Starting implement simplex algorithm.

pull/1192/head
Alex Leontiev 12 years ago
parent 47ce461d97
commit f2afe64521
  1. 4
      modules/optim/CMakeLists.txt
  2. 161
      modules/optim/src/arrays.hpp
  3. 242
      modules/optim/src/denoising.cpp
  4. 334
      modules/optim/src/fast_nlmeans_denoising_invoker.hpp
  5. 115
      modules/optim/src/fast_nlmeans_denoising_invoker_commons.hpp
  6. 383
      modules/optim/src/fast_nlmeans_multi_denoising_invoker.hpp
  7. 817
      modules/optim/src/inpaint.cpp
  8. 45
      modules/optim/src/lpsolver.cpp
  9. 44
      modules/optim/src/precomp.cpp
  10. 53
      modules/optim/src/precomp.hpp

@ -1,2 +1,2 @@
set(the_description "Computational Photography")
ocv_define_module(photo opencv_imgproc)
set(the_description "Generic optimization")
ocv_define_module(optim)

@ -1,161 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective icvers.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_DENOISING_ARRAYS_HPP__
#define __OPENCV_DENOISING_ARRAYS_HPP__
template <class T> struct Array2d {
T* a;
int n1,n2;
bool needToDeallocArray;
Array2d(const Array2d& array2d):
a(array2d.a), n1(array2d.n1), n2(array2d.n2), needToDeallocArray(false)
{
if (array2d.needToDeallocArray) {
// copy constructor for self allocating arrays not supported
throw new std::exception();
}
}
Array2d(T* _a, int _n1, int _n2):
a(_a), n1(_n1), n2(_n2), needToDeallocArray(false) {}
Array2d(int _n1, int _n2):
n1(_n1), n2(_n2), needToDeallocArray(true)
{
a = new T[n1*n2];
}
~Array2d() {
if (needToDeallocArray) {
delete[] a;
}
}
T* operator [] (int i) {
return a + i*n2;
}
inline T* row_ptr(int i) {
return (*this)[i];
}
};
template <class T> struct Array3d {
T* a;
int n1,n2,n3;
bool needToDeallocArray;
Array3d(T* _a, int _n1, int _n2, int _n3):
a(_a), n1(_n1), n2(_n2), n3(_n3), needToDeallocArray(false) {}
Array3d(int _n1, int _n2, int _n3):
n1(_n1), n2(_n2), n3(_n3), needToDeallocArray(true)
{
a = new T[n1*n2*n3];
}
~Array3d() {
if (needToDeallocArray) {
delete[] a;
}
}
Array2d<T> operator [] (int i) {
Array2d<T> array2d(a + i*n2*n3, n2, n3);
return array2d;
}
inline T* row_ptr(int i1, int i2) {
return a + i1*n2*n3 + i2*n3;
}
};
template <class T> struct Array4d {
T* a;
int n1,n2,n3,n4;
bool needToDeallocArray;
int steps[4];
void init_steps() {
steps[0] = n2*n3*n4;
steps[1] = n3*n4;
steps[2] = n4;
steps[3] = 1;
}
Array4d(T* _a, int _n1, int _n2, int _n3, int _n4):
a(_a), n1(_n1), n2(_n2), n3(_n3), n4(_n4), needToDeallocArray(false)
{
init_steps();
}
Array4d(int _n1, int _n2, int _n3, int _n4):
n1(_n1), n2(_n2), n3(_n3), n4(_n4), needToDeallocArray(true)
{
a = new T[n1*n2*n3*n4];
init_steps();
}
~Array4d() {
if (needToDeallocArray) {
delete[] a;
}
}
Array3d<T> operator [] (int i) {
Array3d<T> array3d(a + i*n2*n3*n4, n2, n3, n4);
return array3d;
}
inline T* row_ptr(int i1, int i2, int i3) {
return a + i1*n2*n3*n4 + i2*n3*n4 + i3*n4;
}
inline int step_size(int dimension) {
return steps[dimension];
}
};
#endif

@ -1,242 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective icvers.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/photo.hpp"
#include "opencv2/imgproc.hpp"
#include "fast_nlmeans_denoising_invoker.hpp"
#include "fast_nlmeans_multi_denoising_invoker.hpp"
void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h,
int templateWindowSize, int searchWindowSize)
{
Mat src = _src.getMat();
_dst.create(src.size(), src.type());
Mat dst = _dst.getMat();
#ifdef HAVE_TEGRA_OPTIMIZATION
if(tegra::fastNlMeansDenoising(src, dst, h, templateWindowSize, searchWindowSize))
return;
#endif
switch (src.type()) {
case CV_8U:
parallel_for(cv::BlockedRange(0, src.rows),
FastNlMeansDenoisingInvoker<uchar>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC2:
parallel_for(cv::BlockedRange(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec2b>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC3:
parallel_for(cv::BlockedRange(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec3b>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
default:
CV_Error(Error::StsBadArg,
"Unsupported image format! Only CV_8UC1, CV_8UC2 and CV_8UC3 are supported");
}
}
void cv::fastNlMeansDenoisingColored( InputArray _src, OutputArray _dst,
float h, float hForColorComponents,
int templateWindowSize, int searchWindowSize)
{
Mat src = _src.getMat();
_dst.create(src.size(), src.type());
Mat dst = _dst.getMat();
if (src.type() != CV_8UC3) {
CV_Error(Error::StsBadArg, "Type of input image should be CV_8UC3!");
return;
}
Mat src_lab;
cvtColor(src, src_lab, COLOR_LBGR2Lab);
Mat l(src.size(), CV_8U);
Mat ab(src.size(), CV_8UC2);
Mat l_ab[] = { l, ab };
int from_to[] = { 0,0, 1,1, 2,2 };
mixChannels(&src_lab, 1, l_ab, 2, from_to, 3);
fastNlMeansDenoising(l, l, h, templateWindowSize, searchWindowSize);
fastNlMeansDenoising(ab, ab, hForColorComponents, templateWindowSize, searchWindowSize);
Mat l_ab_denoised[] = { l, ab };
Mat dst_lab(src.size(), src.type());
mixChannels(l_ab_denoised, 2, &dst_lab, 1, from_to, 3);
cvtColor(dst_lab, dst, COLOR_Lab2LBGR);
}
static void fastNlMeansDenoisingMultiCheckPreconditions(
const std::vector<Mat>& srcImgs,
int imgToDenoiseIndex, int temporalWindowSize,
int templateWindowSize, int searchWindowSize)
{
int src_imgs_size = (int)srcImgs.size();
if (src_imgs_size == 0) {
CV_Error(Error::StsBadArg, "Input images vector should not be empty!");
}
if (temporalWindowSize % 2 == 0 ||
searchWindowSize % 2 == 0 ||
templateWindowSize % 2 == 0) {
CV_Error(Error::StsBadArg, "All windows sizes should be odd!");
}
int temporalWindowHalfSize = temporalWindowSize / 2;
if (imgToDenoiseIndex - temporalWindowHalfSize < 0 ||
imgToDenoiseIndex + temporalWindowHalfSize >= src_imgs_size)
{
CV_Error(Error::StsBadArg,
"imgToDenoiseIndex and temporalWindowSize "
"should be choosen corresponding srcImgs size!");
}
for (int i = 1; i < src_imgs_size; i++) {
if (srcImgs[0].size() != srcImgs[i].size() || srcImgs[0].type() != srcImgs[i].type()) {
CV_Error(Error::StsBadArg, "Input images should have the same size and type!");
}
}
}
void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
int imgToDenoiseIndex, int temporalWindowSize,
float h, int templateWindowSize, int searchWindowSize)
{
std::vector<Mat> srcImgs;
_srcImgs.getMatVector(srcImgs);
fastNlMeansDenoisingMultiCheckPreconditions(
srcImgs, imgToDenoiseIndex,
temporalWindowSize, templateWindowSize, searchWindowSize
);
_dst.create(srcImgs[0].size(), srcImgs[0].type());
Mat dst = _dst.getMat();
switch (srcImgs[0].type()) {
case CV_8U:
parallel_for(cv::BlockedRange(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<uchar>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC2:
parallel_for(cv::BlockedRange(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec2b>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC3:
parallel_for(cv::BlockedRange(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec3b>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;
default:
CV_Error(Error::StsBadArg,
"Unsupported matrix format! Only uchar, Vec2b, Vec3b are supported");
}
}
void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
int imgToDenoiseIndex, int temporalWindowSize,
float h, float hForColorComponents,
int templateWindowSize, int searchWindowSize)
{
std::vector<Mat> srcImgs;
_srcImgs.getMatVector(srcImgs);
fastNlMeansDenoisingMultiCheckPreconditions(
srcImgs, imgToDenoiseIndex,
temporalWindowSize, templateWindowSize, searchWindowSize
);
