converted some more samples to C++

pull/13383/head
Vadim Pisarevsky 15 years ago
parent 4c160acc35
commit f2a3e7e312
  1. 80
      samples/c/inpaint.cpp
  2. 16
      samples/cpp/3calibration.cpp
  3. 0
      samples/cpp/calibration_artificial.cpp
  4. 225
      samples/cpp/camshiftdemo.cpp
  5. 0
      samples/cpp/fitellipse.cpp
  6. 0
      samples/cpp/image.cpp
  7. 78
      samples/cpp/inpaint.cpp
  8. 189
      samples/cpp/lkdemo.cpp
  9. 494
      samples/cpp/stereo_calib.cpp

@ -1,80 +0,0 @@
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include <stdio.h>
IplImage* inpaint_mask = 0;
IplImage* img0 = 0, *img = 0, *inpainted = 0;
CvPoint prev_pt = {-1,-1};
void on_mouse( int event, int x, int y, int flags, void* )
{
if( !img )
return;
if( event == CV_EVENT_LBUTTONUP || !(flags & CV_EVENT_FLAG_LBUTTON) )
prev_pt = cvPoint(-1,-1);
else if( event == CV_EVENT_LBUTTONDOWN )
prev_pt = cvPoint(x,y);
else if( event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON) )
{
CvPoint pt = cvPoint(x,y);
if( prev_pt.x < 0 )
prev_pt = pt;
cvLine( inpaint_mask, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );
cvLine( img, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );
prev_pt = pt;
cvShowImage( "image", img );
}
}
int main( int argc, char** argv )
{
char* filename = argc >= 2 ? argv[1] : (char*)"fruits.jpg";
if( (img0 = cvLoadImage(filename,-1)) == 0 )
return 0;
printf( "Hot keys: \n"
"\tESC - quit the program\n"
"\tr - restore the original image\n"
"\ti or SPACE - run inpainting algorithm\n"
"\t\t(before running it, paint something on the image)\n" );
cvNamedWindow( "image", 1 );
img = cvCloneImage( img0 );
inpainted = cvCloneImage( img0 );
inpaint_mask = cvCreateImage( cvGetSize(img), 8, 1 );
cvZero( inpaint_mask );
cvZero( inpainted );
cvShowImage( "image", img );
cvShowImage( "inpainted image", inpainted );
cvSetMouseCallback( "image", on_mouse, 0 );
for(;;)
{
int c = cvWaitKey(0);
if( (char)c == 27 )
break;
if( (char)c == 'r' )
{
cvZero( inpaint_mask );
cvCopy( img0, img );
cvShowImage( "image", img );
}
if( (char)c == 'i' || (char)c == ' ' )
{
cvNamedWindow( "inpainted image", 1 );
cvInpaint( img, inpaint_mask, inpainted, 3, CV_INPAINT_TELEA );
cvShowImage( "inpainted image", inpainted );
}
}
return 1;
}

@ -17,7 +17,6 @@ enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 };
void help() void help()
{ {
printf( "This is a camera calibration sample that calibrates 3 horizontally placed cameras together.\n" printf( "This is a camera calibration sample that calibrates 3 horizontally placed cameras together.\n"
"Usage: 3calibration\n" "Usage: 3calibration\n"
" -w <board_width> # the number of inner corners per one of board dimension\n" " -w <board_width> # the number of inner corners per one of board dimension\n"
@ -32,20 +31,6 @@ void help()
} }
static void calcChessboardCorners(Size boardSize, float squareSize, vector<Point3f>& corners) static void calcChessboardCorners(Size boardSize, float squareSize, vector<Point3f>& corners)
{ {
corners.resize(0); corners.resize(0);
@ -56,7 +41,6 @@ static void calcChessboardCorners(Size boardSize, float squareSize, vector<Point
float(i*squareSize), 0)); float(i*squareSize), 0));
} }
static bool run3Calibration( vector<vector<Point2f> > imagePoints1, static bool run3Calibration( vector<vector<Point2f> > imagePoints1,
vector<vector<Point2f> > imagePoints2, vector<vector<Point2f> > imagePoints2,
vector<vector<Point2f> > imagePoints3, vector<vector<Point2f> > imagePoints3,

@ -1,24 +1,21 @@
#include <opencv2/video/tracking.hpp> #include <opencv2/video/tracking.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp> #include <opencv2/highgui/highgui.hpp>
#include <iostream> #include <iostream>
