Merge pull request #3987 from vpisarev:core_fixes_part_1

pull/3993/head
Vadim Pisarevsky 10 years ago
commit f49544f310
  1. 12
      cmake/OpenCVFindLibsVideo.cmake
  2. 6
      modules/core/include/opencv2/core/mat.hpp
  3. 17
      modules/core/include/opencv2/core/mat.inl.hpp
  4. 4
      modules/core/include/opencv2/core/optim.hpp
  5. 738
      modules/core/src/arithm.cpp
  6. 19
      modules/core/src/conjugate_gradient.cpp
  7. 464
      modules/core/src/downhill_simplex.cpp
  8. 85
      modules/core/src/dxt.cpp
  9. 6
      modules/core/src/lapack.cpp
  10. 420
      modules/core/src/mathfuncs.cpp
  11. 12
      modules/core/src/matmul.cpp
  12. 53
      modules/core/src/matrix.cpp
  13. 10
      modules/core/src/opencl/fft.cl
  14. 29
      modules/core/src/precomp.hpp
  15. 26
      modules/core/src/rand.cpp
  16. 5
      modules/core/src/stat.cpp
  17. 25
      modules/core/test/test_arithm.cpp
  18. 17
      modules/core/test/test_conjugate_gradient.cpp
  19. 4
      modules/core/test/test_downhill_simplex.cpp
  20. 21
      modules/core/test/test_dxt.cpp
  21. 39
      modules/core/test/test_mat.cpp
  22. 70
      modules/core/test/test_math.cpp
  23. 3
      modules/hal/include/opencv2/hal/intrin_neon.hpp
  24. 10
      modules/hal/include/opencv2/hal/intrin_sse.hpp

@ -229,6 +229,18 @@ if(WITH_FFMPEG)
find_library(FFMPEG_UTIL_LIB "avutil" HINTS "${FFMPEG_LIB_DIR}")
find_library(FFMPEG_SWSCALE_LIB "swscale" HINTS "${FFMPEG_LIB_DIR}")
find_library(FFMPEG_RESAMPLE_LIB "avresample" HINTS "${FFMPEG_LIB_DIR}")
if(FFMPEG_CODEC_LIB)
set(HAVE_FFMPEG_CODEC 1)
endif()
if(FFMPEG_FORMAT_LIB)
set(HAVE_FFMPEG_FORMAT 1)
endif()
if(FFMPEG_UTIL_LIB)
set(HAVE_FFMPEG_UTIL 1)
endif()
if(FFMPEG_SWSCALE_LIB)
set(HAVE_FFMPEG_SWSCALE 1)
endif()
if(FFMPEG_CODEC_LIB AND FFMPEG_FORMAT_LIB AND
FFMPEG_UTIL_LIB AND FFMPEG_SWSCALE_LIB)
set(ALIASOF_libavcodec_VERSION "Unknown")

@ -163,7 +163,8 @@ public:
CUDA_HOST_MEM = 8 << KIND_SHIFT,
CUDA_GPU_MAT = 9 << KIND_SHIFT,
UMAT =10 << KIND_SHIFT,
STD_VECTOR_UMAT =11 << KIND_SHIFT
STD_VECTOR_UMAT =11 << KIND_SHIFT,
STD_BOOL_VECTOR =12 << KIND_SHIFT
};
_InputArray();
@ -173,6 +174,7 @@ public:
_InputArray(const std::vector<Mat>& vec);
template<typename _Tp> _InputArray(const Mat_<_Tp>& m);
template<typename _Tp> _InputArray(const std::vector<_Tp>& vec);
_InputArray(const std::vector<bool>& vec);
template<typename _Tp> _InputArray(const std::vector<std::vector<_Tp> >& vec);
template<typename _Tp> _InputArray(const std::vector<Mat_<_Tp> >& vec);
template<typename _Tp> _InputArray(const _Tp* vec, int n);
@ -284,6 +286,7 @@ public:
_OutputArray(cuda::HostMem& cuda_mem);
template<typename _Tp> _OutputArray(cudev::GpuMat_<_Tp>& m);
template<typename _Tp> _OutputArray(std::vector<_Tp>& vec);
_OutputArray(std::vector<bool>& vec);
template<typename _Tp> _OutputArray(std::vector<std::vector<_Tp> >& vec);
template<typename _Tp> _OutputArray(std::vector<Mat_<_Tp> >& vec);
template<typename _Tp> _OutputArray(Mat_<_Tp>& m);
@ -340,6 +343,7 @@ public:
_InputOutputArray(cuda::HostMem& cuda_mem);
template<typename _Tp> _InputOutputArray(cudev::GpuMat_<_Tp>& m);
template<typename _Tp> _InputOutputArray(std::vector<_Tp>& vec);
_InputOutputArray(std::vector<bool>& vec);
template<typename _Tp> _InputOutputArray(std::vector<std::vector<_Tp> >& vec);
template<typename _Tp> _InputOutputArray(std::vector<Mat_<_Tp> >& vec);
template<typename _Tp> _InputOutputArray(Mat_<_Tp>& m);

@ -77,6 +77,10 @@ template<typename _Tp> inline
_InputArray::_InputArray(const std::vector<_Tp>& vec)
{ init(FIXED_TYPE + STD_VECTOR + DataType<_Tp>::type + ACCESS_READ, &vec); }
inline
_InputArray::_InputArray(const std::vector<bool>& vec)
{ init(FIXED_TYPE + STD_BOOL_VECTOR + DataType<bool>::type + ACCESS_READ, &vec); }
template<typename _Tp> inline
_InputArray::_InputArray(const std::vector<std::vector<_Tp> >& vec)
{ init(FIXED_TYPE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_READ, &vec); }
@ -140,6 +144,10 @@ template<typename _Tp> inline
_OutputArray::_OutputArray(std::vector<_Tp>& vec)
{ init(FIXED_TYPE + STD_VECTOR + DataType<_Tp>::type + ACCESS_WRITE, &vec); }
inline
_OutputArray::_OutputArray(std::vector<bool>&)
{ CV_Error(Error::StsUnsupportedFormat, "std::vector<bool> cannot be an output array\n"); }
template<typename _Tp> inline
_OutputArray::_OutputArray(std::vector<std::vector<_Tp> >& vec)
{ init(FIXED_TYPE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_WRITE, &vec); }
@ -227,6 +235,9 @@ template<typename _Tp> inline
_InputOutputArray::_InputOutputArray(std::vector<_Tp>& vec)
{ init(FIXED_TYPE + STD_VECTOR + DataType<_Tp>::type + ACCESS_RW, &vec); }
inline _InputOutputArray::_InputOutputArray(std::vector<bool>&)
{ CV_Error(Error::StsUnsupportedFormat, "std::vector<bool> cannot be an input/output array\n"); }
template<typename _Tp> inline
_InputOutputArray::_InputOutputArray(std::vector<std::vector<_Tp> >& vec)
{ init(FIXED_TYPE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_RW, &vec); }
@ -1464,13 +1475,15 @@ Mat_<_Tp> Mat_<_Tp>::operator()( const Range* ranges ) const
template<typename _Tp> inline
_Tp* Mat_<_Tp>::operator [](int y)
{
return (_Tp*)ptr(y);
CV_DbgAssert( 0 <= y && y < rows );
return (_Tp*)(data + y*step.p[0]);
}
template<typename _Tp> inline
const _Tp* Mat_<_Tp>::operator [](int y) const
{
return (const _Tp*)ptr(y);
CV_DbgAssert( 0 <= y && y < rows );
return (const _Tp*)(data + y*step.p[0]);
}
template<typename _Tp> inline

@ -64,8 +64,10 @@ public:
{
public:
virtual ~Function() {}
virtual int getDims() const = 0;
virtual double getGradientEps() const;
virtual double calc(const double* x) const = 0;
virtual void getGradient(const double* /*x*/,double* /*grad*/) {}
virtual void getGradient(const double* x,double* grad);
};
/** @brief Getter for the optimized function.

File diff suppressed because it is too large Load Diff

@ -46,6 +46,25 @@
namespace cv
{
double MinProblemSolver::Function::getGradientEps() const { return 1e-3; }
void MinProblemSolver::Function::getGradient(const double* x, double* grad)
{
double eps = getGradientEps();
int i, n = getDims();
AutoBuffer<double> x_buf(n);
double* x_ = x_buf;
for( i = 0; i < n; i++ )
x_[i] = x[i];
for( i = 0; i < n; i++ )
{
x_[i] = x[i] + eps;
double y1 = calc(x_);
x_[i] = x[i] - eps;
double y0 = calc(x_);
grad[i] = (y1 - y0)/(2*eps);
x_[i] = x[i];
}
}
#define SEC_METHOD_ITERATIONS 4
#define INITIAL_SEC_METHOD_SIGMA 0.1