_dst.create(srcImgs[0].size(), srcImgs[0].type());
Mat dst = _dst.getMat();
int src_imgs_size = (int)srcImgs.size();
if (srcImgs[0].type() != CV_8UC3) {
CV_Error(Error::StsBadArg, "Type of input images should be CV_8UC3!");
return;
}
int from_to[] = { 0,0, 1,1, 2,2 };
// TODO convert only required images
std::vector<Mat> src_lab(src_imgs_size);
std::vector<Mat> l(src_imgs_size);
std::vector<Mat> ab(src_imgs_size);
for (int i = 0; i < src_imgs_size; i++) {
src_lab[i] = Mat::zeros(srcImgs[0].size(), CV_8UC3);
l[i] = Mat::zeros(srcImgs[0].size(), CV_8UC1);
ab[i] = Mat::zeros(srcImgs[0].size(), CV_8UC2);
cvtColor(srcImgs[i], src_lab[i], COLOR_LBGR2Lab);
Mat l_ab[] = { l[i], ab[i] };
mixChannels(&src_lab[i], 1, l_ab, 2, from_to, 3);
}
Mat dst_l;
Mat dst_ab;
fastNlMeansDenoisingMulti(
l, dst_l, imgToDenoiseIndex, temporalWindowSize,
h, templateWindowSize, searchWindowSize);
fastNlMeansDenoisingMulti(
ab, dst_ab, imgToDenoiseIndex, temporalWindowSize,
hForColorComponents, templateWindowSize, searchWindowSize);
Mat l_ab_denoised[] = { dst_l, dst_ab };
Mat dst_lab(srcImgs[0].size(), srcImgs[0].type());
mixChannels(l_ab_denoised, 2, &dst_lab, 1, from_to, 3);
cvtColor(dst_lab, dst, COLOR_Lab2LBGR);
}

@ -1,334 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective icvers.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_FAST_NLMEANS_DENOISING_INVOKER_HPP__
#define __OPENCV_FAST_NLMEANS_DENOISING_INVOKER_HPP__
#include "precomp.hpp"
#include <limits>
#include "fast_nlmeans_denoising_invoker_commons.hpp"
#include "arrays.hpp"
using namespace cv;
template <typename T>
struct FastNlMeansDenoisingInvoker {
public:
FastNlMeansDenoisingInvoker(const Mat& src, Mat& dst,
int template_window_size, int search_window_size, const float h);
void operator() (const BlockedRange& range) const;
private:
void operator= (const FastNlMeansDenoisingInvoker&);
const Mat& src_;
Mat& dst_;
Mat extended_src_;
int border_size_;
int template_window_size_;
int search_window_size_;
int template_window_half_size_;
int search_window_half_size_;
int fixed_point_mult_;
int almost_template_window_size_sq_bin_shift_;
std::vector<int> almost_dist2weight_;
void calcDistSumsForFirstElementInRow(
int i,
Array2d<int>& dist_sums,
Array3d<int>& col_dist_sums,
Array3d<int>& up_col_dist_sums) const;
void calcDistSumsForElementInFirstRow(
int i,
int j,
int first_col_num,
Array2d<int>& dist_sums,
Array3d<int>& col_dist_sums,
Array3d<int>& up_col_dist_sums) const;
};
inline int getNearestPowerOf2(int value)
{
int p = 0;
while( 1 << p < value) ++p;
return p;
}
template <class T>
FastNlMeansDenoisingInvoker<T>::FastNlMeansDenoisingInvoker(
const cv::Mat& src,
cv::Mat& dst,
int template_window_size,
int search_window_size,
const float h) : src_(src), dst_(dst)
{
CV_Assert(src.channels() == sizeof(T)); //T is Vec1b or Vec2b or Vec3b
template_window_half_size_ = template_window_size / 2;
search_window_half_size_ = search_window_size / 2;
template_window_size_ = template_window_half_size_ * 2 + 1;
search_window_size_ = search_window_half_size_ * 2 + 1;
border_size_ = search_window_half_size_ + template_window_half_size_;
copyMakeBorder(src_, extended_src_,
border_size_, border_size_, border_size_, border_size_, cv::BORDER_DEFAULT);
const int max_estimate_sum_value = search_window_size_ * search_window_size_ * 255;
fixed_point_mult_ = std::numeric_limits<int>::max() / max_estimate_sum_value;
// precalc weight for every possible l2 dist between blocks
// additional optimization of precalced weights to replace division(averaging) by binary shift
CV_Assert(template_window_size_ <= 46340 ); // sqrt(INT_MAX)
int template_window_size_sq = template_window_size_ * template_window_size_;
almost_template_window_size_sq_bin_shift_ = getNearestPowerOf2(template_window_size_sq);
double almost_dist2actual_dist_multiplier = ((double)(1 << almost_template_window_size_sq_bin_shift_)) / template_window_size_sq;
int max_dist = 255 * 255 * sizeof(T);
int almost_max_dist = (int) (max_dist / almost_dist2actual_dist_multiplier + 1);
almost_dist2weight_.resize(almost_max_dist);
const double WEIGHT_THRESHOLD = 0.001;
for (int almost_dist = 0; almost_dist < almost_max_dist; almost_dist++) {
double dist = almost_dist * almost_dist2actual_dist_multiplier;
int weight = cvRound(fixed_point_mult_ * std::exp(-dist / (h * h * sizeof(T))));
if (weight < WEIGHT_THRESHOLD * fixed_point_mult_)
weight = 0;
almost_dist2weight_[almost_dist] = weight;
}
CV_Assert(almost_dist2weight_[0] == fixed_point_mult_);
// additional optimization init end
if (dst_.empty()) {
dst_ = Mat::zeros(src_.size(), src_.type());
}
}
template <class T>
void FastNlMeansDenoisingInvoker<T>::operator() (const BlockedRange& range) const {
int row_from = range.begin();
int row_to = range.end() - 1;
Array2d<int> dist_sums(search_window_size_, search_window_size_);
// for lazy calc optimization
Array3d<int> col_dist_sums(template_window_size_, search_window_size_, search_window_size_);
int first_col_num = -1;
Array3d<int> up_col_dist_sums(src_.cols, search_window_size_, search_window_size_);
for (int i = row_from; i <= row_to; i++) {
for (int j = 0; j < src_.cols; j++) {
int search_window_y = i - search_window_half_size_;
int search_window_x = j - search_window_half_size_;
// calc dist_sums
if (j == 0) {
calcDistSumsForFirstElementInRow(i, dist_sums, col_dist_sums, up_col_dist_sums);
first_col_num = 0;
} else { // calc cur dist_sums using previous dist_sums
if (i == row_from) {
calcDistSumsForElementInFirstRow(i, j, first_col_num,
dist_sums, col_dist_sums, up_col_dist_sums);
} else {
int ay = border_size_ + i;
int ax = border_size_ + j + template_window_half_size_;
int start_by =
border_size_ + i - search_window_half_size_;
int start_bx =
border_size_ + j - search_window_half_size_ + template_window_half_size_;
T a_up = extended_src_.at<T>(ay - template_window_half_size_ - 1, ax);
T a_down = extended_src_.at<T>(ay + template_window_half_size_, ax);
// copy class member to local variable for optimization
int search_window_size = search_window_size_;
for (int y = 0; y < search_window_size; y++) {
int* dist_sums_row = dist_sums.row_ptr(y);
int* col_dist_sums_row = col_dist_sums.row_ptr(first_col_num,y);
int* up_col_dist_sums_row = up_col_dist_sums.row_ptr(j, y);
const T* b_up_ptr =
extended_src_.ptr<T>(start_by - template_window_half_size_ - 1 + y);
const T* b_down_ptr =
extended_src_.ptr<T>(start_by + template_window_half_size_ + y);
for (int x = 0; x < search_window_size; x++) {
dist_sums_row[x] -= col_dist_sums_row[x];
col_dist_sums_row[x] =
up_col_dist_sums_row[x] +
calcUpDownDist(
a_up, a_down,
b_up_ptr[start_bx + x], b_down_ptr[start_bx + x]
);
dist_sums_row[x] += col_dist_sums_row[x];
up_col_dist_sums_row[x] = col_dist_sums_row[x];
}
}
}
first_col_num = (first_col_num + 1) % template_window_size_;
}
// calc weights
int weights_sum = 0;
int estimation[3];
for (size_t channel_num = 0; channel_num < sizeof(T); channel_num++) {
estimation[channel_num] = 0;
}
for (int y = 0; y < search_window_size_; y++) {
const T* cur_row_ptr = extended_src_.ptr<T>(border_size_ + search_window_y + y);
int* dist_sums_row = dist_sums.row_ptr(y);
for (int x = 0; x < search_window_size_; x++) {
int almostAvgDist =
dist_sums_row[x] >> almost_template_window_size_sq_bin_shift_;
int weight = almost_dist2weight_[almostAvgDist];
weights_sum += weight;
T p = cur_row_ptr[border_size_ + search_window_x + x];
incWithWeight(estimation, weight, p);