#include <ctype.h> #include <ctype.h>
IplImage *image = 0, *hsv = 0, *hue = 0, *mask = 0, *backproject = 0, *histimg = 0; using namespace cv;
CvHistogram *hist = 0; using namespace std;
int backproject_mode = 0; Mat image;
int select_object = 0;
int track_object = 0; bool backprojMode = false;
int show_hist = 1; bool selectObject = false;
CvPoint origin; int trackObject = 0;
CvRect selection; bool showHist = true;
CvRect track_window; Point origin;
CvBox2D track_box; Rect selection;
CvConnectedComp track_comp;
int hdims = 16;
float hranges_arr[] = {0,180};
float* hranges = hranges_arr;
int vmin = 10, vmax = 256, smin = 30; int vmin = 10, vmax = 256, smin = 30;
void onMouse( int event, int x, int y, int flags, void* param ) void onMouse( int event, int x, int y, int flags, void* param )
@ -27,15 +24,10 @@ void onMouse( int event, int x, int y, int flags, void* param )
{ {
selection.x = MIN(x, origin.x); selection.x = MIN(x, origin.x);
selection.y = MIN(y, origin.y); selection.y = MIN(y, origin.y);
selection.width = selection.x + std::abs(x - origin.x); selection.width = std::abs(x - origin.x);
selection.height = selection.y + std::abs(y - origin.y); selection.height = std::abs(y - origin.y);
selection.x = MAX(selection.x, 0); selection &= Rect(0, 0, image.cols, image.rows);
selection.y = MAX(selection.y, 0);
selection.width = MIN(selection.width, image.cols);
selection.height = MIN(selection.height, image.rows);
selection.width -= selection.x;
selection.height -= selection.y;
} }
switch( event ) switch( event )
@ -53,162 +45,131 @@ void onMouse( int event, int x, int y, int flags, void* param )
} }
} }
Scalar hsv2rgb( float hue )
{
int rgb[3], p, sector;
static const int sectorData[][3]=
{{0,2,1}, {1,2,0}, {1,0,2}, {2,0,1}, {2,1,0}, {0,1,2}};
hue *= 0.033333333333333333333333333333333f;
sector = cvFloor(hue);
p = cvRound(255*(hue - sector));
p ^= sector & 1 ? 255 : 0;
rgb[sector_data[sector][0]] = 255;
rgb[sector_data[sector][1]] = 0;
rgb[sector_data[sector][2]] = p;
return cvScalar(rgb[2], rgb[1], rgb[0],0);
}
int main( int argc, char** argv ) int main( int argc, char** argv )
{ {
CvCapture* capture = 0; VideoCapture cap;
Rect trackWindow;
RotatedRect trackBox;
CvConnectedComp trackComp;
int hsize = 16;
float hranges[] = {0,180};
const float* phranges = hranges;
if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0]))) if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0])))
capture = cvCaptureFromCAM( argc == 2 ? argv[1][0] - '0' : 0 ); cap.open(argc == 2 ? argv[1][0] - '0' : 0);
else if( argc == 2 ) else if( argc == 2 )
capture = cvCaptureFromAVI( argv[1] ); cap.open(argv[1]);
if( !capture ) if( !cap.isOpened() )
{ {
fprintf(stderr,"Could not initialize capturing...\n"); cout << "Could not initialize capturing...\n";
return -1; return 0;
} }
printf( "Hot keys: \n" cout << "Hot keys: \n"
"\tESC - quit the program\n" "\tESC - quit the program\n"
"\tc - stop the tracking\n" "\tc - stop the tracking\n"
"\tb - switch to/from backprojection view\n" "\tb - switch to/from backprojection view\n"
"\th - show/hide object histogram\n" "\th - show/hide object histogram\n"
"To initialize tracking, select the object with mouse\n" ); "To initialize tracking, select the object with mouse\n";
namedWindow( "Histogram", 1 );
namedWindow( "CamShift Demo", 1 );
setMouseCallback( "CamShift Demo", onMouse, 0 );
createTrackbar( "Vmin", "CamShift Demo", &vmin, 256, 0 );
createTrackbar( "Vmax", "CamShift Demo", &vmax, 256, 0 );
createTrackbar( "Smin", "CamShift Demo", &smin, 256, 0 );
cvNamedWindow( "Histogram", 1 ); Mat hsv, hue, mask, hist, histimg = Mat::zeros(200, 320, CV_8UC3), backproj;
cvNamedWindow( "CamShiftDemo", 1 );
cvSetMouseCallback( "CamShiftDemo", on_mouse, 0 );