@ -40,8 +40,13 @@
//M*/
#include "precomp.hpp"
#if 0
#define dprintf(x) printf x
#define print_matrix(x) print(x)
#else
#define dprintf(x)
#define print_matrix(x)
#endif
/*
@ -51,14 +56,14 @@ Downhill Simplex method in OpenCV dev 3.0.0 getting this error:
OpenCV Error: Assertion failed (dims <= 2 && data && (unsigned)i0 < (unsigned)(s ize.p[0] * size.p[1])
&& elemSize() == (((((DataType<_Tp>::type) & ((512 - 1) << 3)) >> 3) + 1) << ((((sizeof(size_t)/4+1)16384|0x3a50)
>> ((DataType<_Tp>::typ e) & ((1 << 3) - 1))2) & 3))) in cv::Mat::at,
>> ((DataType<_Tp>::typ e) & ((1 << 3) - 1))2) & 3))) in Mat::at,
file C:\builds\master_PackSlave-w in32-vc12-shared\opencv\modules\core\include\opencv2/core/mat.inl.hpp, line 893
****Problem and Possible Fix*********************************************************************************************************
DownhillSolverImpl::innerDownhillSimplex something looks broken here:
Mat_<double> coord_sum(1,ndim,0.0),buf(1,ndim,0.0),y(1,ndim,0.0);
nfunk = 0;
fcount = 0;
for(i=0;i<ndim+1;++i)
{
y(i) = f->calc(p[i]);
@ -135,63 +140,126 @@ multiple lines in three dimensions as not all lines intersect in three dimension
namespace cv
{
class DownhillSolverImpl : public DownhillSolver
{
public:
void getInitStep(OutputArray step) const;
void setInitStep(InputArray step);
Ptr<Function> getFunction() const;
void setFunction(const Ptr<Function>& f);
TermCriteria getTermCriteria() const;
DownhillSolverImpl();
void setTermCriteria(const TermCriteria& termcrit);
double minimize(InputOutputArray x);
protected:
class DownhillSolverImpl : public DownhillSolver
{
public:
DownhillSolverImpl()
{
_Function=Ptr<Function>();
_step=Mat_<double>();
}
void getInitStep(OutputArray step) const { _step.copyTo(step); }
void setInitStep(InputArray step)
{
// set dimensionality and make a deep copy of step
Mat m = step.getMat();
dprintf(("m.cols=%d\nm.rows=%d\n", m.cols, m.rows));
if( m.rows == 1 )
m.copyTo(_step);
else
transpose(m, _step);
}
Ptr<MinProblemSolver::Function> getFunction() const { return _Function; }
void setFunction(const Ptr<Function>& f) { _Function=f; }
TermCriteria getTermCriteria() const { return _termcrit; }
void setTermCriteria( const TermCriteria& termcrit )
{
CV_Assert( termcrit.type == (TermCriteria::MAX_ITER + TermCriteria::EPS) &&
termcrit.epsilon > 0 &&
termcrit.maxCount > 0 );
_termcrit=termcrit;
}
double minimize( InputOutputArray x_ )
{
dprintf(("hi from minimize\n"));
CV_Assert( !_Function.empty() );
CV_Assert( std::min(_step.cols, _step.rows) == 1 &&
std::max(_step.cols, _step.rows) >= 2 &&
_step.type() == CV_64FC1 );
dprintf(("termcrit:\n\ttype: %d\n\tmaxCount: %d\n\tEPS: %g\n",_termcrit.type,_termcrit.maxCount,_termcrit.epsilon));
dprintf(("step\n"));
print_matrix(_step);
Mat x = x_.getMat(), simplex;
createInitialSimplex(x, simplex, _step);
int count = 0;
double res = innerDownhillSimplex(simplex,_termcrit.epsilon, _termcrit.epsilon,
count, _termcrit.maxCount);
dprintf(("%d iterations done\n",count));
if( !x.empty() )
{
Mat simplex_0m(x.rows, x.cols, CV_64F, simplex.ptr<double>());
simplex_0m.convertTo(x, x.type());
}
else
{
int x_type = x_.fixedType() ? x_.type() : CV_64F;
simplex.row(0).convertTo(x_, x_type);
}
return res;
}
protected:
Ptr<MinProblemSolver::Function> _Function;
TermCriteria _termcrit;
Mat _step;
Mat_<double> buf_x;
private:
inline void createInitialSimplex(Mat_<double>& simplex,Mat& step);
inline double innerDownhillSimplex(cv::Mat_<double>& p,double MinRange,double MinError,int& nfunk,
const Ptr<MinProblemSolver::Function>& f,int nmax);
inline double tryNewPoint(Mat_<double>& p,Mat_<double>& y,Mat_<double>& coord_sum,const Ptr<MinProblemSolver::Function>& f,int ihi,
double fac,Mat_<double>& ptry);
};
double DownhillSolverImpl::tryNewPoint(
Mat_<double>& p,
Mat_<double>& y,
Mat_<double>& coord_sum,
const Ptr<MinProblemSolver::Function>& f,
int ihi,
double fac,
Mat_<double>& ptry
)
inline void updateCoordSum(const Mat& p, Mat& coord_sum)
{
int ndim=p.cols;
int j;
double fac1,fac2,ytry;
int i, j, m = p.rows, n = p.cols;
double* coord_sum_ = coord_sum.ptr<double>();
CV_Assert( coord_sum.cols == n && coord_sum.rows == 1 );
for( j = 0; j < n; j++ )
coord_sum_[j] = 0.;
fac1=(1.0-fac)/ndim;
fac2=fac1-fac;
for (j=0;j<ndim;j++)
for( i = 0; i < m; i++ )
{
ptry(j)=coord_sum(j)*fac1-p(ihi,j)*fac2;
const double* p_i = p.ptr<double>(i);
for( j = 0; j < n; j++ )
coord_sum_[j] += p_i[j];
}
dprintf(("\nupdated coord sum:\n"));
print_matrix(coord_sum);
}
ytry=f->calc(ptry.ptr<double>());
if (ytry < y(ihi))
inline void createInitialSimplex( const Mat& x0, Mat& simplex, Mat& step )
{
y(ihi)=ytry;
for (j=0;j<ndim;j++)
int i, j, ndim = step.cols;
CV_Assert( _Function->getDims() == ndim );
Mat x = x0;
if( x0.empty() )
x = Mat::zeros(1, ndim, CV_64F);
CV_Assert( (x.cols == 1 && x.rows == ndim) || (x.cols == ndim && x.rows == 1) );
CV_Assert( x.type() == CV_32F || x.type() == CV_64F );
simplex.create(ndim + 1, ndim, CV_64F);
Mat simplex_0m(x.rows, x.cols, CV_64F, simplex.ptr<double>());
x.convertTo(simplex_0m, CV_64F);
double* simplex_0 = simplex.ptr<double>();
const double* step_ = step.ptr<double>();
for( i = 1; i <= ndim; i++ )
{
coord_sum(j) += ptry(j)-p(ihi,j);
p(ihi,j)=ptry(j);
}
double* simplex_i = simplex.ptr<double>(i);
for( j = 0; j < ndim; j++ )
simplex_i[j] = simplex_0[j];
simplex_i[i-1] += 0.5*step_[i-1];
}
for( j = 0; j < ndim; j++ )
simplex_0[j] -= 0.5*step_[j];
return ytry;
dprintf(("\nthis is simplex\n"));
print_matrix(simplex);
}
/*
@ -199,211 +267,199 @@ namespace cv
The matrix p[ndim+1][1..ndim] represents ndim+1 vertices that
form a simplex - each row is an ndim vector.
On output, nfunk gives the number of function evaluations taken.
On output, fcount gives the number of function evaluations taken.
*/
double DownhillSolverImpl::innerDownhillSimplex(
cv::Mat_<double>& p,
double MinRange,
double MinError,
int& nfunk,
const Ptr<MinProblemSolver::Function>& f,
int nmax
)
{
int ndim=p.cols;
double res;
int i,ihi,ilo,inhi,j,mpts=ndim+1;
double error, range,ysave,ytry;
Mat_<double> coord_sum(1,ndim,0.0),buf(1,ndim,0.0),y(1,ndim+1,0.0);
nfunk = 0;
for(i=0;i<ndim+1;++i)
double innerDownhillSimplex( Mat& p, double MinRange, double MinError, int& fcount, int nmax )
{
y(i) = f->calc(p[i]);
}
int i, j, ndim = p.cols;
Mat coord_sum(1, ndim, CV_64F), buf(1, ndim, CV_64F), y(1, ndim+1, CV_64F);
double* y_ = y.ptr<double>();
nfunk = ndim+1;
fcount = ndim+1;
for( i = 0; i <= ndim; i++ )
y_[i] = calc_f(p.ptr<double>(i));
reduce(p,coord_sum,0,CV_REDUCE_SUM);
updateCoordSum(p, coord_sum);
for (;;)
{
ilo=0;
/* find highest (worst), next-to-worst, and lowest
(best) points by going through all of them. */
ihi = y(0)>y(1) ? (inhi=1,0) : (inhi=0,1);
for (i=0;i<mpts;i++)
// find highest (worst), next-to-worst, and lowest
// (best) points by going through all of them.
int ilo = 0, ihi, inhi;
if( y_[0] > y_[1] )
{
ihi = 0; inhi = 1;
}
else
{
ihi = 1; inhi = 0;
}
for( i = 0; i <= ndim; i++ )
{
double yval = y_[i];
if (yval <= y_[ilo])
ilo = i;
if (yval > y_[ihi])
{
inhi = ihi;
ihi = i;
}
else if (yval > y_[inhi] && i != ihi)
inhi = i;
}
CV_Assert( ihi != inhi );
if( ilo == inhi || ilo == ihi )
{
if (y(i) <= y(ilo))
ilo=i;
if (y(i) > y(ihi))
for( i = 0; i <= ndim; i++ )
{
inhi=ihi;
ihi=i;
double yval = y_[i];
if( yval == y_[ilo] && i != ihi && i != inhi )
{
ilo = i;
break;
}
else if (y(i) > y(inhi) && i != ihi)
inhi=i;
}
}
dprintf(("\nthis is y on iteration %d:\n",fcount));
print_matrix(y);
/* check stop criterion */
error=fabs(y(ihi)-y(ilo));
range=0;
for(i=0;i<ndim;++i)
// check stop criterion
double error = fabs(y_[ihi] - y_[ilo]);
double range = 0;
for( j = 0; j < ndim; j++ )
{
double min = p(0,i);
double max = p(0,i);
double d;
for(j=1;j<=ndim;++j)
double minval, maxval;
minval = maxval = p.at<double>(0, j);
for( i = 1; i <= ndim; i++ )
{
if( min > p(j,i) ) min = p(j,i);
if( max < p(j,i) ) max = p(j,i);
double pval = p.at<double>(i, j);
minval = std::min(minval, pval);
maxval = std::max(maxval, pval);
}
d = fabs(max-min);
if(range < d) range = d;
range = std::max(range, fabs(maxval - minval));
}
if(range <= MinRange || error <= MinError)
{ /* Put best point and value in first slot. */
std::swap(y(0),y(ilo));
for (i=0;i<ndim;i++)
if( range <= MinRange || error <= MinError || fcount >= nmax )
{
// Put best point and value in first slot.
std::swap(y_[0], y_[ilo]);
for( j = 0; j < ndim; j++ )
{
std::swap(p(0,i),p(ilo,i));
std::swap(p.at<double>(0, j), p.at<double>(ilo, j));
}
break;
}
if (nfunk >= nmax){
dprintf(("nmax exceeded\n"));
return y(ilo);
double y_lo = y_[ilo], y_nhi = y_[inhi], y_hi = y_[ihi];
// Begin a new iteration. First, reflect the worst point about the centroid of others
double alpha = -1.0;
double y_alpha = tryNewPoint(p, coord_sum, ihi, alpha, buf, fcount);
dprintf(("\ny_lo=%g, y_nhi=%g, y_hi=%g, y_alpha=%g, p_alpha:\n", y_lo, y_nhi, y_hi, y_alpha));
print_matrix(buf);
if( y_alpha < y_nhi )
{
if( y_alpha < y_lo )
{
// If that's better than the best point, go twice as far in that direction
double beta = -2.0;
double y_beta = tryNewPoint(p, coord_sum, ihi, beta, buf, fcount);
dprintf(("\ny_beta=%g, p_beta:\n", y_beta));
print_matrix(buf);
if( y_beta < y_alpha )
{
alpha = beta;
y_alpha = y_beta;
}
}
nfunk += 2;
/*Begin a new iteration. First, reflect the worst point about the centroid of others */
ytry = tryNewPoint(p,y,coord_sum,f,ihi,-1.0,buf);
if (ytry <= y(ilo))
{ /*If that's better than the best point, go twice as far in that direction*/
ytry = tryNewPoint(p,y,coord_sum,f,ihi,2.0,buf);
replacePoint(p, coord_sum, y, ihi, alpha, y_alpha);
}
else if (ytry >= y(inhi))
{ /* The new point is worse than the second-highest, but better
than the worst so do not go so far in that direction */
ysave = y(ihi);
ytry = tryNewPoint(p,y,coord_sum,f,ihi,0.5,buf);
if (ytry >= ysave)
{ /* Can't seem to improve things. Contract the simplex to good point
in hope to find a simplex landscape. */
for (i=0;i<mpts;i++)
else
{
if (i != ilo)
// The new point is worse than the second-highest,
// do not go so far in that direction
double gamma = 0.5;
double y_gamma = tryNewPoint(p, coord_sum, ihi, gamma, buf, fcount);
dprintf(("\ny_gamma=%g, p_gamma:\n", y_gamma));
print_matrix(buf);
if( y_gamma < y_hi )
replacePoint(p, coord_sum, y, ihi, gamma, y_gamma);
else
{
for (j=0;j<ndim;j++)
// Can't seem to improve things.
// Contract the simplex to good point
// in hope to find a simplex landscape.
for( i = 0; i <= ndim; i++ )
{
p(i,j) = coord_sum(j) = 0.5*(p(i,j)+p(ilo,j));
if (i != ilo)
{
for( j = 0; j < ndim; j++ )
p.at<double>(i, j) = 0.5*(p.at<double>(i, j) + p.at<double>(ilo, j));
y_[i] = calc_f(p.ptr<double>(i));
}
y(i)=f->calc(coord_sum.ptr<double>());
}
fcount += ndim;
updateCoordSum(p, coord_sum);
}
nfunk += ndim;
reduce(p,coord_sum,0,CV_REDUCE_SUM);
}
} else --(nfunk); /* correct nfunk */
dprintf(("this is simplex on iteration %d\n",nfunk));
dprintf(("\nthis is simplex on iteration %d\n",fcount));
print_matrix(p);
} /* go to next iteration. */
res = y(0);
return res;
}
void DownhillSolverImpl::createInitialSimplex(Mat_<double>& simplex,Mat& step){
for(int i=1;i<=step.cols;++i)
{
simplex.row(0).copyTo(simplex.row(i));
simplex(i,i-1)+= 0.5*step.at<double>(0,i-1);
return y_[0];
}
simplex.row(0) -= 0.5*step;
dprintf(("this is simplex\n"));
print_matrix(simplex);
inline double calc_f(const double* ptr)
{
double res = _Function->calc(ptr);
CV_Assert( !cvIsNaN(res) && !cvIsInf(res) );
return res;
}
double DownhillSolverImpl::minimize(InputOutputArray x){
dprintf(("hi from minimize\n"));
CV_Assert(_Function.empty()==false);
dprintf(("termcrit:\n\ttype: %d\n\tmaxCount: %d\n\tEPS: %g\n",_termcrit.type,_termcrit.maxCount,_termcrit.epsilon));
dprintf(("step\n"));
print_matrix(_step);
double tryNewPoint( Mat& p, Mat& coord_sum, int ihi, double alpha_, Mat& ptry, int& fcount )
{
int j, ndim = p.cols;
Mat x_mat=x.getMat();
CV_Assert(MIN(x_mat.rows,x_mat.cols)==1);
CV_Assert(MAX(x_mat.rows,x_mat.cols)==_step.cols);
CV_Assert(x_mat.type()==CV_64FC1);
double alpha = (1.0 - alpha_)/ndim;
double beta = alpha - alpha_;
double* p_ihi = p.ptr<double>(ihi);
double* ptry_ = ptry.ptr<double>();
double* coord_sum_ = coord_sum.ptr<double>();
Mat_<double> proxy_x;
for( j = 0; j < ndim; j++ )
ptry_[j] = coord_sum_[j]*alpha - p_ihi[j]*beta;
if(x_mat.rows>1){
buf_x.create(1,_step.cols);
Mat_<double> proxy(_step.cols,1,buf_x.ptr<double>());
x_mat.copyTo(proxy);
proxy_x=buf_x;
}else{
proxy_x=x_mat;
fcount++;
return calc_f(ptry_);
}
int count=0;
int ndim=_step.cols;
Mat_<double> simplex=Mat_<double>(ndim+1,ndim,0.0);
simplex.row(0).copyTo(proxy_x);
createInitialSimplex(simplex,_step);
double res = innerDownhillSimplex(
simplex,_termcrit.epsilon, _termcrit.epsilon, count,_Function,_termcrit.maxCount);
simplex.row(0).copyTo(proxy_x);
void replacePoint( Mat& p, Mat& coord_sum, Mat& y, int ihi, double alpha_, double ytry )
{
int j, ndim = p.cols;
dprintf(("%d iterations done\n",count));
double alpha = (1.0 - alpha_)/ndim;
double beta = alpha - alpha_;
double* p_ihi = p.ptr<double>(ihi);
double* coord_sum_ = coord_sum.ptr<double>();
if(x_mat.rows>1){
Mat(x_mat.rows, 1, CV_64F, proxy_x.ptr<double>()).copyTo(x);
for( j = 0; j < ndim; j++ )
p_ihi[j] = coord_sum_[j]*alpha - p_ihi[j]*beta;
y.at<double>(ihi) = ytry;
updateCoordSum(p, coord_sum);
}
return res;
}
DownhillSolverImpl::DownhillSolverImpl(){
_Function=Ptr<Function>();
_step=Mat_<double>();
}
Ptr<MinProblemSolver::Function> DownhillSolverImpl::getFunction()const{
return _Function;
}
void DownhillSolverImpl::setFunction(const Ptr<Function>& f){
_Function=f;
}
TermCriteria DownhillSolverImpl::getTermCriteria()const{
return _termcrit;
}
void DownhillSolverImpl::setTermCriteria(const TermCriteria& termcrit){
CV_Assert(termcrit.type==(TermCriteria::MAX_ITER+TermCriteria::EPS) && termcrit.epsilon>0 && termcrit.maxCount>0);
_termcrit=termcrit;
}
// both minRange & minError are specified by termcrit.epsilon; In addition, user may specify the number of iterations that the algorithm does.
Ptr<DownhillSolver> DownhillSolver::create(const Ptr<MinProblemSolver::Function>& f, InputArray initStep, TermCriteria termcrit){
};
// both minRange & minError are specified by termcrit.epsilon;
// In addition, user may specify the number of iterations that the algorithm does.
Ptr<DownhillSolver> DownhillSolver::create( const Ptr<MinProblemSolver::Function>& f,
InputArray initStep, TermCriteria termcrit )
{
Ptr<DownhillSolver> DS = makePtr<DownhillSolverImpl>();
DS->setFunction(f);
DS->setInitStep(initStep);
DS->setTermCriteria(termcrit);
return DS;
}
void DownhillSolverImpl::getInitStep(OutputArray step)const{
_step.copyTo(step);
}
void DownhillSolverImpl::setInitStep(InputArray step){
//set dimensionality and make a deep copy of step
Mat m=step.getMat();
dprintf(("m.cols=%d\nm.rows=%d\n",m.cols,m.rows));
CV_Assert(MIN(m.cols,m.rows)==1 && m.type()==CV_64FC1);
if(m.rows==1){
m.copyTo(_step);
}else{
transpose(m,_step);
}
}
}
}

