|
|
|
|
|
|
for (int i = 2; i < 4; ++i) // begins=[0, 0, a, b], ends=[-1, -1, c, d]
|
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
begs[i] = pads[2*i]; |
|
|
|
|
|
|
|
ends[i] = -1 - pads[2*i + 1]; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// For convolution layer, output shape computes as
|
|
|
|
// For convolution layer, output shape computes as
|
|
|
|
// o = 1 + (i - k + 2*p) / s
|
|
|
|
// o = 1 + (i - k + 2*p) / s
|
|
|
@ -1742,8 +1824,9 @@ void TFImporter::parseConv2DBackpropInput(tensorflow::GraphDef& net, const tenso |
|
|
|
const int strideY = layerParams.get<int>("stride_h"); |
|
|
|
const int strideY = layerParams.get<int>("stride_h"); |
|
|
|
const int strideX = layerParams.get<int>("stride_w"); |
|
|
|
const int strideX = layerParams.get<int>("stride_w"); |
|
|
|
Mat outShape = getTensorContent(getConstBlob(layer, value_id, 0)); |
|
|
|
Mat outShape = getTensorContent(getConstBlob(layer, value_id, 0)); |
|
|
|
const int outH = outShape.at<int>(1); |
|
|
|
int shift = (getDataLayout(layer) == DATA_LAYOUT_NCHW); |
|
|
|
const int outW = outShape.at<int>(2); |
|
|
|
const int outH = outShape.at<int>(1 + shift) + begs[2] - 1 - ends[2]; |
|
|
|
|
|
|
|
const int outW = outShape.at<int>(2 + shift) + begs[3] - 1 - ends[3]; |
|
|
|
if (layerParams.get<String>("pad_mode") == "SAME") |
|
|
|
if (layerParams.get<String>("pad_mode") == "SAME") |
|
|
|
{ |
|
|
|
{ |
|
|
|
layerParams.set("adj_w", (outW - 1) % strideX); |
|
|
|
layerParams.set("adj_w", (outW - 1) % strideX); |
|
|
@ -1759,6 +1842,16 @@ void TFImporter::parseConv2DBackpropInput(tensorflow::GraphDef& net, const tenso |
|
|
|
|
|
|
|
|
|
|
|
// one input only
|
|
|
|
// one input only
|
|
|
|
connect(layer_id, dstNet, parsePin(layer.input(2)), id, 0); |
|
|
|
connect(layer_id, dstNet, parsePin(layer.input(2)), id, 0); |
|
|
|
|
|
|
|
if (explicit_pads) // If we have explicit paddings, remove extra data
|
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
layerParams.set("begin", DictValue::arrayInt(begs, sizeof(begs) / sizeof(begs[0]))); |
|
|
|
|
|
|
|
layerParams.set("end", DictValue::arrayInt(ends, sizeof(ends) / sizeof(ends[0]))); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int id = dstNet.addLayer(layer.name(), "Slice", layerParams); |
|
|
|
|
|
|
|
layer_id[layer.name()] = id; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
connect(layer_id, dstNet, parsePin(name), id, 0); |
|
|
|
|
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void TFImporter::parseBlockLSTM(tensorflow::GraphDef& net, const tensorflow::NodeDef& layer, LayerParams& layerParams) |
|
|
|
void TFImporter::parseBlockLSTM(tensorflow::GraphDef& net, const tensorflow::NodeDef& layer, LayerParams& layerParams) |
|
|
@ -1766,8 +1859,8 @@ void TFImporter::parseBlockLSTM(tensorflow::GraphDef& net, const tensorflow::Nod |
|
|
|
// op: "BlockLSTM"
|
|
|
|
// op: "BlockLSTM"
|
|
|
|
// input: "lstm_block_wrapper/ToInt64/x" (ignore, number of time stamps)
|
|
|
|
// input: "lstm_block_wrapper/ToInt64/x" (ignore, number of time stamps)
|
|
|
|