cvCreateTrackbar( "Vmin", "CamShiftDemo", &vmin, 256, 0 );
cvCreateTrackbar( "Vmax", "CamShiftDemo", &vmax, 256, 0 );
cvCreateTrackbar( "Smin", "CamShiftDemo", &smin, 256, 0 );
for(;;) for(;;)
{ {
IplImage* frame = 0; Mat frame;
int i, bin_w, c; cap >> frame;
if( frame.empty() )
frame = cvQueryFrame( capture );
if( !frame )
break; break;
if( !image ) frame.copyTo(image);
{ cvtColor(image, hsv, CV_BGR2HSV);
/* allocate all the buffers */
image = cvCreateImage( cvGetSize(frame), 8, 3 );
image->origin = frame->origin;
hsv = cvCreateImage( cvGetSize(frame), 8, 3 );
hue = cvCreateImage( cvGetSize(frame), 8, 1 );
mask = cvCreateImage( cvGetSize(frame), 8, 1 );
backproject = cvCreateImage( cvGetSize(frame), 8, 1 );
hist = cvCreateHist( 1, &hdims, CV_HIST_ARRAY, &hranges, 1 );
histimg = cvCreateImage( cvSize(320,200), 8, 3 );
cvZero( histimg );
}
cvCopy( frame, image, 0 ); if( trackObject )
cvCvtColor( image, hsv, CV_BGR2HSV );
if( track_object )
{ {
int _vmin = vmin, _vmax = vmax; int _vmin = vmin, _vmax = vmax;
cvInRangeS( hsv, cvScalar(0,smin,MIN(_vmin,_vmax),0), inRange(hsv, Scalar(0, smin, MIN(_vmin,_vmax)),
cvScalar(180,256,MAX(_vmin,_vmax),0), mask ); Scalar(180, 256, MAX(_vmin, _vmax)), mask);
cvSplit( hsv, hue, 0, 0, 0 ); int ch[] = {0, 0};
hue.create(hsv.size(), hsv.depth());
mixChannels(&hsv, 1, &hue, 1, ch, 1);
if( track_object < 0 ) if( trackObject < 0 )
{ {
float max_val = 0.f; Mat roi(hue, selection), maskroi(mask, selection);
cvSetImageROI( hue, selection ); calcHist(&roi, 1, 0, maskroi, hist, 1, &hsize, &phranges);
cvSetImageROI( mask, selection ); normalize(hist, hist, 0, 255, CV_MINMAX);
cvCalcHist( &hue, hist, 0, mask );
cvGetMinMaxHistValue( hist, 0, &max_val, 0, 0 ); trackWindow = selection;
cvConvertScale( hist->bins, hist->bins, max_val ? 255. / max_val : 0., 0 ); trackObject = 1;
cvResetImageROI( hue );
cvResetImageROI( mask ); histimg = Scalar::all(0);
track_window = selection; int binW = histimg.cols / hsize;
track_object = 1; Mat buf(1, hsize, CV_8UC3);
for( int i = 0; i < hsize; i++ )
cvZero( histimg ); buf.at<Vec3b>(i) = Vec3b(saturate_cast<uchar>(i*180./hsize), 255, 255);
bin_w = histimg->width / hdims; cvtColor(buf, buf, CV_HSV2BGR);
for( i = 0; i < hdims; i++ )
for( int i = 0; i < hsize; i++ )
{ {
int val = cvRound( cvGetReal1D(hist->bins,i)*histimg->height/255 ); int val = saturate_cast<int>(hist.at<float>(i)*histimg.rows/255);
CvScalar color = hsv2rgb(i*180.f/hdims); rectangle( histimg, Point(i*binW,histimg.rows),
cvRectangle( histimg, cvPoint(i*bin_w,histimg->height), Point((i+1)*binW,histimg.rows - val),
cvPoint((i+1)*bin_w,histimg->height - val), Scalar(buf.at<Vec3b>(i)), -1, 8 );
color, -1, 8, 0 );
} }
} }
cvCalcBackProject( &hue, backproject, hist ); calcBackProject(&hue, 1, 0, hist, backproj, &phranges);
cvAnd( backproject, mask, backproject, 0 ); backproj &= mask;
cvCamShift( backproject, track_window, RotatedRect trackBox = CamShift(backproj, trackWindow,
cvTermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ), TermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ));
&track_comp, &track_box ); trackBox.angle = 90-trackBox.angle;
track_window = track_comp.rect;
if( backprojMode )
if( backproject_mode ) cvtColor( backproj, image, CV_GRAY2BGR );
cvCvtColor( backproject, image, CV_GRAY2BGR ); ellipse( image, trackBox, Scalar(0,0,255), 3, CV_AA );
if( !image->origin )
track_box.angle = -track_box.angle;
cvEllipseBox( image, track_box, CV_RGB(255,0,0), 3, CV_AA, 0 );
} }
if( select_object && selection.width > 0 && selection.height > 0 ) if( selectObject && selection.width > 0 && selection.height > 0 )
{ {
cvSetImageROI( image, selection ); Mat roi(image, selection);
cvXorS( image, cvScalarAll(255), image, 0 ); bitwise_not(roi, roi);