@ -60,7 +60,6 @@ namespace cv
#undef USE_IPP_DFT
#endif
/****************************************************************************************\
Discrete Fourier Transform
\****************************************************************************************/
@ -1090,10 +1089,11 @@ RealDFT( const T* src, T* dst, int n, int nf, int* factors, const int* itab,
}
}
if( complex_output && (n & 1) == 0 )
if( complex_output && ((n & 1) == 0 || n == 1))
{
dst[-1] = dst[0];
dst[0] = 0;
if( n > 1 )
dst[n] = 0;
}
}
@ -2426,6 +2426,47 @@ static bool ocl_dft_amdfft(InputArray _src, OutputArray _dst, int flags)
#endif // HAVE_CLAMDFFT
namespace cv
{
static void complementComplexOutput(Mat& dst, int len, int dft_dims)
{
int i, n = dst.cols;
size_t elem_size = dst.elemSize1();
if( elem_size == sizeof(float) )
{
float* p0 = dst.ptr<float>();
size_t dstep = dst.step/sizeof(p0[0]);
for( i = 0; i < len; i++ )
{
float* p = p0 + dstep*i;
float* q = dft_dims == 1 || i == 0 || i*2 == len ? p : p0 + dstep*(len-i);
for( int j = 1; j < (n+1)/2; j++ )
{
p[(n-j)*2] = q[j*2];
p[(n-j)*2+1] = -q[j*2+1];
}
}
}
else
{
double* p0 = dst.ptr<double>();
size_t dstep = dst.step/sizeof(p0[0]);
for( i = 0; i < len; i++ )
{
double* p = p0 + dstep*i;
double* q = dft_dims == 1 || i == 0 || i*2 == len ? p : p0 + dstep*(len-i);
for( int j = 1; j < (n+1)/2; j++ )
{
p[(n-j)*2] = q[j*2];
p[(n-j)*2+1] = -q[j*2+1];
}
}
}
}
}
void cv::dft( InputArray _src0, OutputArray _dst, int flags, int nonzero_rows )
{
#ifdef HAVE_CLAMDFFT
@ -2705,7 +2746,11 @@ void cv::dft( InputArray _src0, OutputArray _dst, int flags, int nonzero_rows )
}
if( stage != 1 )
{
if( !inv && real_transform && dst.channels() == 2 )
complementComplexOutput(dst, nonzero_rows, 1);
break;
}
src = dst;
}
else
@ -2847,41 +2892,7 @@ void cv::dft( InputArray _src0, OutputArray _dst, int flags, int nonzero_rows )
if( stage != 0 )
{
if( !inv && real_transform && dst.channels() == 2 && len > 1 )
{
int n = dst.cols;
if( elem_size == (int)sizeof(float) )
{
float* p0 = dst.ptr<float>();
size_t dstep = dst.step/sizeof(p0[0]);
for( i = 0; i < len; i++ )
{
float* p = p0 + dstep*i;
float* q = i == 0 || i*2 == len ? p : p0 + dstep*(len-i);
for( int j = 1; j < (n+1)/2; j++ )
{
p[(n-j)*2] = q[j*2];
p[(n-j)*2+1] = -q[j*2+1];
}
}
}
else
{
double* p0 = dst.ptr<double>();
size_t dstep = dst.step/sizeof(p0[0]);
for( i = 0; i < len; i++ )
{
double* p = p0 + dstep*i;
double* q = i == 0 || i*2 == len ? p : p0 + dstep*(len-i);
for( int j = 1; j < (n+1)/2; j++ )
{
p[(n-j)*2] = q[j*2];
p[(n-j)*2+1] = -q[j*2+1];
}
}
}
}
complementComplexOutput(dst, len, 2);
break;
}
src = dst;