}
}
for (size_t channel_num = 0; channel_num < sizeof(T); channel_num++)
estimation[channel_num] = ((unsigned)estimation[channel_num] + weights_sum/2) / weights_sum;
dst_.at<T>(i,j) = saturateCastFromArray<T>(estimation);
}
}
}
template <class T>
inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForFirstElementInRow(
int i,
Array2d<int>& dist_sums,
Array3d<int>& col_dist_sums,
Array3d<int>& up_col_dist_sums) const
{
int j = 0;
for (int y = 0; y < search_window_size_; y++) {
for (int x = 0; x < search_window_size_; x++) {
dist_sums[y][x] = 0;
for (int tx = 0; tx < template_window_size_; tx++) {
col_dist_sums[tx][y][x] = 0;
}
int start_y = i + y - search_window_half_size_;
int start_x = j + x - search_window_half_size_;
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++) {
for (int tx = -template_window_half_size_; tx <= template_window_half_size_; tx++) {
int dist = calcDist<T>(extended_src_,
border_size_ + i + ty, border_size_ + j + tx,
border_size_ + start_y + ty, border_size_ + start_x + tx);
dist_sums[y][x] += dist;
col_dist_sums[tx + template_window_half_size_][y][x] += dist;
}
}
up_col_dist_sums[j][y][x] = col_dist_sums[template_window_size_ - 1][y][x];
}
}
}
template <class T>
inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForElementInFirstRow(
int i,
int j,
int first_col_num,
Array2d<int>& dist_sums,
Array3d<int>& col_dist_sums,
Array3d<int>& up_col_dist_sums) const
{
int ay = border_size_ + i;
int ax = border_size_ + j + template_window_half_size_;
int start_by = border_size_ + i - search_window_half_size_;
int start_bx = border_size_ + j - search_window_half_size_ + template_window_half_size_;
int new_last_col_num = first_col_num;
for (int y = 0; y < search_window_size_; y++) {
for (int x = 0; x < search_window_size_; x++) {
dist_sums[y][x] -= col_dist_sums[first_col_num][y][x];
col_dist_sums[new_last_col_num][y][x] = 0;
int by = start_by + y;
int bx = start_bx + x;
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++) {
col_dist_sums[new_last_col_num][y][x] +=
calcDist<T>(extended_src_, ay + ty, ax, by + ty, bx);
}
dist_sums[y][x] += col_dist_sums[new_last_col_num][y][x];
up_col_dist_sums[j][y][x] = col_dist_sums[new_last_col_num][y][x];
}
}
}
#endif

@ -1,115 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective icvers.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_FAST_NLMEANS_DENOISING_INVOKER_COMMONS_HPP__
#define __OPENCV_FAST_NLMEANS_DENOISING_INVOKER_COMMONS_HPP__
using namespace cv;
template <typename T> static inline int calcDist(const T a, const T b);
template <> inline int calcDist(const uchar a, const uchar b) {
return (a-b) * (a-b);
}
template <> inline int calcDist(const Vec2b a, const Vec2b b) {
return (a[0]-b[0])*(a[0]-b[0]) + (a[1]-b[1])*(a[1]-b[1]);
}
template <> inline int calcDist(const Vec3b a, const Vec3b b) {
return (a[0]-b[0])*(a[0]-b[0]) + (a[1]-b[1])*(a[1]-b[1]) + (a[2]-b[2])*(a[2]-b[2]);
}
template <typename T> static inline int calcDist(const Mat& m, int i1, int j1, int i2, int j2) {
const T a = m.at<T>(i1, j1);
const T b = m.at<T>(i2, j2);
return calcDist<T>(a,b);
}
template <typename T> static inline int calcUpDownDist(T a_up, T a_down, T b_up, T b_down) {
return calcDist(a_down,b_down) - calcDist(a_up, b_up);
}
template <> inline int calcUpDownDist(uchar a_up, uchar a_down, uchar b_up, uchar b_down) {
int A = a_down - b_down;
int B = a_up - b_up;
return (A-B)*(A+B);
}
template <typename T> static inline void incWithWeight(int* estimation, int weight, T p);
template <> inline void incWithWeight(int* estimation, int weight, uchar p) {
estimation[0] += weight * p;
}
template <> inline void incWithWeight(int* estimation, int weight, Vec2b p) {
estimation[0] += weight * p[0];
estimation[1] += weight * p[1];
}
template <> inline void incWithWeight(int* estimation, int weight, Vec3b p) {
estimation[0] += weight * p[0];
estimation[1] += weight * p[1];
estimation[2] += weight * p[2];
}
template <typename T> static inline T saturateCastFromArray(int* estimation);
template <> inline uchar saturateCastFromArray(int* estimation) {
return saturate_cast<uchar>(estimation[0]);
}
template <> inline Vec2b saturateCastFromArray(int* estimation) {
Vec2b res;
res[0] = saturate_cast<uchar>(estimation[0]);
res[1] = saturate_cast<uchar>(estimation[1]);
return res;
}
template <> inline Vec3b saturateCastFromArray(int* estimation) {
Vec3b res;
res[0] = saturate_cast<uchar>(estimation[0]);
res[1] = saturate_cast<uchar>(estimation[1]);
res[2] = saturate_cast<uchar>(estimation[2]);
return res;
}
#endif

@ -1,383 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective icvers.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_FAST_NLMEANS_MULTI_DENOISING_INVOKER_HPP__
#define __OPENCV_FAST_NLMEANS_MULTI_DENOISING_INVOKER_HPP__
#include "precomp.hpp"
#include <limits>
#include "fast_nlmeans_denoising_invoker_commons.hpp"
#include "arrays.hpp"
using namespace cv;
template <typename T>
struct FastNlMeansMultiDenoisingInvoker {
public:
FastNlMeansMultiDenoisingInvoker(
const std::vector<Mat>& srcImgs, int imgToDenoiseIndex, int temporalWindowSize,
Mat& dst, int template_window_size, int search_window_size, const float h);
void operator() (const BlockedRange& range) const;
private:
void operator= (const FastNlMeansMultiDenoisingInvoker&);
int rows_;
int cols_;
Mat& dst_;
std::vector<Mat> extended_srcs_;
Mat main_extended_src_;
int border_size_;
int template_window_size_;
int search_window_size_;
int temporal_window_size_;
int template_window_half_size_;
int search_window_half_size_;
int temporal_window_half_size_;
int fixed_point_mult_;
int almost_template_window_size_sq_bin_shift;
std::vector<int> almost_dist2weight;
void calcDistSumsForFirstElementInRow(
int i,
Array3d<int>& dist_sums,
Array4d<int>& col_dist_sums,
Array4d<int>& up_col_dist_sums) const;
void calcDistSumsForElementInFirstRow(
int i,
int j,
int first_col_num,
Array3d<int>& dist_sums,
Array4d<int>& col_dist_sums,
Array4d<int>& up_col_dist_sums) const;
};
template <class T>
FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker(
const std::vector<Mat>& srcImgs,
int imgToDenoiseIndex,
int temporalWindowSize,
cv::Mat& dst,
int template_window_size,
int search_window_size,
const float h) : dst_(dst), extended_srcs_(srcImgs.size())
{
CV_Assert(srcImgs.size() > 0);
CV_Assert(srcImgs[0].channels() == sizeof(T));
rows_ = srcImgs[0].rows;
cols_ = srcImgs[0].cols;
template_window_half_size_ = template_window_size / 2;
search_window_half_size_ = search_window_size / 2;
temporal_window_half_size_ = temporalWindowSize / 2;
template_window_size_ = template_window_half_size_ * 2 + 1;
search_window_size_ = search_window_half_size_ * 2 + 1;
temporal_window_size_ = temporal_window_half_size_ * 2 + 1;
border_size_ = search_window_half_size_ + template_window_half_size_;
for (int i = 0; i < temporal_window_size_; i++) {
copyMakeBorder(
srcImgs[imgToDenoiseIndex - temporal_window_half_size_ + i], extended_srcs_[i],
border_size_, border_size_, border_size_, border_size_, cv::BORDER_DEFAULT);
}
main_extended_src_ = extended_srcs_[temporal_window_half_size_];
const int max_estimate_sum_value =
temporal_window_size_ * search_window_size_ * search_window_size_ * 255;
fixed_point_mult_ = std::numeric_limits<int>::max() / max_estimate_sum_value;
// precalc weight for every possible l2 dist between blocks
// additional optimization of precalced weights to replace division(averaging) by binary shift