cvResetImageROI( image );
} }
cvShowImage( "CamShiftDemo", image ); imshow( "CamShift Demo", image );
cvShowImage( "Histogram", histimg ); imshow( "Histogram", histimg );
c = cvWaitKey(10); char c = (char)waitKey(10);
if( (char) c == 27 ) if( c == 27 )
break; break;
switch( (char) c ) switch(c)
{ {
case 'b': case 'b':
backproject_mode ^= 1; backprojMode = !backprojMode;
break; break;
case 'c': case 'c':
track_object = 0; trackObject = 0;
cvZero( histimg ); histimg = Scalar::all(0);
break; break;
case 'h': case 'h':
show_hist ^= 1; showHist = !showHist;
if( !show_hist ) if( !showHist )
cvDestroyWindow( "Histogram" ); destroyWindow( "Histogram" );
else else
cvNamedWindow( "Histogram", 1 ); namedWindow( "Histogram", 1 );
break; break;
default: default:
; ;
} }
} }
cvReleaseCapture( &capture );
cvDestroyWindow("CamShiftDemo");
return 0; return 0;
} }

@ -0,0 +1,78 @@
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
using namespace cv;
using namespace std;
Mat img, inpaintMask;
Point prevPt(-1,-1);
void onMouse( int event, int x, int y, int flags, void* )
{
if( event == CV_EVENT_LBUTTONUP || !(flags & CV_EVENT_FLAG_LBUTTON) )
prevPt = Point(-1,-1);
else if( event == CV_EVENT_LBUTTONDOWN )
prevPt = Point(x,y);
else if( event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON) )
{
Point pt(x,y);
if( prevPt.x < 0 )
prevPt = pt;
line( inpaintMask, prevPt, pt, Scalar::all(255), 5, 8, 0 );
line( img, prevPt, pt, Scalar::all(255), 5, 8, 0 );
prevPt = pt;
imshow("image", img);
}
}
int main( int argc, char** argv )
{
char* filename = argc >= 2 ? argv[1] : (char*)"fruits.jpg";
Mat img0 = imread(filename, -1);
if(img0.empty())
{
cout << "Usage: inpaint <image_name>\n";
return 0;
}
cout << "Hot keys: \n"
"\tESC - quit the program\n"
"\tr - restore the original image\n"
"\ti or SPACE - run inpainting algorithm\n"
"\t\t(before running it, paint something on the image)\n";
namedWindow( "image", 1 );
img = img0.clone();
inpaintMask = Mat::zeros(img.size(), CV_8U);
imshow("image", img);
setMouseCallback( "image", onMouse, 0 );
for(;;)
{
char c = (char)waitKey();
if( c == 27 )
break;
if( c == 'r' )
{
inpaintMask = Scalar::all(0);
img0.copyTo(img);
imshow("image", img);
}
if( c == 'i' || c == ' ' )
{
Mat inpainted;
inpaint(img, inpaintMask, inpainted, 3, CV_INPAINT_TELEA);
imshow("inpainted image", inpainted);
}
}
return 0;
}

@ -1,134 +1,98 @@
#include "opencv2/video/tracking.hpp" #include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp" #include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <ctype.h> #include <ctype.h>
#include <stdio.h>
IplImage *image = 0, *grey = 0, *prev_grey = 0, *pyramid = 0, *prev_pyramid = 0, *swap_temp; using namespace cv;
using namespace std;
int win_size = 10;
const int MAX_COUNT = 500;
CvPoint2D32f* points[2] = {0,0}, *swap_points;
char* status = 0;
int count = 0;
int need_to_init = 0;
int night_mode = 0;
int flags = 0;
int add_remove_pt = 0;
CvPoint pt;
Point2f pt;
bool addRemovePt = false;
void on_mouse( int event, int x, int y, int flags, void* param ) void onMouse( int event, int x, int y, int flags, void* param )
{ {
if( !image )
return;
if( image->origin )
y = image->height - y;
if( event == CV_EVENT_LBUTTONDOWN ) if( event == CV_EVENT_LBUTTONDOWN )
{ {
pt = cvPoint(x,y); pt = Point2f((float)x,(float)y);
add_remove_pt = 1; addRemovePt = true;
} }
} }
int main( int argc, char** argv ) int main( int argc, char** argv )
{ {
CvCapture* capture = 0; VideoCapture cap;
TermCriteria termcrit(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03);
Size winSize(10,10);
const int MAX_COUNT = 500;
bool needToInit = false;
bool nightMode = false;
if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0]))) if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0])))