@ -502,7 +502,7 @@ JacobiSVDImpl_(_Tp* At, size_t astep, _Tp* _W, _Tp* Vt, size_t vstep,
{
sd = i < n ? W[i] : 0;
while( sd <= minval )
for( int ii = 0; ii < 100 && sd <= minval; ii++ )
{
// if we got a zero singular value, then in order to get the corresponding left singular vector
// we generate a random vector, project it to the previously computed left singular vectors,
@ -527,7 +527,7 @@ JacobiSVDImpl_(_Tp* At, size_t astep, _Tp* _W, _Tp* Vt, size_t vstep,
At[i*astep + k] = t;
asum += std::abs(t);
}
asum = asum ? 1/asum : 0;
asum = asum > eps*100 ? 1/asum : 0;
for( k = 0; k < m; k++ )
At[i*astep + k] *= asum;
}
@ -541,7 +541,7 @@ JacobiSVDImpl_(_Tp* At, size_t astep, _Tp* _W, _Tp* Vt, size_t vstep,
sd = std::sqrt(sd);
}
s = (_Tp)(1/sd);
s = (_Tp)(sd > minval ? 1/sd : 0.);
for( k = 0; k < m; k++ )
At[i*astep + k] *= s;
}

@ -43,6 +43,7 @@
#include "precomp.hpp"
#include "opencl_kernels_core.hpp"
#include <limits>
namespace cv
{
@ -889,38 +890,41 @@ struct iPow_SIMD
}
};
#if CV_NEON
#if CV_SIMD128
template <>
struct iPow_SIMD<uchar, int>
{
int operator() ( const uchar * src, uchar * dst, int len, int power)
int operator() ( const uchar * src, uchar * dst, int len, int power )
{
int i = 0;
uint32x4_t v_1 = vdupq_n_u32(1u);
v_uint32x4 v_1 = v_setall_u32(1u);
for ( ; i <= len - 8; i += 8)
{
uint32x4_t v_a1 = v_1, v_a2 = v_1;
uint16x8_t v_src = vmovl_u8(vld1_u8(src + i));
uint32x4_t v_b1 = vmovl_u16(vget_low_u16(v_src)), v_b2 = vmovl_u16(vget_high_u16(v_src));
v_uint32x4 v_a1 = v_1, v_a2 = v_1;
v_uint16x8 v = v_load_expand(src + i);
v_uint32x4 v_b1, v_b2;
v_expand(v, v_b1, v_b2);
int p = power;
while( p > 1 )
{
if (p & 1)
{
v_a1 = vmulq_u32(v_a1, v_b1);
v_a2 = vmulq_u32(v_a2, v_b2);
v_a1 *= v_b1;
v_a2 *= v_b2;
}
v_b1 = vmulq_u32(v_b1, v_b1);
v_b2 = vmulq_u32(v_b2, v_b2);
v_b1 *= v_b1;
v_b2 *= v_b2;
p >>= 1;
}
v_a1 = vmulq_u32(v_a1, v_b1);
v_a2 = vmulq_u32(v_a2, v_b2);
vst1_u8(dst + i, vqmovn_u16(vcombine_u16(vqmovn_u32(v_a1), vqmovn_u32(v_a2))));
v_a1 *= v_b1;
v_a2 *= v_b2;
v = v_pack(v_a1, v_a2);
v_pack_store(dst + i, v);
}
return i;
@ -933,30 +937,33 @@ struct iPow_SIMD<schar, int>
int operator() ( const schar * src, schar * dst, int len, int power)
{
int i = 0;
int32x4_t v_1 = vdupq_n_s32(1);
v_int32x4 v_1 = v_setall_s32(1);
for ( ; i <= len - 8; i += 8)
{
int32x4_t v_a1 = v_1, v_a2 = v_1;
int16x8_t v_src = vmovl_s8(vld1_s8(src + i));
int32x4_t v_b1 = vmovl_s16(vget_low_s16(v_src)), v_b2 = vmovl_s16(vget_high_s16(v_src));
v_int32x4 v_a1 = v_1, v_a2 = v_1;
v_int16x8 v = v_load_expand(src + i);
v_int32x4 v_b1, v_b2;
v_expand(v, v_b1, v_b2);
int p = power;
while( p > 1 )
{
if (p & 1)
{
v_a1 = vmulq_s32(v_a1, v_b1);
v_a2 = vmulq_s32(v_a2, v_b2);
v_a1 *= v_b1;
v_a2 *= v_b2;
}
v_b1 = vmulq_s32(v_b1, v_b1);
v_b2 = vmulq_s32(v_b2, v_b2);
v_b1 *= v_b1;
v_b2 *= v_b2;
p >>= 1;
}
v_a1 = vmulq_s32(v_a1, v_b1);
v_a2 = vmulq_s32(v_a2, v_b2);
vst1_s8(dst + i, vqmovn_s16(vcombine_s16(vqmovn_s32(v_a1), vqmovn_s32(v_a2))));
v_a1 *= v_b1;
v_a2 *= v_b2;
v = v_pack(v_a1, v_a2);
v_pack_store(dst + i, v);
}
return i;
@ -969,30 +976,33 @@ struct iPow_SIMD<ushort, int>
int operator() ( const ushort * src, ushort * dst, int len, int power)
{
int i = 0;
uint32x4_t v_1 = vdupq_n_u32(1u);
v_uint32x4 v_1 = v_setall_u32(1u);
for ( ; i <= len - 8; i += 8)
{
uint32x4_t v_a1 = v_1, v_a2 = v_1;
uint16x8_t v_src = vld1q_u16(src + i);
uint32x4_t v_b1 = vmovl_u16(vget_low_u16(v_src)), v_b2 = vmovl_u16(vget_high_u16(v_src));
v_uint32x4 v_a1 = v_1, v_a2 = v_1;
v_uint16x8 v = v_load(src + i);
v_uint32x4 v_b1, v_b2;
v_expand(v, v_b1, v_b2);
int p = power;
while( p > 1 )
{
if (p & 1)
{
v_a1 = vmulq_u32(v_a1, v_b1);
v_a2 = vmulq_u32(v_a2, v_b2);
v_a1 *= v_b1;
v_a2 *= v_b2;
}
v_b1 = vmulq_u32(v_b1, v_b1);
v_b2 = vmulq_u32(v_b2, v_b2);
v_b1 *= v_b1;
v_b2 *= v_b2;
p >>= 1;
}
v_a1 = vmulq_u32(v_a1, v_b1);
v_a2 = vmulq_u32(v_a2, v_b2);
vst1q_u16(dst + i, vcombine_u16(vqmovn_u32(v_a1), vqmovn_u32(v_a2)));
v_a1 *= v_b1;
v_a2 *= v_b2;
v = v_pack(v_a1, v_a2);
v_store(dst + i, v);
}
return i;
@ -1005,60 +1015,70 @@ struct iPow_SIMD<short, int>
int operator() ( const short * src, short * dst, int len, int power)
{
int i = 0;
int32x4_t v_1 = vdupq_n_s32(1);
v_int32x4 v_1 = v_setall_s32(1);
for ( ; i <= len - 8; i += 8)
{
int32x4_t v_a1 = v_1, v_a2 = v_1;
int16x8_t v_src = vld1q_s16(src + i);
int32x4_t v_b1 = vmovl_s16(vget_low_s16(v_src)), v_b2 = vmovl_s16(vget_high_s16(v_src));
v_int32x4 v_a1 = v_1, v_a2 = v_1;
v_int16x8 v = v_load(src + i);
v_int32x4 v_b1, v_b2;
v_expand(v, v_b1, v_b2);
int p = power;
while( p > 1 )
{
if (p & 1)
{
v_a1 = vmulq_s32(v_a1, v_b1);
v_a2 = vmulq_s32(v_a2, v_b2);
v_a1 *= v_b1;
v_a2 *= v_b2;
}
v_b1 = vmulq_s32(v_b1, v_b1);
v_b2 = vmulq_s32(v_b2, v_b2);
v_b1 *= v_b1;
v_b2 *= v_b2;
p >>= 1;
}
v_a1 = vmulq_s32(v_a1, v_b1);
v_a2 = vmulq_s32(v_a2, v_b2);
vst1q_s16(dst + i, vcombine_s16(vqmovn_s32(v_a1), vqmovn_s32(v_a2)));
v_a1 *= v_b1;
v_a2 *= v_b2;
v = v_pack(v_a1, v_a2);
v_store(dst + i, v);
}
return i;
}
};
template <>
struct iPow_SIMD<int, int>
{
int operator() ( const int * src, int * dst, int len, int power)
{
int i = 0;
int32x4_t v_1 = vdupq_n_s32(1);
v_int32x4 v_1 = v_setall_s32(1);
for ( ; i <= len - 4; i += 4)
for ( ; i <= len - 8; i += 8)
{
int32x4_t v_b = vld1q_s32(src + i), v_a = v_1;
v_int32x4 v_a1 = v_1, v_a2 = v_1;
v_int32x4 v_b1 = v_load(src + i), v_b2 = v_load(src + i + 4);
int p = power;
while( p > 1 )
{
if (p & 1)
v_a = vmulq_s32(v_a, v_b);
v_b = vmulq_s32(v_b, v_b);
{
v_a1 *= v_b1;
v_a2 *= v_b2;
}
v_b1 *= v_b1;
v_b2 *= v_b2;
p >>= 1;
}
v_a = vmulq_s32(v_a, v_b);
vst1q_s32(dst + i, v_a);
v_a1 *= v_b1;
v_a2 *= v_b2;
v_store(dst + i, v_a1);
v_store(dst + i + 4, v_a2);
}
return i;
@ -1071,35 +1091,107 @@ struct iPow_SIMD<float, float>
int operator() ( const float * src, float * dst, int len, int power)
{
int i = 0;
float32x4_t v_1 = vdupq_n_f32(1.0f);
v_float32x4 v_1 = v_setall_f32(1.f);
for ( ; i <= len - 8; i += 8)
{
v_float32x4 v_a1 = v_1, v_a2 = v_1;
v_float32x4 v_b1 = v_load(src + i), v_b2 = v_load(src + i + 4);
int p = std::abs(power);
if( power < 0 )
{
v_b1 = v_1 / v_b1;
v_b2 = v_1 / v_b2;
}
while( p > 1 )
{
if (p & 1)
{
v_a1 *= v_b1;
v_a2 *= v_b2;
}
v_b1 *= v_b1;
v_b2 *= v_b2;
p >>= 1;
}
v_a1 *= v_b1;
v_a2 *= v_b2;
v_store(dst + i, v_a1);
v_store(dst + i + 4, v_a2);
}
return i;
}
};
#if CV_SIMD128_64F
template <>
struct iPow_SIMD<double, double>
{
int operator() ( const double * src, double * dst, int len, int power)
{
int i = 0;
v_float64x2 v_1 = v_setall_f64(1.);
for ( ; i <= len - 4; i += 4)
{
float32x4_t v_b = vld1q_f32(src + i), v_a = v_1;
int p = power;
v_float64x2 v_a1 = v_1, v_a2 = v_1;
v_float64x2 v_b1 = v_load(src + i), v_b2 = v_load(src + i + 2);
int p = std::abs(power);
if( power < 0 )
{
v_b1 = v_1 / v_b1;
v_b2 = v_1 / v_b2;
}
while( p > 1 )
{
if (p & 1)
v_a = vmulq_f32(v_a, v_b);
v_b = vmulq_f32(v_b, v_b);
{
v_a1 *= v_b1;
v_a2 *= v_b2;
}
v_b1 *= v_b1;
v_b2 *= v_b2;
p >>= 1;
}
v_a = vmulq_f32(v_a, v_b);
vst1q_f32(dst + i, v_a);
v_a1 *= v_b1;
v_a2 *= v_b2;
v_store(dst + i, v_a1);
v_store(dst + i + 2, v_a2);
}
return i;