int template_window_size_sq = template_window_size_ * template_window_size_;
almost_template_window_size_sq_bin_shift = 0;
while (1 << almost_template_window_size_sq_bin_shift < template_window_size_sq) {
almost_template_window_size_sq_bin_shift++;
}
int almost_template_window_size_sq = 1 << almost_template_window_size_sq_bin_shift;
double almost_dist2actual_dist_multiplier =
((double) almost_template_window_size_sq) / template_window_size_sq;
int max_dist = 255 * 255 * sizeof(T);
int almost_max_dist = (int) (max_dist / almost_dist2actual_dist_multiplier + 1);
almost_dist2weight.resize(almost_max_dist);
const double WEIGHT_THRESHOLD = 0.001;
for (int almost_dist = 0; almost_dist < almost_max_dist; almost_dist++) {
double dist = almost_dist * almost_dist2actual_dist_multiplier;
int weight = cvRound(fixed_point_mult_ * std::exp(-dist / (h * h * sizeof(T))));
if (weight < WEIGHT_THRESHOLD * fixed_point_mult_) {
weight = 0;
}
almost_dist2weight[almost_dist] = weight;
}
CV_Assert(almost_dist2weight[0] == fixed_point_mult_);
// additional optimization init end
if (dst_.empty()) {
dst_ = Mat::zeros(srcImgs[0].size(), srcImgs[0].type());
}
}
template <class T>
void FastNlMeansMultiDenoisingInvoker<T>::operator() (const BlockedRange& range) const {
int row_from = range.begin();
int row_to = range.end() - 1;
Array3d<int> dist_sums(temporal_window_size_, search_window_size_, search_window_size_);
// for lazy calc optimization
Array4d<int> col_dist_sums(
template_window_size_, temporal_window_size_, search_window_size_, search_window_size_);
int first_col_num = -1;
Array4d<int> up_col_dist_sums(
cols_, temporal_window_size_, search_window_size_, search_window_size_);
for (int i = row_from; i <= row_to; i++) {
for (int j = 0; j < cols_; j++) {
int search_window_y = i - search_window_half_size_;
int search_window_x = j - search_window_half_size_;
// calc dist_sums
if (j == 0) {
calcDistSumsForFirstElementInRow(i, dist_sums, col_dist_sums, up_col_dist_sums);
first_col_num = 0;
} else { // calc cur dist_sums using previous dist_sums
if (i == row_from) {
calcDistSumsForElementInFirstRow(i, j, first_col_num,
dist_sums, col_dist_sums, up_col_dist_sums);
} else {
int ay = border_size_ + i;
int ax = border_size_ + j + template_window_half_size_;
int start_by =
border_size_ + i - search_window_half_size_;
int start_bx =
border_size_ + j - search_window_half_size_ + template_window_half_size_;
T a_up = main_extended_src_.at<T>(ay - template_window_half_size_ - 1, ax);
T a_down = main_extended_src_.at<T>(ay + template_window_half_size_, ax);
// copy class member to local variable for optimization
int search_window_size = search_window_size_;
for (int d = 0; d < temporal_window_size_; d++) {
Mat cur_extended_src = extended_srcs_[d];
Array2d<int> cur_dist_sums = dist_sums[d];
Array2d<int> cur_col_dist_sums = col_dist_sums[first_col_num][d];
Array2d<int> cur_up_col_dist_sums = up_col_dist_sums[j][d];
for (int y = 0; y < search_window_size; y++) {
int* dist_sums_row = cur_dist_sums.row_ptr(y);
int* col_dist_sums_row = cur_col_dist_sums.row_ptr(y);
int* up_col_dist_sums_row = cur_up_col_dist_sums.row_ptr(y);
const T* b_up_ptr =
cur_extended_src.ptr<T>(start_by - template_window_half_size_ - 1 + y);
const T* b_down_ptr =
cur_extended_src.ptr<T>(start_by + template_window_half_size_ + y);
for (int x = 0; x < search_window_size; x++) {
dist_sums_row[x] -= col_dist_sums_row[x];
col_dist_sums_row[x] = up_col_dist_sums_row[x] +
calcUpDownDist(
a_up, a_down,
b_up_ptr[start_bx + x], b_down_ptr[start_bx + x]
);
dist_sums_row[x] += col_dist_sums_row[x];
up_col_dist_sums_row[x] = col_dist_sums_row[x];
}
}
}
}
first_col_num = (first_col_num + 1) % template_window_size_;
}
// calc weights
int weights_sum = 0;
int estimation[3];
for (size_t channel_num = 0; channel_num < sizeof(T); channel_num++) {
estimation[channel_num] = 0;
}
for (int d = 0; d < temporal_window_size_; d++) {
const Mat& esrc_d = extended_srcs_[d];
for (int y = 0; y < search_window_size_; y++) {
const T* cur_row_ptr = esrc_d.ptr<T>(border_size_ + search_window_y + y);
int* dist_sums_row = dist_sums.row_ptr(d, y);
for (int x = 0; x < search_window_size_; x++) {
int almostAvgDist =
dist_sums_row[x] >> almost_template_window_size_sq_bin_shift;
int weight = almost_dist2weight[almostAvgDist];
weights_sum += weight;
T p = cur_row_ptr[border_size_ + search_window_x + x];
incWithWeight(estimation, weight, p);
}
}
}
for (size_t channel_num = 0; channel_num < sizeof(T); channel_num++)
estimation[channel_num] = ((unsigned)estimation[channel_num] + weights_sum / 2) / weights_sum;
dst_.at<T>(i,j) = saturateCastFromArray<T>(estimation);
}
}
}
template <class T>
inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForFirstElementInRow(
int i,
Array3d<int>& dist_sums,
Array4d<int>& col_dist_sums,
Array4d<int>& up_col_dist_sums) const
{
int j = 0;
for (int d = 0; d < temporal_window_size_; d++) {
Mat cur_extended_src = extended_srcs_[d];
for (int y = 0; y < search_window_size_; y++) {
for (int x = 0; x < search_window_size_; x++) {
dist_sums[d][y][x] = 0;
for (int tx = 0; tx < template_window_size_; tx++) {
col_dist_sums[tx][d][y][x] = 0;
}
int start_y = i + y - search_window_half_size_;
int start_x = j + x - search_window_half_size_;
int* dist_sums_ptr = &dist_sums[d][y][x];
int* col_dist_sums_ptr = &col_dist_sums[0][d][y][x];
int col_dist_sums_step = col_dist_sums.step_size(0);
for (int tx = -template_window_half_size_; tx <= template_window_half_size_; tx++) {
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++) {
int dist = calcDist<T>(
main_extended_src_.at<T>(
border_size_ + i + ty, border_size_ + j + tx),
cur_extended_src.at<T>(
border_size_ + start_y + ty, border_size_ + start_x + tx)
);
*dist_sums_ptr += dist;
*col_dist_sums_ptr += dist;
}
col_dist_sums_ptr += col_dist_sums_step;
}
up_col_dist_sums[j][d][y][x] = col_dist_sums[template_window_size_ - 1][d][y][x];
}
}
}
}
template <class T>
inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForElementInFirstRow(
int i,
int j,
int first_col_num,
Array3d<int>& dist_sums,
Array4d<int>& col_dist_sums,
Array4d<int>& up_col_dist_sums) const
{
int ay = border_size_ + i;
int ax = border_size_ + j + template_window_half_size_;
int start_by = border_size_ + i - search_window_half_size_;
int start_bx = border_size_ + j - search_window_half_size_ + template_window_half_size_;
int new_last_col_num = first_col_num;
for (int d = 0; d < temporal_window_size_; d++) {
Mat cur_extended_src = extended_srcs_[d];
for (int y = 0; y < search_window_size_; y++) {
for (int x = 0; x < search_window_size_; x++) {
dist_sums[d][y][x] -= col_dist_sums[first_col_num][d][y][x];
col_dist_sums[new_last_col_num][d][y][x] = 0;
int by = start_by + y;
int bx = start_bx + x;
int* col_dist_sums_ptr = &col_dist_sums[new_last_col_num][d][y][x];
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++) {
*col_dist_sums_ptr +=
calcDist<T>(
main_extended_src_.at<T>(ay + ty, ax),
cur_extended_src.at<T>(by + ty, bx)
);
}
dist_sums[d][y][x] += col_dist_sums[new_last_col_num][d][y][x];
up_col_dist_sums[j][d][y][x] = col_dist_sums[new_last_col_num][d][y][x];
}
}
}
}
#endif

@ -1,817 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective icvers.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* ////////////////////////////////////////////////////////////////////
//
// Geometrical transforms on images and matrices: rotation, zoom etc.