capture = cvCaptureFromCAM( argc == 2 ? argv[1][0] - '0' : 0 ); cap.open(argc == 2 ? argv[1][0] - '0' : 0);
else if( argc == 2 ) else if( argc == 2 )
capture = cvCaptureFromAVI( argv[1] ); cap.open(argv[1]);
if( !capture ) if( !cap.isOpened() )
{ {
fprintf(stderr,"Could not initialize capturing...\n"); cout << "Could not initialize capturing...\n";
return -1; return 0;
} }
/* print a welcome message, and the OpenCV version */ // print a welcome message, and the OpenCV version
printf ("Welcome to lkdemo, using OpenCV version %s (%d.%d.%d)\n", cout << "Welcome to lkdemo, using OpenCV version %s\n" << CV_VERSION;
CV_VERSION,
CV_MAJOR_VERSION, CV_MINOR_VERSION, CV_SUBMINOR_VERSION);
printf( "Hot keys: \n" cout << "\nHot keys: \n"
"\tESC - quit the program\n" "\tESC - quit the program\n"
"\tr - auto-initialize tracking\n" "\tr - auto-initialize tracking\n"
"\tc - delete all the points\n" "\tc - delete all the points\n"
"\tn - switch the \"night\" mode on/off\n" "\tn - switch the \"night\" mode on/off\n"
"To add/remove a feature point click it\n" ); "To add/remove a feature point click it\n";
namedWindow( "LK Demo", 1 );
setMouseCallback( "LK Demo", onMouse, 0 );
cvNamedWindow( "LkDemo", 0 ); Mat gray, prevGray, image;
cvSetMouseCallback( "LkDemo", on_mouse, 0 ); vector<Point2f> points[2];
for(;;) for(;;)
{ {
IplImage* frame = 0; Mat frame;
int i, k, c; cap >> frame;
if( frame.empty() )
frame = cvQueryFrame( capture );
if( !frame )
break; break;
if( !image ) frame.copyTo(image);
{ cvtColor(image, gray, CV_BGR2GRAY);
/* allocate all the buffers */
image = cvCreateImage( cvGetSize(frame), 8, 3 );
image->origin = frame->origin;
grey = cvCreateImage( cvGetSize(frame), 8, 1 );
prev_grey = cvCreateImage( cvGetSize(frame), 8, 1 );
pyramid = cvCreateImage( cvGetSize(frame), 8, 1 );
prev_pyramid = cvCreateImage( cvGetSize(frame), 8, 1 );
points[0] = (CvPoint2D32f*)cvAlloc(MAX_COUNT*sizeof(points[0][0]));
points[1] = (CvPoint2D32f*)cvAlloc(MAX_COUNT*sizeof(points[0][0]));
status = (char*)cvAlloc(MAX_COUNT);
flags = 0;
}
cvCopy( frame, image, 0 );
cvCvtColor( image, grey, CV_BGR2GRAY );
if( night_mode ) if( nightMode )
cvZero( image ); image = Scalar::all(0);
if( need_to_init ) if( needToInit )
{ {
/* automatic initialization */ // automatic initialization
IplImage* eig = cvCreateImage( cvGetSize(grey), 32, 1 ); goodFeaturesToTrack(gray, points[1], MAX_COUNT, 0.01, 10, Mat(), 3, 0, 0.04);
IplImage* temp = cvCreateImage( cvGetSize(grey), 32, 1 ); cornerSubPix(gray, points[1], winSize, Size(-1,-1), termcrit);
double quality = 0.01; addRemovePt = false;
double min_distance = 10;
count = MAX_COUNT;
cvGoodFeaturesToTrack( grey, eig, temp, points[1], &count,
quality, min_distance, 0, 3, 0, 0.04 );
cvFindCornerSubPix( grey, points[1], count,
cvSize(win_size,win_size), cvSize(-1,-1),
cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03));
cvReleaseImage( &eig );
cvReleaseImage( &temp );
add_remove_pt = 0;
} }
else if( count > 0 ) else if( !points[0].empty() )
{ {
cvCalcOpticalFlowPyrLK( prev_grey, grey, prev_pyramid, pyramid, vector<uchar> status;
points[0], points[1], count, cvSize(win_size,win_size), 3, status, 0, vector<float> err;
cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03), flags ); if(prevGray.empty())
flags |= CV_LKFLOW_PYR_A_READY; gray.copyTo(prevGray);
for( i = k = 0; i < count; i++ ) calcOpticalFlowPyrLK(prevGray, gray, points[0], points[1], status, err, winSize,
3, termcrit, 0);
size_t i, k;
for( i = k = 0; i < points[1].size(); i++ )
{ {
if( add_remove_pt ) if( addRemovePt )
{ {
double dx = pt.x - points[1][i].x; if( norm(pt - points[1][i]) <= 5 )
double dy = pt.y - points[1][i].y;
if( dx*dx + dy*dy <= 25 )