}
};
#endif
#endif
template<typename T, typename WT>
static void
iPow_( const T* src, T* dst, int len, int power )
iPow_i( const T* src, T* dst, int len, int power )
{
if( power < 0 )
{
T tab[5] =
{
power == -1 ? saturate_cast<T>(-1) : 0, (power & 1) ? -1 : 1,
std::numeric_limits<T>::max(), 1, power == -1 ? 1 : 0
};
for( int i = 0; i < len; i++ )
{
T val = src[i];
dst[i] = cv_abs(val) <= 2 ? tab[val + 2] : (T)0;
}
}
else
{
iPow_SIMD<T, WT> vop;
int i = vop(src, dst, len, power);
@ -1118,42 +1210,70 @@ iPow_( const T* src, T* dst, int len, int power )
a *= b;
dst[i] = saturate_cast<T>(a);
}
}
}
template<typename T>
static void
iPow_f( const T* src, T* dst, int len, int power0 )
{
iPow_SIMD<T, T> vop;
int i = vop(src, dst, len, power0);
int power = std::abs(power0);
for( ; i < len; i++ )
{
T a = 1, b = src[i];
int p = power;
if( power0 < 0 )
b = 1/b;
while( p > 1 )
{
if( p & 1 )
a *= b;
b *= b;
p >>= 1;
}
a *= b;
dst[i] = a;
}
}
static void iPow8u(const uchar* src, uchar* dst, int len, int power)
{
iPow_<uchar, int>(src, dst, len, power);
iPow_i<uchar, unsigned>(src, dst, len, power);
}
static void iPow8s(const schar* src, schar* dst, int len, int power)
{
iPow_<schar, int>(src, dst, len, power);
iPow_i<schar, int>(src, dst, len, power);
}
static void iPow16u(const ushort* src, ushort* dst, int len, int power)
{
iPow_<ushort, int>(src, dst, len, power);
iPow_i<ushort, unsigned>(src, dst, len, power);
}
static void iPow16s(const short* src, short* dst, int len, int power)
{
iPow_<short, int>(src, dst, len, power);
iPow_i<short, int>(src, dst, len, power);
}
static void iPow32s(const int* src, int* dst, int len, int power)
{
iPow_<int, int>(src, dst, len, power);
iPow_i<int, int>(src, dst, len, power);
}
static void iPow32f(const float* src, float* dst, int len, int power)
{
iPow_<float, float>(src, dst, len, power);
iPow_f<float>(src, dst, len, power);
}
static void iPow64f(const double* src, double* dst, int len, int power)
{
iPow_<double, double>(src, dst, len, power);
iPow_f<double>(src, dst, len, power);
}
@ -1176,15 +1296,26 @@ static bool ocl_pow(InputArray _src, double power, OutputArray _dst,
bool doubleSupport = d.doubleFPConfig() > 0;
_dst.createSameSize(_src, type);
if (is_ipower && (ipower == 0 || ipower == 1))
if (is_ipower)
{
if (ipower == 0)
{
_dst.setTo(Scalar::all(1));
else if (ipower == 1)
return true;
}
if (ipower == 1)
{
_src.copyTo(_dst);
return true;
}
if( ipower < 0 )
{
if( depth == CV_32F || depth == CV_64F )
is_ipower = false;
else
return false;
}
}
if (depth == CV_64F && !doubleSupport)
return false;
@ -1233,20 +1364,11 @@ void pow( InputArray _src, double power, OutputArray _dst )
{
int type = _src.type(), depth = CV_MAT_DEPTH(type),
cn = CV_MAT_CN(type), ipower = cvRound(power);
bool is_ipower = fabs(ipower - power) < DBL_EPSILON, same = false,
bool is_ipower = fabs(ipower - power) < DBL_EPSILON,
useOpenCL = _dst.isUMat() && _src.dims() <= 2;
if( is_ipower && !(ocl::Device::getDefault().isIntel() && useOpenCL && depth != CV_64F))
{
if( ipower < 0 )
{
divide( Scalar::all(1), _src, _dst );
if( ipower == -1 )
return;
ipower = -ipower;
same = true;
}
switch( ipower )
{
case 0:
@ -1257,40 +1379,6 @@ void pow( InputArray _src, double power, OutputArray _dst )
_src.copyTo(_dst);
return;
case 2:
#if defined(HAVE_IPP)
CV_IPP_CHECK()
{
if (depth == CV_32F && !same && ( (_src.dims() <= 2 && !ocl::useOpenCL()) ||
(_src.dims() > 2 && _src.isContinuous() && _dst.isContinuous()) ))
{
Mat src = _src.getMat();
_dst.create( src.dims, src.size, type );
Mat dst = _dst.getMat();
Size size = src.size();
int srcstep = (int)src.step, dststep = (int)dst.step, esz = CV_ELEM_SIZE(type);
if (src.isContinuous() && dst.isContinuous())
{
size.width = (int)src.total();
size.height = 1;
srcstep = dststep = (int)src.total() * esz;
}
size.width *= cn;
IppStatus status = ippiSqr_32f_C1R(src.ptr<Ipp32f>(), srcstep, dst.ptr<Ipp32f>(), dststep, ippiSize(size.width, size.height));
if (status >= 0)
{
CV_IMPL_ADD(CV_IMPL_IPP);
return;
}
setIppErrorStatus();
}
}
#endif
if (same)
multiply(_dst, _dst, _dst);
else
multiply(_src, _src, _dst);
return;
}
@ -1298,18 +1386,11 @@ void pow( InputArray _src, double power, OutputArray _dst )
else
CV_Assert( depth == CV_32F || depth == CV_64F );
CV_OCL_RUN(useOpenCL,
ocl_pow(same ? _dst : _src, power, _dst, is_ipower, ipower))
CV_OCL_RUN(useOpenCL, ocl_pow(_src, power, _dst, is_ipower, ipower))
Mat src, dst;
if (same)
src = dst = _dst.getMat();
else
{
src = _src.getMat();
Mat src = _src.getMat();
_dst.create( src.dims, src.size, type );
dst = _dst.getMat();
}
Mat dst = _dst.getMat();
const Mat* arrays[] = {&src, &dst, 0};
uchar* ptrs[2];
@ -1335,52 +1416,103 @@ void pow( InputArray _src, double power, OutputArray _dst )
}
else
{
#if defined(HAVE_IPP)
CV_IPP_CHECK()
int j, k, blockSize = std::min(len, ((BLOCK_SIZE + cn-1)/cn)*cn);
size_t esz1 = src.elemSize1();
AutoBuffer<uchar> buf;
Cv32suf inf32, nan32;
Cv64suf inf64, nan64;
float* fbuf = 0;
double* dbuf = 0;
inf32.i = 0x7f800000;
nan32.i = 0x7fffffff;
inf64.i = CV_BIG_INT(0x7FF0000000000000);
nan64.i = CV_BIG_INT(0x7FFFFFFFFFFFFFFF);
if( src.ptr() == dst.ptr() )
{
if (src.isContinuous() && dst.isContinuous())
buf.allocate(blockSize*esz1);
fbuf = (float*)(uchar*)buf;
dbuf = (double*)(uchar*)buf;
}
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
for( j = 0; j < len; j += blockSize )
{
int bsz = std::min(len - j, blockSize);
#if defined(HAVE_IPP)
CV_IPP_CHECK()
{
IppStatus status = depth == CV_32F ?
ippsPowx_32f_A21(src.ptr<Ipp32f>(), (Ipp32f)power, dst.ptr<Ipp32f>(), (Ipp32s)(src.total() * cn)) :
ippsPowx_64f_A50(src.ptr<Ipp64f>(), power, dst.ptr<Ipp64f>(), (Ipp32s)(src.total() * cn));
ippsPowx_32f_A21((const float*)ptrs[0], (float)power, (float*)ptrs[1], bsz) :
ippsPowx_64f_A50((const double*)ptrs[0], (double)power, (double*)ptrs[1], bsz);
if (status >= 0)
{
CV_IMPL_ADD(CV_IMPL_IPP);
return;
ptrs[0] += bsz*esz1;
ptrs[1] += bsz*esz1;
continue;
}
setIppErrorStatus();
}
}
#endif
int j, k, blockSize = std::min(len, ((BLOCK_SIZE + cn-1)/cn)*cn);
size_t esz1 = src.elemSize1();
#endif
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
for( j = 0; j < len; j += blockSize )
{
int bsz = std::min(len - j, blockSize);
if( depth == CV_32F )
{
const float* x = (const float*)ptrs[0];
float* x0 = (float*)ptrs[0];
float* x = fbuf ? fbuf : x0;
float* y = (float*)ptrs[1];
if( x != x0 )
memcpy(x, x0, bsz*esz1);
Log_32f(x, y, bsz);
for( k = 0; k < bsz; k++ )
y[k] = (float)(y[k]*power);
Exp_32f(y, y, bsz);
for( k = 0; k < bsz; k++ )
{
if( x0[k] <= 0 )
{
if( x0[k] == 0.f )
{
if( power < 0 )
y[k] = inf32.f;
}
else
y[k] = nan32.f;
}
}
}
else
{
const double* x = (const double*)ptrs[0];
double* x0 = (double*)ptrs[0];
double* x = dbuf ? dbuf : x0;
double* y = (double*)ptrs[1];
if( x != x0 )
memcpy(x, x0, bsz*esz1);
Log_64f(x, y, bsz);
for( k = 0; k < bsz; k++ )
y[k] *= power;
Exp_64f(y, y, bsz);
for( k = 0; k < bsz; k++ )
{
if( x0[k] <= 0 )
{
if( x0[k] == 0. )
{
if( power < 0 )
y[k] = inf64.f;
}
else
y[k] = nan64.f;
}
}
}
ptrs[0] += bsz*esz1;
ptrs[1] += bsz*esz1;