//
// */
#include "precomp.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/photo/photo_c.h"
#undef CV_MAT_ELEM_PTR_FAST
#define CV_MAT_ELEM_PTR_FAST( mat, row, col, pix_size ) \
((mat).data.ptr + (size_t)(mat).step*(row) + (pix_size)*(col))
inline float
min4( float a, float b, float c, float d )
{
a = MIN(a,b);
c = MIN(c,d);
return MIN(a,c);
}
#define CV_MAT_3COLOR_ELEM(img,type,y,x,c) CV_MAT_ELEM(img,type,y,(x)*3+(c))
#define KNOWN 0 //known outside narrow band
#define BAND 1 //narrow band (known)
#define INSIDE 2 //unknown
#define CHANGE 3 //servise
typedef struct CvHeapElem
{
float T;
int i,j;
struct CvHeapElem* prev;
struct CvHeapElem* next;
}
CvHeapElem;
class CvPriorityQueueFloat
{
protected:
CvHeapElem *mem,*empty,*head,*tail;
int num,in;
public:
bool Init( const CvMat* f )
{
int i,j;
for( i = num = 0; i < f->rows; i++ )
{
for( j = 0; j < f->cols; j++ )
num += CV_MAT_ELEM(*f,uchar,i,j)!=0;
}
if (num<=0) return false;
mem = (CvHeapElem*)cvAlloc((num+2)*sizeof(CvHeapElem));
if (mem==NULL) return false;
head = mem;
head->i = head->j = -1;
head->prev = NULL;
head->next = mem+1;
head->T = -FLT_MAX;
empty = mem+1;
for (i=1; i<=num; i++) {
mem[i].prev = mem+i-1;
mem[i].next = mem+i+1;
mem[i].i = -1;
mem[i].T = FLT_MAX;
}
tail = mem+i;
tail->i = tail->j = -1;
tail->prev = mem+i-1;
tail->next = NULL;
tail->T = FLT_MAX;
return true;
}
bool Add(const CvMat* f) {
int i,j;
for (i=0; i<f->rows; i++) {
for (j=0; j<f->cols; j++) {
if (CV_MAT_ELEM(*f,uchar,i,j)!=0) {
if (!Push(i,j,0)) return false;
}
}
}
return true;
}
bool Push(int i, int j, float T) {
CvHeapElem *tmp=empty,*add=empty;
if (empty==tail) return false;
while (tmp->prev->T>T) tmp = tmp->prev;
if (tmp!=empty) {
add->prev->next = add->next;
add->next->prev = add->prev;
empty = add->next;
add->prev = tmp->prev;
add->next = tmp;
add->prev->next = add;
add->next->prev = add;
} else {
empty = empty->next;
}
add->i = i;
add->j = j;
add->T = T;
in++;
// printf("push i %3d j %3d T %12.4e in %4d\n",i,j,T,in);
return true;
}
bool Pop(int *i, int *j) {
CvHeapElem *tmp=head->next;
if (empty==tmp) return false;
*i = tmp->i;
*j = tmp->j;
tmp->prev->next = tmp->next;
tmp->next->prev = tmp->prev;
tmp->prev = empty->prev;
tmp->next = empty;
tmp->prev->next = tmp;
tmp->next->prev = tmp;
empty = tmp;
in--;
// printf("pop i %3d j %3d T %12.4e in %4d\n",tmp->i,tmp->j,tmp->T,in);
return true;
}
bool Pop(int *i, int *j, float *T) {
CvHeapElem *tmp=head->next;
if (empty==tmp) return false;
*i = tmp->i;
*j = tmp->j;
*T = tmp->T;
tmp->prev->next = tmp->next;
tmp->next->prev = tmp->prev;
tmp->prev = empty->prev;
tmp->next = empty;
tmp->prev->next = tmp;
tmp->next->prev = tmp;
empty = tmp;
in--;
// printf("pop i %3d j %3d T %12.4e in %4d\n",tmp->i,tmp->j,tmp->T,in);
return true;
}
CvPriorityQueueFloat(void) {
num=in=0;
mem=empty=head=tail=NULL;
}
~CvPriorityQueueFloat(void)
{
cvFree( &mem );
}
};
inline float VectorScalMult(CvPoint2D32f v1,CvPoint2D32f v2) {
return v1.x*v2.x+v1.y*v2.y;
}
inline float VectorLength(CvPoint2D32f v1) {
return v1.x*v1.x+v1.y*v1.y;
}
///////////////////////////////////////////////////////////////////////////////////////////
//HEAP::iterator Heap_Iterator;
//HEAP Heap;
static float FastMarching_solve(int i1,int j1,int i2,int j2, const CvMat* f, const CvMat* t)
{
double sol, a11, a22, m12;
a11=CV_MAT_ELEM(*t,float,i1,j1);
a22=CV_MAT_ELEM(*t,float,i2,j2);
m12=MIN(a11,a22);
if( CV_MAT_ELEM(*f,uchar,i1,j1) != INSIDE )
if( CV_MAT_ELEM(*f,uchar,i2,j2) != INSIDE )
if( fabs(a11-a22) >= 1.0 )
sol = 1+m12;
else
sol = (a11+a22+sqrt((double)(2-(a11-a22)*(a11-a22))))*0.5;
else
sol = 1+a11;
else if( CV_MAT_ELEM(*f,uchar,i2,j2) != INSIDE )
sol = 1+a22;
else
sol = 1+m12;
return (float)sol;
}
/////////////////////////////////////////////////////////////////////////////////////
static void
icvCalcFMM(const CvMat *f, CvMat *t, CvPriorityQueueFloat *Heap, bool negate) {
int i, j, ii = 0, jj = 0, q;
float dist;
while (Heap->Pop(&ii,&jj)) {
unsigned known=(negate)?CHANGE:KNOWN;
CV_MAT_ELEM(*f,uchar,ii,jj) = (uchar)known;
for (q=0; q<4; q++) {
i=0; j=0;
if (q==0) {i=ii-1; j=jj;}
else if(q==1) {i=ii; j=jj-1;}
else if(q==2) {i=ii+1; j=jj;}
else {i=ii; j=jj+1;}
if ((i<=0)||(j<=0)||(i>f->rows)||(j>f->cols)) continue;
if (CV_MAT_ELEM(*f,uchar,i,j)==INSIDE) {
dist = min4(FastMarching_solve(i-1,j,i,j-1,f,t),
FastMarching_solve(i+1,j,i,j-1,f,t),
FastMarching_solve(i-1,j,i,j+1,f,t),
FastMarching_solve(i+1,j,i,j+1,f,t));
CV_MAT_ELEM(*t,float,i,j) = dist;
CV_MAT_ELEM(*f,uchar,i,j) = BAND;
Heap->Push(i,j,dist);
}
}
}
if (negate) {
for (i=0; i<f->rows; i++) {
for(j=0; j<f->cols; j++) {
if (CV_MAT_ELEM(*f,uchar,i,j) == CHANGE) {
CV_MAT_ELEM(*f,uchar,i,j) = KNOWN;
CV_MAT_ELEM(*t,float,i,j) = -CV_MAT_ELEM(*t,float,i,j);
}
}
}
}
}
static void
icvTeleaInpaintFMM(const CvMat *f, CvMat *t, CvMat *out, int range, CvPriorityQueueFloat *Heap ) {
int i = 0, j = 0, ii = 0, jj = 0, k, l, q, color = 0;
float dist;
if (CV_MAT_CN(out->type)==3) {
while (Heap->Pop(&ii,&jj)) {
CV_MAT_ELEM(*f,uchar,ii,jj) = KNOWN;
for(q=0; q<4; q++) {
if (q==0) {i=ii-1; j=jj;}
else if(q==1) {i=ii; j=jj-1;}
else if(q==2) {i=ii+1; j=jj;}
else if(q==3) {i=ii; j=jj+1;}
if ((i<=1)||(j<=1)||(i>t->rows-1)||(j>t->cols-1)) continue;
if (CV_MAT_ELEM(*f,uchar,i,j)==INSIDE) {
dist = min4(FastMarching_solve(i-1,j,i,j-1,f,t),
FastMarching_solve(i+1,j,i,j-1,f,t),
FastMarching_solve(i-1,j,i,j+1,f,t),
FastMarching_solve(i+1,j,i,j+1,f,t));
CV_MAT_ELEM(*t,float,i,j) = dist;
for (color=0; color<=2; color++) {
CvPoint2D32f gradI,gradT,r;