// input: "input"
|
|
|
|
// input: "input"
|
|
|
|
// input: "lstm_block_wrapper/zeros" (ignore)
|
|
|
|
// input: "lstm_block_wrapper/zeros"
|
|
|
|
// input: "lstm_block_wrapper/zeros" (ignore)
|
|
|
|
// input: "lstm_block_wrapper/zeros"
|
|
|
|
// input: "lstm_block_wrapper/kernel"
|
|
|
|
// input: "lstm_block_wrapper/kernel"
|
|
|
|
// input: "lstm_block_wrapper/w_i_diag"
|
|
|
|
// input: "lstm_block_wrapper/w_i_diag"
|
|
|
|
// input: "lstm_block_wrapper/w_f_diag"
|
|
|
|
// input: "lstm_block_wrapper/w_f_diag"
|
|
|
@ -1793,9 +1886,11 @@ void TFImporter::parseBlockLSTM(tensorflow::GraphDef& net, const tensorflow::Nod |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
Mat W, Wh, Wx, b; |
|
|
|
Mat W, Wh, Wx, b, cs_prev, h_prev; |
|
|
|
blobFromTensor(getConstBlob(layer, value_id, 4), W); |
|
|
|
blobFromTensor(getConstBlob(layer, value_id, 4), W); |
|
|
|
blobFromTensor(getConstBlob(layer, value_id, 8), b); |
|
|
|
blobFromTensor(getConstBlob(layer, value_id, 8), b); |
|
|
|
|
|
|
|
blobFromTensor(getConstBlob(layer, value_id, 2), cs_prev); |
|
|
|
|
|
|
|
blobFromTensor(getConstBlob(layer, value_id, 3), h_prev); |
|
|
|
const int outSize = W.cols / 4; |
|
|
|
const int outSize = W.cols / 4; |
|
|
|
|
|
|
|
|
|
|
|
// IGFO->IFOG
|
|
|
|
// IGFO->IFOG
|
|
|
@ -1811,10 +1906,12 @@ void TFImporter::parseBlockLSTM(tensorflow::GraphDef& net, const tensorflow::Nod |
|
|
|
Wx = W.rowRange(0, W.rows - outSize).t(); |
|
|
|
Wx = W.rowRange(0, W.rows - outSize).t(); |
|
|
|
Wh = W.rowRange(W.rows - outSize, W.rows).t(); |
|
|
|
Wh = W.rowRange(W.rows - outSize, W.rows).t(); |
|
|
|
|
|
|
|
|
|
|
|
layerParams.blobs.resize(3); |
|
|
|
layerParams.blobs.resize(5); |
|
|
|
layerParams.blobs[0] = Wh; |
|
|
|
layerParams.blobs[0] = Wh; |
|
|
|
layerParams.blobs[1] = Wx; |
|
|
|
layerParams.blobs[1] = Wx; |
|
|
|
layerParams.blobs[2] = b; |
|
|
|
layerParams.blobs[2] = b; |
|
|
|
|
|
|
|
layerParams.blobs[3] = h_prev; |
|
|
|
|
|
|
|
layerParams.blobs[4] = cs_prev; |
|
|
|
|
|
|
|
|
|
|
|
if (hasLayerAttr(layer, "use_peephole")) |
|
|
|
if (hasLayerAttr(layer, "use_peephole")) |
|
|
|
{ |
|
|
|
{ |
|
|
@ -1822,14 +1919,14 @@ void TFImporter::parseBlockLSTM(tensorflow::GraphDef& net, const tensorflow::Nod |
|
|
|
if (usePeephole) |
|
|
|
if (usePeephole) |
|
|
|
{ |
|
|
|
{ |
|
|
|
layerParams.set("use_peephole", true); |
|
|
|
layerParams.set("use_peephole", true); |
|
|
|
layerParams.blobs.resize(6); |
|
|
|
layerParams.blobs.resize(8); |
|
|
|
for (int i = 0; i < 3; ++i) |
|
|
|
for (int i = 0; i < 3; ++i) |
|
|
|
{ |
|
|
|
{ |
|
|
|
Mat w; |
|
|
|
Mat w; |
|
|
|
blobFromTensor(getConstBlob(layer, value_id, 5 + i), w); |
|
|
|
blobFromTensor(getConstBlob(layer, value_id, 5 + i), w); |
|
|
|
w = w.reshape(1, w.total()); // Single column.
|
|
|
|
w = w.reshape(1, w.total()); // Single column.
|
|
|
|
w = Mat::diag(w); // Make a diagonal matrix.
|
|
|
|
w = Mat::diag(w); // Make a diagonal matrix.
|
|
|
|
layerParams.blobs[3 + i] = w; |
|
|
|
layerParams.blobs[5 + i] = w; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|