@ -1195,7 +1195,7 @@ void cv::gemm( InputArray matA, InputArray matB, double alpha,
GEMMBlockMulFunc blockMulFunc;
GEMMStoreFunc storeFunc;
Mat *matD = &D, tmat;
int tmat_size = 0;
size_t tmat_size = 0;
const uchar* Cdata = C.data;
size_t Cstep = C.data ? (size_t)C.step : 0;
AutoBuffer<uchar> buf;
@ -1228,7 +1228,7 @@ void cv::gemm( InputArray matA, InputArray matB, double alpha,
if( D.data == A.data || D.data == B.data )
{
tmat_size = d_size.width*d_size.height*CV_ELEM_SIZE(type);
tmat_size = (size_t)d_size.width*d_size.height*CV_ELEM_SIZE(type);
// Allocate tmat later, once the size of buf is known
matD = &tmat;
}
@ -1319,7 +1319,7 @@ void cv::gemm( InputArray matA, InputArray matB, double alpha,
int is_b_t = flags & GEMM_2_T;
int elem_size = CV_ELEM_SIZE(type);
int dk0_1, dk0_2;
int a_buf_size = 0, b_buf_size, d_buf_size;
size_t a_buf_size = 0, b_buf_size, d_buf_size;
uchar* a_buf = 0;
uchar* b_buf = 0;
uchar* d_buf = 0;
@ -1360,12 +1360,12 @@ void cv::gemm( InputArray matA, InputArray matB, double alpha,
dn0 = block_size / dk0;
dk0_1 = (dn0+dn0/8+2) & -2;
b_buf_size = (dk0+dk0/8+1)*dk0_1*elem_size;
d_buf_size = (dk0+dk0/8+1)*dk0_1*work_elem_size;
b_buf_size = (size_t)(dk0+dk0/8+1)*dk0_1*elem_size;
d_buf_size = (size_t)(dk0+dk0/8+1)*dk0_1*work_elem_size;
if( is_a_t )
{
a_buf_size = (dm0+dm0/8+1)*((dk0+dk0/8+2)&-2)*elem_size;
a_buf_size = (size_t)(dm0+dm0/8+1)*((dk0+dk0/8+2)&-2)*elem_size;
flags &= ~GEMM_1_T;
}

@ -222,11 +222,10 @@ public:
}
};
MatAllocator* Mat::getStdAllocator()
{
static MatAllocator * allocator = new StdMatAllocator();
return allocator;
static StdMatAllocator allocator;
return &allocator;
}
void swap( Mat& a, Mat& b )
@ -1155,6 +1154,21 @@ Mat _InputArray::getMat_(int i) const
return !v.empty() ? Mat(size(), t, (void*)&v[0]) : Mat();
}
if( k == STD_BOOL_VECTOR )
{
CV_Assert( i < 0 );
int t = CV_8U;
const std::vector<bool>& v = *(const std::vector<bool>*)obj;
int j, n = (int)v.size();
if( n == 0 )
return Mat();
Mat m(1, n, t);
uchar* dst = m.data;
for( j = 0; j < n; j++ )
dst[j] = (uchar)v[j];
return m;
}
if( k == NONE )
return Mat();
@ -1482,6 +1496,13 @@ Size _InputArray::size(int i) const
return szb == szi ? Size((int)szb, 1) : Size((int)(szb/CV_ELEM_SIZE(flags)), 1);
}
if( k == STD_BOOL_VECTOR )
{
CV_Assert( i < 0 );
const std::vector<bool>& v = *(const std::vector<bool>*)obj;
return Size((int)v.size(), 1);
}
if( k == NONE )
return Size();
@ -1662,7 +1683,7 @@ int _InputArray::dims(int i) const
return 2;
}
if( k == STD_VECTOR )
if( k == STD_VECTOR || k == STD_BOOL_VECTOR )
{
CV_Assert( i < 0 );
return 2;
@ -1774,7 +1795,7 @@ int _InputArray::type(int i) const
if( k == EXPR )
return ((const MatExpr*)obj)->type();
if( k == MATX || k == STD_VECTOR || k == STD_VECTOR_VECTOR )
if( k == MATX || k == STD_VECTOR || k == STD_VECTOR_VECTOR || k == STD_BOOL_VECTOR )
return CV_MAT_TYPE(flags);
if( k == NONE )
@ -1849,6 +1870,12 @@ bool _InputArray::empty() const
return v.empty();
}
if( k == STD_BOOL_VECTOR )
{
const std::vector<bool>& v = *(const std::vector<bool>*)obj;
return v.empty();
}
if( k == NONE )
return true;
@ -1893,7 +1920,8 @@ bool _InputArray::isContinuous(int i) const
if( k == UMAT )
return i < 0 ? ((const UMat*)obj)->isContinuous() : true;
if( k == EXPR || k == MATX || k == STD_VECTOR || k == NONE || k == STD_VECTOR_VECTOR)
if( k == EXPR || k == MATX || k == STD_VECTOR ||
k == NONE || k == STD_VECTOR_VECTOR || k == STD_BOOL_VECTOR )
return true;
if( k == STD_VECTOR_MAT )
@ -1924,7 +1952,8 @@ bool _InputArray::isSubmatrix(int i) const
if( k == UMAT )
return i < 0 ? ((const UMat*)obj)->isSubmatrix() : false;
if( k == EXPR || k == MATX || k == STD_VECTOR || k == NONE || k == STD_VECTOR_VECTOR)
if( k == EXPR || k == MATX || k == STD_VECTOR ||
k == NONE || k == STD_VECTOR_VECTOR || k == STD_BOOL_VECTOR )
return false;
if( k == STD_VECTOR_MAT )
@ -1962,7 +1991,8 @@ size_t _InputArray::offset(int i) const
return ((const UMat*)obj)->offset;
}
if( k == EXPR || k == MATX || k == STD_VECTOR || k == NONE || k == STD_VECTOR_VECTOR)
if( k == EXPR || k == MATX || k == STD_VECTOR ||
k == NONE || k == STD_VECTOR_VECTOR || k == STD_BOOL_VECTOR )
return 0;
if( k == STD_VECTOR_MAT )
@ -2009,7 +2039,8 @@ size_t _InputArray::step(int i) const
return ((const UMat*)obj)->step;
}
if( k == EXPR || k == MATX || k == STD_VECTOR || k == NONE || k == STD_VECTOR_VECTOR)
if( k == EXPR || k == MATX || k == STD_VECTOR ||
k == NONE || k == STD_VECTOR_VECTOR || k == STD_BOOL_VECTOR )
return 0;
if( k == STD_VECTOR_MAT )
@ -2044,7 +2075,7 @@ void _InputArray::copyTo(const _OutputArray& arr) const
if( k == NONE )
arr.release();
else if( k == MAT || k == MATX || k == STD_VECTOR )
else if( k == MAT || k == MATX || k == STD_VECTOR || k == STD_BOOL_VECTOR )
{
Mat m = getMat();
m.copyTo(arr);
@ -2069,7 +2100,7 @@ void _InputArray::copyTo(const _OutputArray& arr, const _InputArray & mask) cons
if( k == NONE )
arr.release();
else if( k == MAT || k == MATX || k == STD_VECTOR )
else if( k == MAT || k == MATX || k == STD_VECTOR || k == STD_BOOL_VECTOR )
{
Mat m = getMat();
m.copyTo(arr, mask);