{ {
add_remove_pt = 0; addRemovePt = false;
continue; continue;
} }
} }
@ -137,51 +101,44 @@ int main( int argc, char** argv )
continue; continue;
points[1][k++] = points[1][i]; points[1][k++] = points[1][i];
cvCircle( image, cvPointFrom32f(points[1][i]), 3, CV_RGB(0,255,0), -1, 8,0); circle( image, points[1][i], 3, Scalar(0,255,0), -1, 8);
} }
count = k; points[1].resize(k);
} }
if( add_remove_pt && count < MAX_COUNT ) if( addRemovePt && points[1].size() < MAX_COUNT )
{ {
points[1][count++] = cvPointTo32f(pt); vector<Point2f> tmp;
cvFindCornerSubPix( grey, points[1] + count - 1, 1, tmp.push_back(pt);
cvSize(win_size,win_size), cvSize(-1,-1), cornerSubPix( gray, tmp, winSize, cvSize(-1,-1), termcrit);
cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03)); points[1].push_back(tmp[0]);
add_remove_pt = 0; addRemovePt = false;
} }
CV_SWAP( prev_grey, grey, swap_temp ); needToInit = false;
CV_SWAP( prev_pyramid, pyramid, swap_temp ); imshow("LK Demo", image);
CV_SWAP( points[0], points[1], swap_points );
need_to_init = 0;
cvShowImage( "LkDemo", image );
c = cvWaitKey(10); char c = (char)waitKey(10);
if( (char)c == 27 ) if( c == 27 )
break; break;
switch( (char) c ) switch( c )
{ {
case 'r': case 'r':
need_to_init = 1; needToInit = true;
break; break;
case 'c': case 'c':
count = 0; points[1].clear();
break; break;
case 'n': case 'n':
night_mode ^= 1; nightMode = !nightMode;
break; break;
default: default:
; ;
} }
}
cvReleaseCapture( &capture ); std::swap(points[1], points[0]);
cvDestroyWindow("LkDemo"); swap(prevGray, gray);
}
return 0; return 0;
} }
#ifdef _EiC
main(1,"lkdemo.c");
#endif

@ -27,14 +27,18 @@
#include "opencv2/calib3d/calib3d.hpp" #include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/highgui/highgui.hpp" #include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc_c.h" #include "opencv2/imgproc/imgproc.hpp"
#include <vector> #include <vector>
#include <string> #include <string>
#include <algorithm> #include <algorithm>
#include <iostream>
#include <iterator>
#include <stdio.h> #include <stdio.h>
#include <stdlib.h>
#include <ctype.h> #include <ctype.h>
using namespace cv;
using namespace std; using namespace std;
// //
@ -45,344 +49,294 @@ using namespace std;
// rectified results along with the computed disparity images. // rectified results along with the computed disparity images.
// //
static void static void
StereoCalib(const char* path, const char* imageList, int useUncalibrated) StereoCalib(const vector<string>& imagelist, Size boardSize, bool useCalibrated=true, bool showRectified=true)
{ {
CvRect roi1, roi2; if( imagelist.size() % 2 != 0 )
int nx = 0, ny = 0;
int displayCorners = 1;
int showUndistorted = 1;
bool isVerticalStereo = false;//OpenCV can handle left-right
//or up-down camera arrangements
const int maxScale = 1;
const float squareSize = 1.f; //Set this to your actual square size
FILE* f = fopen(imageList, "rt");
int i, j, lr, nframes = 0, n, N = 0;
vector<string> imageNames[2];
vector<CvPoint3D32f> objectPoints;
vector<CvPoint2D32f> points[2];
vector<CvPoint2D32f> temp_points[2];
vector<int> npoints;
// vector<uchar> active[2];
int is_found[2] = {0, 0};
vector<CvPoint2D32f> temp;
CvSize imageSize = {0,0};
// ARRAY AND VECTOR STORAGE:
double M1[3][3], M2[3][3], D1[5], D2[5];
double R[3][3], T[3], E[3][3], F[3][3];
double Q[4][4];
CvMat _M1 = cvMat(3, 3, CV_64F, M1 );
CvMat _M2 = cvMat(3, 3, CV_64F, M2 );
CvMat _D1 = cvMat(1, 5, CV_64F, D1 );
CvMat _D2 = cvMat(1, 5, CV_64F, D2 );
CvMat matR = cvMat(3, 3, CV_64F, R );
CvMat matT = cvMat(3, 1, CV_64F, T );
CvMat matE = cvMat(3, 3, CV_64F, E );
CvMat matF = cvMat(3, 3, CV_64F, F );
CvMat matQ = cvMat(4, 4, CV_64FC1, Q);
char buf[1024];
if( displayCorners )