float Ia=0,Jx=0,Jy=0,s=1.0e-20f,w,dst,lev,dir,sat;
if (CV_MAT_ELEM(*f,uchar,i,j+1)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,i,j-1)!=INSIDE) {
gradT.x=(float)((CV_MAT_ELEM(*t,float,i,j+1)-CV_MAT_ELEM(*t,float,i,j-1)))*0.5f;
} else {
gradT.x=(float)((CV_MAT_ELEM(*t,float,i,j+1)-CV_MAT_ELEM(*t,float,i,j)));
}
} else {
if (CV_MAT_ELEM(*f,uchar,i,j-1)!=INSIDE) {
gradT.x=(float)((CV_MAT_ELEM(*t,float,i,j)-CV_MAT_ELEM(*t,float,i,j-1)));
} else {
gradT.x=0;
}
}
if (CV_MAT_ELEM(*f,uchar,i+1,j)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,i-1,j)!=INSIDE) {
gradT.y=(float)((CV_MAT_ELEM(*t,float,i+1,j)-CV_MAT_ELEM(*t,float,i-1,j)))*0.5f;
} else {
gradT.y=(float)((CV_MAT_ELEM(*t,float,i+1,j)-CV_MAT_ELEM(*t,float,i,j)));
}
} else {
if (CV_MAT_ELEM(*f,uchar,i-1,j)!=INSIDE) {
gradT.y=(float)((CV_MAT_ELEM(*t,float,i,j)-CV_MAT_ELEM(*t,float,i-1,j)));
} else {
gradT.y=0;
}
}
for (k=i-range; k<=i+range; k++) {
int km=k-1+(k==1),kp=k-1-(k==t->rows-2);
for (l=j-range; l<=j+range; l++) {
int lm=l-1+(l==1),lp=l-1-(l==t->cols-2);
if (k>0&&l>0&&k<t->rows-1&&l<t->cols-1) {
if ((CV_MAT_ELEM(*f,uchar,k,l)!=INSIDE)&&
((l-j)*(l-j)+(k-i)*(k-i)<=range*range)) {
r.y = (float)(i-k);
r.x = (float)(j-l);
dst = (float)(1./(VectorLength(r)*sqrt((double)VectorLength(r))));
lev = (float)(1./(1+fabs(CV_MAT_ELEM(*t,float,k,l)-CV_MAT_ELEM(*t,float,i,j))));
dir=VectorScalMult(r,gradT);
if (fabs(dir)<=0.01) dir=0.000001f;
w = (float)fabs(dst*lev*dir);
if (CV_MAT_ELEM(*f,uchar,k,l+1)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) {
gradI.x=(float)((CV_MAT_3COLOR_ELEM(*out,uchar,km,lp+1,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm-1,color)))*2.0f;
} else {
gradI.x=(float)((CV_MAT_3COLOR_ELEM(*out,uchar,km,lp+1,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color)));
}
} else {
if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) {
gradI.x=(float)((CV_MAT_3COLOR_ELEM(*out,uchar,km,lp,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm-1,color)));
} else {
gradI.x=0;
}
}
if (CV_MAT_ELEM(*f,uchar,k+1,l)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) {
gradI.y=(float)((CV_MAT_3COLOR_ELEM(*out,uchar,kp+1,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km-1,lm,color)))*2.0f;
} else {
gradI.y=(float)((CV_MAT_3COLOR_ELEM(*out,uchar,kp+1,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color)));
}
} else {
if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) {
gradI.y=(float)((CV_MAT_3COLOR_ELEM(*out,uchar,kp,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km-1,lm,color)));
} else {
gradI.y=0;
}
}
Ia += (float)w * (float)(CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color));
Jx -= (float)w * (float)(gradI.x*r.x);
Jy -= (float)w * (float)(gradI.y*r.y);
s += w;
}
}
}
}
sat = (float)((Ia/s+(Jx+Jy)/(sqrt(Jx*Jx+Jy*Jy)+1.0e-20f)+0.5f));
{
CV_MAT_3COLOR_ELEM(*out,uchar,i-1,j-1,color) = cv::saturate_cast<uchar>(sat);
}
}
CV_MAT_ELEM(*f,uchar,i,j) = BAND;
Heap->Push(i,j,dist);
}
}
}
} else if (CV_MAT_CN(out->type)==1) {
while (Heap->Pop(&ii,&jj)) {
CV_MAT_ELEM(*f,uchar,ii,jj) = KNOWN;
for(q=0; q<4; q++) {
if (q==0) {i=ii-1; j=jj;}
else if(q==1) {i=ii; j=jj-1;}
else if(q==2) {i=ii+1; j=jj;}
else if(q==3) {i=ii; j=jj+1;}
if ((i<=1)||(j<=1)||(i>t->rows-1)||(j>t->cols-1)) continue;
if (CV_MAT_ELEM(*f,uchar,i,j)==INSIDE) {
dist = min4(FastMarching_solve(i-1,j,i,j-1,f,t),
FastMarching_solve(i+1,j,i,j-1,f,t),
FastMarching_solve(i-1,j,i,j+1,f,t),
FastMarching_solve(i+1,j,i,j+1,f,t));
CV_MAT_ELEM(*t,float,i,j) = dist;
for (color=0; color<=0; color++) {
CvPoint2D32f gradI,gradT,r;
float Ia=0,Jx=0,Jy=0,s=1.0e-20f,w,dst,lev,dir,sat;
if (CV_MAT_ELEM(*f,uchar,i,j+1)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,i,j-1)!=INSIDE) {
gradT.x=(float)((CV_MAT_ELEM(*t,float,i,j+1)-CV_MAT_ELEM(*t,float,i,j-1)))*0.5f;
} else {
gradT.x=(float)((CV_MAT_ELEM(*t,float,i,j+1)-CV_MAT_ELEM(*t,float,i,j)));
}
} else {
if (CV_MAT_ELEM(*f,uchar,i,j-1)!=INSIDE) {
gradT.x=(float)((CV_MAT_ELEM(*t,float,i,j)-CV_MAT_ELEM(*t,float,i,j-1)));
} else {
gradT.x=0;
}
}
if (CV_MAT_ELEM(*f,uchar,i+1,j)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,i-1,j)!=INSIDE) {
gradT.y=(float)((CV_MAT_ELEM(*t,float,i+1,j)-CV_MAT_ELEM(*t,float,i-1,j)))*0.5f;
} else {
gradT.y=(float)((CV_MAT_ELEM(*t,float,i+1,j)-CV_MAT_ELEM(*t,float,i,j)));
}
} else {
if (CV_MAT_ELEM(*f,uchar,i-1,j)!=INSIDE) {
gradT.y=(float)((CV_MAT_ELEM(*t,float,i,j)-CV_MAT_ELEM(*t,float,i-1,j)));
} else {
gradT.y=0;
}
}
for (k=i-range; k<=i+range; k++) {
int km=k-1+(k==1),kp=k-1-(k==t->rows-2);
for (l=j-range; l<=j+range; l++) {
int lm=l-1+(l==1),lp=l-1-(l==t->cols-2);
if (k>0&&l>0&&k<t->rows-1&&l<t->cols-1) {
if ((CV_MAT_ELEM(*f,uchar,k,l)!=INSIDE)&&
((l-j)*(l-j)+(k-i)*(k-i)<=range*range)) {
r.y = (float)(i-k);
r.x = (float)(j-l);
dst = (float)(1./(VectorLength(r)*sqrt(VectorLength(r))));
lev = (float)(1./(1+fabs(CV_MAT_ELEM(*t,float,k,l)-CV_MAT_ELEM(*t,float,i,j))));
dir=VectorScalMult(r,gradT);
if (fabs(dir)<=0.01) dir=0.000001f;
w = (float)fabs(dst*lev*dir);
if (CV_MAT_ELEM(*f,uchar,k,l+1)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) {
gradI.x=(float)((CV_MAT_ELEM(*out,uchar,km,lp+1)-CV_MAT_ELEM(*out,uchar,km,lm-1)))*2.0f;
} else {
gradI.x=(float)((CV_MAT_ELEM(*out,uchar,km,lp+1)-CV_MAT_ELEM(*out,uchar,km,lm)));
}
} else {
if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) {
gradI.x=(float)((CV_MAT_ELEM(*out,uchar,km,lp)-CV_MAT_ELEM(*out,uchar,km,lm-1)));
} else {
gradI.x=0;
}
}