@ -574,6 +574,16 @@ __kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
#pragma unroll
for (int i=x; i<cols; i+=block_size)
dst[i] = SCALE_VAL(smem[i], scale);
#ifdef REAL_INPUT
#ifdef COMPLEX_OUTPUT
#ifdef IS_1D
for(int i=x+1; i < (dst_cols+1)/2; i+=block_size)
{
dst[dst_cols-i] = (CT)(SCALE_VAL(smem[i].x, scale), SCALE_VAL(-smem[i].y, scale));
}
#endif
#endif
#endif
#else
// pack row to CCS
__local FT* smem_1cn = (__local FT*) smem;

@ -151,39 +151,46 @@ template<typename T> struct OpMax
T operator ()(const T a, const T b) const { return std::max(a, b); }
};
inline Size getContinuousSize_( int flags, int cols, int rows, int widthScale )
{
int64 sz = (int64)cols * rows * widthScale;
return (flags & Mat::CONTINUOUS_FLAG) != 0 &&
(int)sz == sz ? Size((int)sz, 1) : Size(cols * widthScale, rows);
}
inline Size getContinuousSize( const Mat& m1, int widthScale=1 )
{
return m1.isContinuous() ? Size(m1.cols*m1.rows*widthScale, 1) :
Size(m1.cols*widthScale, m1.rows);
return getContinuousSize_(m1.flags,
m1.cols, m1.rows, widthScale);
}
inline Size getContinuousSize( const Mat& m1, const Mat& m2, int widthScale=1 )
{
return (m1.flags & m2.flags & Mat::CONTINUOUS_FLAG) != 0 ?
Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows);
return getContinuousSize_(m1.flags & m2.flags,
m1.cols, m1.rows, widthScale);
}
inline Size getContinuousSize( const Mat& m1, const Mat& m2,
const Mat& m3, int widthScale=1 )
{
return (m1.flags & m2.flags & m3.flags & Mat::CONTINUOUS_FLAG) != 0 ?
Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows);
return getContinuousSize_(m1.flags & m2.flags & m3.flags,
m1.cols, m1.rows, widthScale);
}
inline Size getContinuousSize( const Mat& m1, const Mat& m2,
const Mat& m3, const Mat& m4,
int widthScale=1 )
{
return (m1.flags & m2.flags & m3.flags & m4.flags & Mat::CONTINUOUS_FLAG) != 0 ?
Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows);
return getContinuousSize_(m1.flags & m2.flags & m3.flags & m4.flags,
m1.cols, m1.rows, widthScale);
}
inline Size getContinuousSize( const Mat& m1, const Mat& m2,
const Mat& m3, const Mat& m4,
const Mat& m5, int widthScale=1 )
{
return (m1.flags & m2.flags & m3.flags & m4.flags & m5.flags & Mat::CONTINUOUS_FLAG) != 0 ?
Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows);
return getContinuousSize_(m1.flags & m2.flags & m3.flags & m4.flags & m5.flags,
m1.cols, m1.rows, widthScale);
}
struct NoVec
@ -290,4 +297,6 @@ extern bool __termination; // skip some cleanups, because process is terminating
}
#include "opencv2/hal/intrin.hpp"
#endif /*_CXCORE_INTERNAL_H_*/

@ -748,29 +748,35 @@ namespace cv
{
template<typename T> static void
randShuffle_( Mat& _arr, RNG& rng, double iterFactor )
randShuffle_( Mat& _arr, RNG& rng, double )
{
int sz = _arr.rows*_arr.cols, iters = cvRound(iterFactor*sz);
unsigned sz = (unsigned)_arr.total();
if( _arr.isContinuous() )
{
T* arr = _arr.ptr<T>();
for( int i = 0; i < iters; i++ )
for( unsigned i = 0; i < sz; i++ )
{
int j = (unsigned)rng % sz, k = (unsigned)rng % sz;
std::swap( arr[j], arr[k] );
unsigned j = (unsigned)rng % sz;
std::swap( arr[j], arr[i] );
}
}
else
{
CV_Assert( _arr.dims <= 2 );
uchar* data = _arr.ptr();
size_t step = _arr.step;
int rows = _arr.rows;
int cols = _arr.cols;
for( int i = 0; i < iters; i++ )
for( int i0 = 0; i0 < rows; i0++ )
{
int j1 = (unsigned)rng % sz, k1 = (unsigned)rng % sz;
int j0 = j1/cols, k0 = k1/cols;
j1 -= j0*cols; k1 -= k0*cols;
std::swap( ((T*)(data + step*j0))[j1], ((T*)(data + step*k0))[k1] );
T* p = _arr.ptr<T>(i0);
for( int j0 = 0; j0 < cols; j0++ )
{
unsigned k1 = (unsigned)rng % sz;
int i1 = (int)(k1 / cols);
int j1 = (int)(k1 - (unsigned)i1*(unsigned)cols);
std::swap( p[j0], ((T*)(data + step*i1))[j1] );
}
}
}
}

@ -3826,6 +3826,11 @@ void cv::findNonZero( InputArray _src, OutputArray _idx )
Mat src = _src.getMat();
CV_Assert( src.type() == CV_8UC1 );
int n = countNonZero(src);
if( n == 0 )
{
_idx.release();
return;
}
if( _idx.kind() == _InputArray::MAT && !_idx.getMatRef().isContinuous() )
_idx.release();
_idx.create(n, 1, CV_32SC2);

@ -1791,3 +1791,28 @@ INSTANTIATE_TEST_CASE_P(Arithm, SubtractOutputMatNotEmpty, testing::Combine(
testing::Values(perf::MatType(CV_8UC1), CV_8UC3, CV_8UC4, CV_16SC1, CV_16SC3),
testing::Values(-1, CV_16S, CV_32S, CV_32F),
testing::Bool()));
TEST(Core_FindNonZero, singular)
{
Mat img(10, 10, CV_8U, Scalar::all(0));
vector<Point> pts, pts2(10);
findNonZero(img, pts);
findNonZero(img, pts2);
ASSERT_TRUE(pts.empty() && pts2.empty());
}
TEST(Core_BoolVector, support)
{
std::vector<bool> test;
int i, n = 205;
int nz = 0;
test.resize(n);
for( i = 0; i < n; i++ )
{
test[i] = theRNG().uniform(0, 2) != 0;
nz += (int)test[i];
}
ASSERT_EQ( nz, countNonZero(test) );
ASSERT_FLOAT_EQ((float)nz/n, (float)(mean(test)[0]));
}

@ -58,18 +58,21 @@ static void mytest(cv::Ptr<cv::ConjGradSolver> solver,cv::Ptr<cv::MinProblemSolv
std::cout<<"--------------------------\n";
}
class SphereF:public cv::MinProblemSolver::Function{
class SphereF_CG:public cv::MinProblemSolver::Function{
public:
int getDims() const { return 4; }
double calc(const double* x)const{
return x[0]*x[0]+x[1]*x[1]+x[2]*x[2]+x[3]*x[3];
}
void getGradient(const double* x,double* grad){
// use automatically computed gradient
/*void getGradient(const double* x,double* grad){
for(int i=0;i<4;i++){
grad[i]=2*x[i];
}
}
}*/
};
class RosenbrockF:public cv::MinProblemSolver::Function{
class RosenbrockF_CG:public cv::MinProblemSolver::Function{
int getDims() const { return 2; }
double calc(const double* x)const{
return 100*(x[1]-x[0]*x[0])*(x[1]-x[0]*x[0])+(1-x[0])*(1-x[0]);
}
@ -79,11 +82,11 @@ class RosenbrockF:public cv::MinProblemSolver::Function{
}
};
TEST(DISABLED_Core_ConjGradSolver, regression_basic){
TEST(Core_ConjGradSolver, regression_basic){
cv::Ptr<cv::ConjGradSolver> solver=cv::ConjGradSolver::create();
#if 1
{
cv::Ptr<cv::MinProblemSolver::Function> ptr_F(new SphereF());
cv::Ptr<cv::MinProblemSolver::Function> ptr_F(new SphereF_CG());
cv::Mat x=(cv::Mat_<double>(4,1)<<50.0,10.0,1.0,-10.0),
etalon_x=(cv::Mat_<double>(1,4)<<0.0,0.0,0.0,0.0);
double etalon_res=0.0;
@ -92,7 +95,7 @@ TEST(DISABLED_Core_ConjGradSolver, regression_basic){
#endif
#if 1
{
cv::Ptr<cv::MinProblemSolver::Function> ptr_F(new RosenbrockF());
cv::Ptr<cv::MinProblemSolver::Function> ptr_F(new RosenbrockF_CG());
cv::Mat x=(cv::Mat_<double>(2,1)<<0.0,0.0),
etalon_x=(cv::Mat_<double>(2,1)<<1.0,1.0);
double etalon_res=0.0;