cvNamedWindow( "corners", 1 );
// READ IN THE LIST OF CHESSBOARDS:
if( !f )
{ {
fprintf(stderr, "can not open file %s\n", imageList ); cout << "Error: the image list contains odd (non-even) number of elements\n";
return; return;
} }
if( !fgets(buf, sizeof(buf)-3, f) || sscanf(buf, "%d%d", &nx, &ny) != 2 ) bool displayCorners = true;
return; const int maxScale = 2;
n = nx*ny; const float squareSize = 1.f; // Set this to your actual square size
temp.resize(n); // ARRAY AND VECTOR STORAGE:
temp_points[0].resize(n);
temp_points[1].resize(n); vector<vector<Point2f> > imagePoints[2];
vector<vector<Point3f> > objectPoints;
Size imageSize;
int i, j, k, nimages = (int)imagelist.size()/2;
for(i=0;;i++) imagePoints[0].resize(nimages);
imagePoints[1].resize(nimages);
vector<string> goodImageList;
for( i = j = 0; i < nimages; i++ )
{
for( k = 0; k < 2; k++ )
{ {
int count = 0, result=0; const string& filename = imagelist[i*2+k];
lr = i % 2; Mat img = imread(filename, 0);
vector<CvPoint2D32f>& pts = temp_points[lr];//points[lr]; if(img.empty())
if( !fgets( buf, sizeof(buf)-3, f ))
break; break;
size_t len = strlen(buf); if( imageSize == Size() )
while( len > 0 && isspace(buf[len-1])) imageSize = img.size();
buf[--len] = '\0'; else if( img.size() != imageSize )
if( buf[0] == '#')
continue;
char fullpath[1024];
sprintf(fullpath, "%s/%s", path, buf);
IplImage* img = cvLoadImage( fullpath, 0 );
if( !img )
{ {
printf("Cannot read file %s\n", fullpath); cout << "The image " << filename << " has the size different from the first image size. Skipping the pair\n";
return; break;
} }
imageSize = cvGetSize(img); bool found = false;
imageNames[lr].push_back(buf); vector<Point2f>& corners = imagePoints[k][j];
//FIND CHESSBOARDS AND CORNERS THEREIN: for( int scale = 1; scale <= maxScale; scale++ )
for( int s = 1; s <= maxScale; s++ )
{ {
IplImage* timg = img; Mat timg;
if( s > 1 ) if( scale == 1 )
timg = img;
else
resize(img, timg, Size(), scale, scale);
found = findChessboardCorners(timg, boardSize, corners,
CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_NORMALIZE_IMAGE);
if( found )
{ {
timg = cvCreateImage(cvSize(img->width*s,img->height*s), if( scale > 1 )
img->depth, img->nChannels );
cvResize( img, timg, CV_INTER_CUBIC );
}
result = cvFindChessboardCorners( timg, cvSize(nx, ny),
&temp[0], &count,
CV_CALIB_CB_ADAPTIVE_THRESH |
CV_CALIB_CB_NORMALIZE_IMAGE);
if( timg != img )
cvReleaseImage( &timg );
if( result || s == maxScale )
for( j = 0; j < count; j++ )
{ {
temp[j].x /= s; Mat cornersMat(corners);
temp[j].y /= s; cornersMat *= 1./scale;
} }
if( result )
break; break;
} }
}
if( displayCorners ) if( displayCorners )
{ {
printf("%s\n", buf); cout << filename << endl;
IplImage* cimg = cvCreateImage( imageSize, 8, 3 ); Mat cimg, cimg1;
cvCvtColor( img, cimg, CV_GRAY2BGR ); cvtColor(img, cimg, CV_GRAY2BGR);
cvDrawChessboardCorners( cimg, cvSize(nx, ny), &temp[0], drawChessboardCorners(cimg, boardSize, corners, found);
count, result ); double sf = 640./MAX(img.rows, img.cols);
IplImage* cimg1 = cvCreateImage(cvSize(640, 480), IPL_DEPTH_8U, 3); resize(cimg, cimg1, Size(), sf, sf);
cvResize(cimg, cimg1); imshow("corners", cimg1);
cvShowImage( "corners", cimg1 ); char c = (char)waitKey(500);
cvReleaseImage( &cimg );
cvReleaseImage( &cimg1 );
int c = cvWaitKey(1000);
if( c == 27 || c == 'q' || c == 'Q' ) //Allow ESC to quit if( c == 27 || c == 'q' || c == 'Q' ) //Allow ESC to quit
exit(-1); exit(-1);
} }
else else
putchar('.'); putchar('.');
//N = pts.size(); if( !found )
//pts.resize(N + n, cvPoint2D32f(0,0)); break;
//active[lr].push_back((uchar)result); cornerSubPix(img, corners, Size(11,11), Size(-1,-1),
is_found[lr] = result > 0 ? 1 : 0; TermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,