if (CV_MAT_ELEM(*f,uchar,k+1,l)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) {
gradI.y=(float)((CV_MAT_ELEM(*out,uchar,kp+1,lm)-CV_MAT_ELEM(*out,uchar,km-1,lm)))*2.0f;
} else {
gradI.y=(float)((CV_MAT_ELEM(*out,uchar,kp+1,lm)-CV_MAT_ELEM(*out,uchar,km,lm)));
}
} else {
if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) {
gradI.y=(float)((CV_MAT_ELEM(*out,uchar,kp,lm)-CV_MAT_ELEM(*out,uchar,km-1,lm)));
} else {
gradI.y=0;
}
}
Ia += (float)w * (float)(CV_MAT_ELEM(*out,uchar,km,lm));
Jx -= (float)w * (float)(gradI.x*r.x);
Jy -= (float)w * (float)(gradI.y*r.y);
s += w;
}
}
}
}
sat = (float)((Ia/s+(Jx+Jy)/(sqrt(Jx*Jx+Jy*Jy)+1.0e-20f)+0.5f));
{
CV_MAT_ELEM(*out,uchar,i-1,j-1) = cv::saturate_cast<uchar>(sat);
}
}
CV_MAT_ELEM(*f,uchar,i,j) = BAND;
Heap->Push(i,j,dist);
}
}
}
}
}
static void
icvNSInpaintFMM(const CvMat *f, CvMat *t, CvMat *out, int range, CvPriorityQueueFloat *Heap) {
int i = 0, j = 0, ii = 0, jj = 0, k, l, q, color = 0;
float dist;
if (CV_MAT_CN(out->type)==3) {
while (Heap->Pop(&ii,&jj)) {
CV_MAT_ELEM(*f,uchar,ii,jj) = KNOWN;
for(q=0; q<4; q++) {
if (q==0) {i=ii-1; j=jj;}
else if(q==1) {i=ii; j=jj-1;}
else if(q==2) {i=ii+1; j=jj;}
else if(q==3) {i=ii; j=jj+1;}
if ((i<=1)||(j<=1)||(i>t->rows-1)||(j>t->cols-1)) continue;
if (CV_MAT_ELEM(*f,uchar,i,j)==INSIDE) {
dist = min4(FastMarching_solve(i-1,j,i,j-1,f,t),
FastMarching_solve(i+1,j,i,j-1,f,t),
FastMarching_solve(i-1,j,i,j+1,f,t),
FastMarching_solve(i+1,j,i,j+1,f,t));
CV_MAT_ELEM(*t,float,i,j) = dist;
for (color=0; color<=2; color++) {
CvPoint2D32f gradI,r;
float Ia=0,s=1.0e-20f,w,dst,dir;
for (k=i-range; k<=i+range; k++) {
int km=k-1+(k==1),kp=k-1-(k==f->rows-2);
for (l=j-range; l<=j+range; l++) {
int lm=l-1+(l==1),lp=l-1-(l==f->cols-2);
if (k>0&&l>0&&k<f->rows-1&&l<f->cols-1) {
if ((CV_MAT_ELEM(*f,uchar,k,l)!=INSIDE)&&
((l-j)*(l-j)+(k-i)*(k-i)<=range*range)) {
r.y=(float)(k-i);
r.x=(float)(l-j);
dst = 1/(VectorLength(r)*VectorLength(r)+1);
if (CV_MAT_ELEM(*f,uchar,k+1,l)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) {
gradI.x=(float)(abs(CV_MAT_3COLOR_ELEM(*out,uchar,kp+1,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,kp,lm,color))+
abs(CV_MAT_3COLOR_ELEM(*out,uchar,kp,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km-1,lm,color)));
} else {
gradI.x=(float)(abs(CV_MAT_3COLOR_ELEM(*out,uchar,kp+1,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,kp,lm,color)))*2.0f;
}
} else {
if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) {
gradI.x=(float)(abs(CV_MAT_3COLOR_ELEM(*out,uchar,kp,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km-1,lm,color)))*2.0f;
} else {
gradI.x=0;
}
}
if (CV_MAT_ELEM(*f,uchar,k,l+1)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) {
gradI.y=(float)(abs(CV_MAT_3COLOR_ELEM(*out,uchar,km,lp+1,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color))+
abs(CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm-1,color)));
} else {
gradI.y=(float)(abs(CV_MAT_3COLOR_ELEM(*out,uchar,km,lp+1,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color)))*2.0f;
}
} else {
if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) {
gradI.y=(float)(abs(CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm-1,color)))*2.0f;
} else {
gradI.y=0;
}
}
gradI.x=-gradI.x;
dir=VectorScalMult(r,gradI);
if (fabs(dir)<=0.01) {
dir=0.000001f;
} else {
dir = (float)fabs(VectorScalMult(r,gradI)/sqrt(VectorLength(r)*VectorLength(gradI)));
}
w = dst*dir;
Ia += (float)w * (float)(CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color));
s += w;
}
}
}
}
CV_MAT_3COLOR_ELEM(*out,uchar,i-1,j-1,color) = cv::saturate_cast<uchar>((double)Ia/s);
}
CV_MAT_ELEM(*f,uchar,i,j) = BAND;
Heap->Push(i,j,dist);
}
}
}
} else if (CV_MAT_CN(out->type)==1) {
while (Heap->Pop(&ii,&jj)) {
CV_MAT_ELEM(*f,uchar,ii,jj) = KNOWN;
for(q=0; q<4; q++) {
if (q==0) {i=ii-1; j=jj;}
else if(q==1) {i=ii; j=jj-1;}
else if(q==2) {i=ii+1; j=jj;}
else if(q==3) {i=ii; j=jj+1;}
if ((i<=1)||(j<=1)||(i>t->rows-1)||(j>t->cols-1)) continue;
if (CV_MAT_ELEM(*f,uchar,i,j)==INSIDE) {
dist = min4(FastMarching_solve(i-1,j,i,j-1,f,t),
FastMarching_solve(i+1,j,i,j-1,f,t),
FastMarching_solve(i-1,j,i,j+1,f,t),
FastMarching_solve(i+1,j,i,j+1,f,t));
CV_MAT_ELEM(*t,float,i,j) = dist;
{
CvPoint2D32f gradI,r;
float Ia=0,s=1.0e-20f,w,dst,dir;
for (k=i-range; k<=i+range; k++) {
int km=k-1+(k==1),kp=k-1-(k==t->rows-2);
for (l=j-range; l<=j+range; l++) {
int lm=l-1+(l==1),lp=l-1-(l==t->cols-2);
if (k>0&&l>0&&k<t->rows-1&&l<t->cols-1) {
if ((CV_MAT_ELEM(*f,uchar,k,l)!=INSIDE)&&
((l-j)*(l-j)+(k-i)*(k-i)<=range*range)) {
r.y=(float)(i-k);
r.x=(float)(j-l);
dst = 1/(VectorLength(r)*VectorLength(r)+1);
if (CV_MAT_ELEM(*f,uchar,k+1,l)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) {
gradI.x=(float)(abs(CV_MAT_ELEM(*out,uchar,kp+1,lm)-CV_MAT_ELEM(*out,uchar,kp,lm))+
abs(CV_MAT_ELEM(*out,uchar,kp,lm)-CV_MAT_ELEM(*out,uchar,km-1,lm)));
} else {
gradI.x=(float)(abs(CV_MAT_ELEM(*out,uchar,kp+1,lm)-CV_MAT_ELEM(*out,uchar,kp,lm)))*2.0f;
}
} else {
if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) {
gradI.x=(float)(abs(CV_MAT_ELEM(*out,uchar,kp,lm)-CV_MAT_ELEM(*out,uchar,km-1,lm)))*2.0f;
} else {
gradI.x=0;
}
}
if (CV_MAT_ELEM(*f,uchar,k,l+1)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) {
gradI.y=(float)(abs(CV_MAT_ELEM(*out,uchar,km,lp+1)-CV_MAT_ELEM(*out,uchar,km,lm))+
abs(CV_MAT_ELEM(*out,uchar,km,lm)-CV_MAT_ELEM(*out,uchar,km,lm-1)));
} else {
gradI.y=(float)(abs(CV_MAT_ELEM(*out,uchar,km,lp+1)-CV_MAT_ELEM(*out,uchar,km,lm)))*2.0f;
}
} else {