@ -68,17 +68,19 @@ static void mytest(cv::Ptr<cv::DownhillSolver> solver,cv::Ptr<cv::MinProblemSolv
class SphereF:public cv::MinProblemSolver::Function{
public:
int getDims() const { return 2; }
double calc(const double* x)const{
return x[0]*x[0]+x[1]*x[1];
}
};
class RosenbrockF:public cv::MinProblemSolver::Function{
int getDims() const { return 2; }
double calc(const double* x)const{
return 100*(x[1]-x[0]*x[0])*(x[1]-x[0]*x[0])+(1-x[0])*(1-x[0]);
}
};
TEST(DISABLED_Core_DownhillSolver, regression_basic){
TEST(Core_DownhillSolver, regression_basic){
cv::Ptr<cv::DownhillSolver> solver=cv::DownhillSolver::create();
#if 1
{

@ -866,3 +866,24 @@ protected:
};
TEST(Core_DFT, complex_output) { Core_DFTComplexOutputTest test; test.safe_run(); }
TEST(Core_DFT, complex_output2)
{
for( int i = 0; i < 100; i++ )
{
int type = theRNG().uniform(0, 2) ? CV_64F : CV_32F;
int m = theRNG().uniform(1, 10);
int n = theRNG().uniform(1, 10);
Mat x(m, n, type), out;
randu(x, -1., 1.);
dft(x, out, DFT_ROWS | DFT_COMPLEX_OUTPUT);
double nrm = norm(out, NORM_INF);
double thresh = n*m*2;
if( nrm > thresh )
{
cout << "x: " << x << endl;
cout << "out: " << out << endl;
ASSERT_LT(nrm, thresh);
}
}
}

@ -1209,3 +1209,42 @@ TEST(Core_Mat, copyNx1ToVector)
ASSERT_PRED_FORMAT2(cvtest::MatComparator(0, 0), ref_dst16, cv::Mat_<ushort>(dst16));
}
TEST(Core_Matx, fromMat_)
{
Mat_<double> a = (Mat_<double>(2,2) << 10, 11, 12, 13);
Matx22d b(a);
ASSERT_EQ( norm(a, b, NORM_INF), 0.);
}
TEST(Core_InputArray, empty)
{
vector<vector<Point> > data;
ASSERT_TRUE( _InputArray(data).empty() );
}
TEST(Core_CopyMask, bug1918)
{
Mat_<unsigned char> tmpSrc(100,100);
tmpSrc = 124;
Mat_<unsigned char> tmpMask(100,100);
tmpMask = 255;
Mat_<unsigned char> tmpDst(100,100);
tmpDst = 2;
tmpSrc.copyTo(tmpDst,tmpMask);
ASSERT_EQ(sum(tmpDst)[0], 124*100*100);
}
TEST(Core_SVD, orthogonality)
{
for( int i = 0; i < 2; i++ )
{
int type = i == 0 ? CV_32F : CV_64F;
Mat mat_D(2, 2, type);
mat_D.setTo(88.);
Mat mat_U, mat_W;
SVD::compute(mat_D, mat_W, mat_U, noArray(), SVD::FULL_UV);
mat_U *= mat_U.t();
ASSERT_LT(norm(mat_U, Mat::eye(2, 2, type), NORM_INF), 1e-5);
}
}

@ -232,7 +232,7 @@ void Core_PowTest::prepare_to_validation( int /*test_case_idx*/ )
for( j = 0; j < ncols; j++ )
{
int val = ((uchar*)a_data)[j];
((uchar*)b_data)[j] = (uchar)(val <= 1 ? val :
((uchar*)b_data)[j] = (uchar)(val == 0 ? 255 : val == 1 ? 1 :
val == 2 && ipower == -1 ? 1 : 0);
}
else
@ -247,17 +247,17 @@ void Core_PowTest::prepare_to_validation( int /*test_case_idx*/ )
if( ipower < 0 )
for( j = 0; j < ncols; j++ )
{
int val = ((char*)a_data)[j];
((char*)b_data)[j] = (char)((val&~1)==0 ? val :
int val = ((schar*)a_data)[j];
((schar*)b_data)[j] = (schar)(val == 0 ? 127 : val == 1 ? 1 :
val ==-1 ? 1-2*(ipower&1) :
val == 2 && ipower == -1 ? 1 : 0);
}
else
for( j = 0; j < ncols; j++ )
{
int val = ((char*)a_data)[j];
int val = ((schar*)a_data)[j];
val = ipow( val, ipower );
((char*)b_data)[j] = saturate_cast<schar>(val);
((schar*)b_data)[j] = saturate_cast<schar>(val);
}
break;
case CV_16U:
@ -265,7 +265,7 @@ void Core_PowTest::prepare_to_validation( int /*test_case_idx*/ )
for( j = 0; j < ncols; j++ )
{
int val = ((ushort*)a_data)[j];
((ushort*)b_data)[j] = (ushort)((val&~1)==0 ? val :
((ushort*)b_data)[j] = (ushort)(val == 0 ? 65535 : val == 1 ? 1 :
val ==-1 ? 1-2*(ipower&1) :
val == 2 && ipower == -1 ? 1 : 0);
}
@ -282,7 +282,7 @@ void Core_PowTest::prepare_to_validation( int /*test_case_idx*/ )
for( j = 0; j < ncols; j++ )
{
int val = ((short*)a_data)[j];
((short*)b_data)[j] = (short)((val&~1)==0 ? val :
((short*)b_data)[j] = (short)(val == 0 ? 32767 : val == 1 ? 1 :
val ==-1 ? 1-2*(ipower&1) :
val == 2 && ipower == -1 ? 1 : 0);
}
@ -299,7 +299,7 @@ void Core_PowTest::prepare_to_validation( int /*test_case_idx*/ )
for( j = 0; j < ncols; j++ )
{
int val = ((int*)a_data)[j];
((int*)b_data)[j] = (val&~1)==0 ? val :
((int*)b_data)[j] = val == 0 ? INT_MAX : val == 1 ? 1 :
val ==-1 ? 1-2*(ipower&1) :
val == 2 && ipower == -1 ? 1 : 0;
}
@ -351,8 +351,6 @@ void Core_PowTest::prepare_to_validation( int /*test_case_idx*/ )
}
}
///////////////////////////////////////// matrix tests ////////////////////////////////////////////
class Core_MatrixTest : public cvtest::ArrayTest
@ -2822,4 +2820,56 @@ TEST(CovariationMatrixVectorOfMatWithMean, accuracy)
ASSERT_EQ(sDiff.dot(sDiff), 0.0);
}
TEST(Core_Pow, special)
{
for( int i = 0; i < 100; i++ )
{
int n = theRNG().uniform(1, 30);
Mat mtx0(1, n, CV_8S), mtx, result;
randu(mtx0, -5, 5);
int type = theRNG().uniform(0, 2) ? CV_64F : CV_32F;
double eps = type == CV_32F ? 1e-3 : 1e-10;
mtx0.convertTo(mtx, type);
// generate power from [-n, n] interval with 1/8 step - enough to check various cases.
const int max_pf = 3;
int pf = theRNG().uniform(0, max_pf*2+1);
double power = ((1 << pf) - (1 << (max_pf*2-1)))/16.;
int ipower = cvRound(power);
bool is_ipower = ipower == power;
cv::pow(mtx, power, result);
for( int j = 0; j < n; j++ )
{
double val = type == CV_32F ? (double)mtx.at<float>(j) : mtx.at<double>(j);
double r = type == CV_32F ? (double)result.at<float>(j) : result.at<double>(j);
double r0;
if( power == 0. )
r0 = 1;
else if( is_ipower )
{
r0 = 1;
for( int k = 0; k < std::abs(ipower); k++ )
r0 *= val;
if( ipower < 0 )
r0 = 1./r0;
}
else
r0 = std::pow(val, power);
if( cvIsInf(r0) )
{
ASSERT_TRUE(cvIsInf(r) != 0);
}
else if( cvIsNaN(r0) )
{
ASSERT_TRUE(cvIsNaN(r) != 0);
}
else
{
ASSERT_TRUE(cvIsInf(r) == 0 && cvIsNaN(r) == 0);
ASSERT_LT(fabs(r - r0), eps);
}
}
}
}
/* End of file. */

@ -322,6 +322,9 @@ OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_int16x8, vmulq_s16)
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_int32x4, vaddq_s32)
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_int32x4, vsubq_s32)
OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_int32x4, vmulq_s32)
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_uint32x4, vaddq_u32)
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_uint32x4, vsubq_u32)
OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_uint32x4, vmulq_u32)
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_float32x4, vaddq_f32)
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_float32x4, vsubq_f32)
OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_float32x4, vmulq_f32)

@ -614,6 +614,16 @@ inline v_int32x4 operator * (const v_int32x4& a, const v_int32x4& b)
__m128i d1 = _mm_unpackhi_epi32(c0, c1);
return v_int32x4(_mm_unpacklo_epi64(d0, d1));
}
inline v_uint32x4& operator *= (v_uint32x4& a, const v_uint32x4& b)
{
a = a * b;
return a;
}
inline v_int32x4& operator *= (v_int32x4& a, const v_int32x4& b)
{
a = a * b;
return a;
}
inline void v_mul_expand(const v_int16x8& a, const v_int16x8& b,
v_int32x4& c, v_int32x4& d)

Loading…
Cancel
Save