if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) {
gradI.y=(float)(abs(CV_MAT_ELEM(*out,uchar,km,lm)-CV_MAT_ELEM(*out,uchar,km,lm-1)))*2.0f;
} else {
gradI.y=0;
}
}
gradI.x=-gradI.x;
dir=VectorScalMult(r,gradI);
if (fabs(dir)<=0.01) {
dir=0.000001f;
} else {
dir = (float)fabs(VectorScalMult(r,gradI)/sqrt(VectorLength(r)*VectorLength(gradI)));
}
w = dst*dir;
Ia += (float)w * (float)(CV_MAT_ELEM(*out,uchar,km,lm));
s += w;
}
}
}
}
CV_MAT_ELEM(*out,uchar,i-1,j-1) = cv::saturate_cast<uchar>((double)Ia/s);
}
CV_MAT_ELEM(*f,uchar,i,j) = BAND;
Heap->Push(i,j,dist);
}
}
}
}
}
#define SET_BORDER1_C1(image,type,value) {\
int i,j;\
for(j=0; j<image->cols; j++) {\
CV_MAT_ELEM(*image,type,0,j) = value;\
}\
for (i=1; i<image->rows-1; i++) {\
CV_MAT_ELEM(*image,type,i,0) = CV_MAT_ELEM(*image,type,i,image->cols-1) = value;\
}\
for(j=0; j<image->cols; j++) {\
CV_MAT_ELEM(*image,type,erows-1,j) = value;\
}\
}
#define COPY_MASK_BORDER1_C1(src,dst,type) {\
int i,j;\
for (i=0; i<src->rows; i++) {\
for(j=0; j<src->cols; j++) {\
if (CV_MAT_ELEM(*src,type,i,j)!=0)\
CV_MAT_ELEM(*dst,type,i+1,j+1) = INSIDE;\
}\
}\
}
namespace cv {
template<> void cv::Ptr<IplConvKernel>::delete_obj()
{
cvReleaseStructuringElement(&obj);
}
}
void
cvInpaint( const CvArr* _input_img, const CvArr* _inpaint_mask, CvArr* _output_img,
double inpaintRange, int flags )
{
cv::Ptr<CvMat> mask, band, f, t, out;
cv::Ptr<CvPriorityQueueFloat> Heap, Out;
cv::Ptr<IplConvKernel> el_cross, el_range;
CvMat input_hdr, mask_hdr, output_hdr;
CvMat* input_img, *inpaint_mask, *output_img;
int range=cvRound(inpaintRange);
int erows, ecols;
input_img = cvGetMat( _input_img, &input_hdr );
inpaint_mask = cvGetMat( _inpaint_mask, &mask_hdr );
output_img = cvGetMat( _output_img, &output_hdr );
if( !CV_ARE_SIZES_EQ(input_img,output_img) || !CV_ARE_SIZES_EQ(input_img,inpaint_mask))
CV_Error( CV_StsUnmatchedSizes, "All the input and output images must have the same size" );
if( (CV_MAT_TYPE(input_img->type) != CV_8UC1 &&
CV_MAT_TYPE(input_img->type) != CV_8UC3) ||
!CV_ARE_TYPES_EQ(input_img,output_img) )
CV_Error( CV_StsUnsupportedFormat,
"Only 8-bit 1-channel and 3-channel input/output images are supported" );
if( CV_MAT_TYPE(inpaint_mask->type) != CV_8UC1 )
CV_Error( CV_StsUnsupportedFormat, "The mask must be 8-bit 1-channel image" );
range = MAX(range,1);
range = MIN(range,100);
ecols = input_img->cols + 2;
erows = input_img->rows + 2;
f = cvCreateMat(erows, ecols, CV_8UC1);
t = cvCreateMat(erows, ecols, CV_32FC1);
band = cvCreateMat(erows, ecols, CV_8UC1);
mask = cvCreateMat(erows, ecols, CV_8UC1);
el_cross = cvCreateStructuringElementEx(3,3,1,1,CV_SHAPE_CROSS,NULL);
cvCopy( input_img, output_img );
cvSet(mask,cvScalar(KNOWN,0,0,0));
COPY_MASK_BORDER1_C1(inpaint_mask,mask,uchar);
SET_BORDER1_C1(mask,uchar,0);
cvSet(f,cvScalar(KNOWN,0,0,0));
cvSet(t,cvScalar(1.0e6f,0,0,0));
cvDilate(mask,band,el_cross,1); // image with narrow band
Heap=new CvPriorityQueueFloat;
if (!Heap->Init(band))
return;
cvSub(band,mask,band,NULL);
SET_BORDER1_C1(band,uchar,0);
if (!Heap->Add(band))
return;
cvSet(f,cvScalar(BAND,0,0,0),band);
cvSet(f,cvScalar(INSIDE,0,0,0),mask);
cvSet(t,cvScalar(0,0,0,0),band);
if( flags == cv::INPAINT_TELEA )
{
out = cvCreateMat(erows, ecols, CV_8UC1);
el_range = cvCreateStructuringElementEx(2*range+1,2*range+1,
range,range,CV_SHAPE_RECT,NULL);
cvDilate(mask,out,el_range,1);
cvSub(out,mask,out,NULL);
Out=new CvPriorityQueueFloat;
if (!Out->Init(out))
return;
if (!Out->Add(band))
return;
cvSub(out,band,out,NULL);
SET_BORDER1_C1(out,uchar,0);
icvCalcFMM(out,t,Out,true);
icvTeleaInpaintFMM(mask,t,output_img,range,Heap);
}
else if (flags == cv::INPAINT_NS) {
icvNSInpaintFMM(mask,t,output_img,range,Heap);
} else {
CV_Error( cv::Error::StsBadArg, "The flags argument must be one of CV_INPAINT_TELEA or CV_INPAINT_NS" );
}
}
void cv::inpaint( InputArray _src, InputArray _mask, OutputArray _dst,
double inpaintRange, int flags )
{
Mat src = _src.getMat(), mask = _mask.getMat();
_dst.create( src.size(), src.type() );
CvMat c_src = src, c_mask = mask, c_dst = _dst.getMat();
cvInpaint( &c_src, &c_mask, &c_dst, inpaintRange, flags );
}

@ -0,0 +1,45 @@
#include "opencv2/opencv.hpp"
namespace cv {
namespace optim {
class Solver : public Algorithm /* Algorithm is base OpenCV class */
{
class Function
{
public:
virtual ~Function() {}
virtual double calc(InputArray args) const = 0;
virtual double calc(InputArgs, OutputArray grad) const = 0;
};
// could be reused for all the generic algorithms like downhill simplex.
virtual void solve(InputArray x0, OutputArray result) const = 0;
virtual void setTermCriteria(const TermCriteria& criteria) = 0;
virtual TermCriteria getTermCriteria() = 0;
// more detailed API to be defined later ...
};
class LPSolver : public Solver
{
public:
virtual void solve(InputArray coeffs, InputArray constraints, OutputArray result) const = 0;
// ...
};
Ptr<LPSolver> createLPSimplexSolver();
}}
/*===============
Hill climbing solver is more generic one:*/
/*
class DownhillSolver : public Solver
{
public:
// various setters and getters, if needed
};
Ptr<DownhillSolver> createDownhillSolver(const Ptr<Solver::Function>& func);*/

@ -1,44 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/* End of file. */

@ -1,53 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_PRECOMP_H__
#define __OPENCV_PRECOMP_H__
#include "opencv2/photo.hpp"
#include "opencv2/core/private.hpp"
#ifdef HAVE_TEGRA_OPTIMIZATION
#include "opencv2/photo/photo_tegra.hpp"
#endif
#endif
Loading…
Cancel
Save