//assert( result != 0 );
if( result )
{
//Calibration will suffer without subpixel interpolation
cvFindCornerSubPix( img, &temp[0], count,
cvSize(11, 11), cvSize(-1,-1),
cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,
30, 0.01)); 30, 0.01));
copy( temp.begin(), temp.end(), pts.begin() );
} }
cvReleaseImage( &img ); if( k == 2 )
if(lr)
{ {
if(is_found[0] == 1 && is_found[1] == 1) goodImageList.push_back(imagelist[i*2]);
goodImageList.push_back(imagelist[i*2+1]);
j++;
}
}
cout << j << " pairs have been successfully detected.\n";
nimages = j;
if( nimages < 2 )
{ {
assert(temp_points[0].size() == temp_points[1].size()); cout << "Error: too little pairs to run the calibration\n";
int current_size = points[0].size(); return;
}
points[0].resize(current_size + temp_points[0].size(), cvPoint2D32f(0.0, 0.0));
points[1].resize(current_size + temp_points[1].size(), cvPoint2D32f(0.0, 0.0));
copy(temp_points[0].begin(), temp_points[0].end(), points[0].begin() + current_size);
copy(temp_points[1].begin(), temp_points[1].end(), points[1].begin() + current_size);
nframes++; imagePoints[0].resize(nimages);
imagePoints[1].resize(nimages);
objectPoints.resize(nimages);
printf("Pair successfully detected...\n"); for( i = 0; i < nimages; i++ )
{
for( j = 0; j < boardSize.height; j++ )
for( k = 0; k < boardSize.width; k++ )
objectPoints[i].push_back(Point3f(j*squareSize, k*squareSize, 0));
} }
is_found[0] = 0; cout << "Running stereo calibration ...\n";
is_found[1] = 0;
} Mat cameraMatrix[2], distCoeffs[2];
} cameraMatrix[0] = Mat::eye(3, 3, CV_64F);
fclose(f); cameraMatrix[1] = Mat::eye(3, 3, CV_64F);
printf("\n"); distCoeffs[0] = Mat::zeros(8, 1, CV_64F);
// HARVEST CHESSBOARD 3D OBJECT POINT LIST: distCoeffs[1] = Mat::zeros(8, 1, CV_64F);
objectPoints.resize(nframes*n); Mat R, T, E, F;
for( i = 0; i < ny; i++ )
for( j = 0; j < nx; j++ ) stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1],
objectPoints[i*nx + j] = cameraMatrix[0], distCoeffs[0],
cvPoint3D32f(i*squareSize, j*squareSize, 0); cameraMatrix[1], distCoeffs[1],
for( i = 1; i < nframes; i++ ) imageSize, R, T, E, F,
copy( objectPoints.begin(), objectPoints.begin() + n, TermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, 1e-5),
objectPoints.begin() + i*n );
npoints.resize(nframes,n);
N = nframes*n;
CvMat _objectPoints = cvMat(1, N, CV_32FC3, &objectPoints[0] );
CvMat _imagePoints1 = cvMat(1, N, CV_32FC2, &points[0][0] );
CvMat _imagePoints2 = cvMat(1, N, CV_32FC2, &points[1][0] );
CvMat _npoints = cvMat(1, npoints.size(), CV_32S, &npoints[0] );
cvSetIdentity(&_M1);
cvSetIdentity(&_M2);
cvZero(&_D1);
cvZero(&_D2);
// CALIBRATE THE STEREO CAMERAS
printf("Running stereo calibration ...");
fflush(stdout);
cvStereoCalibrate( &_objectPoints, &_imagePoints1,
&_imagePoints2, &_npoints,
&_M1, &_D1, &_M2, &_D2,
imageSize, &matR, &matT, &matE, &matF,
cvTermCriteria(CV_TERMCRIT_ITER+
CV_TERMCRIT_EPS, 100, 1e-5),
CV_CALIB_FIX_ASPECT_RATIO + CV_CALIB_FIX_ASPECT_RATIO +
CV_CALIB_ZERO_TANGENT_DIST + CV_CALIB_ZERO_TANGENT_DIST +
CV_CALIB_SAME_FOCAL_LENGTH + CV_CALIB_SAME_FOCAL_LENGTH +
CV_CALIB_FIX_K3); CV_CALIB_FIX_K3);
printf(" done\n"); cout << "done\n";
// CALIBRATION QUALITY CHECK // CALIBRATION QUALITY CHECK
// because the output fundamental matrix implicitly // because the output fundamental matrix implicitly
// includes all the output information, // includes all the output information,
// we can check the quality of calibration using the // we can check the quality of calibration using the
// epipolar geometry constraint: m2^t*F*m1=0 // epipolar geometry constraint: m2^t*F*m1=0
vector<CvPoint3D32f> lines[2]; double err = 0;
points[0].resize(N); int npoints = 0;
points[1].resize(N); vector<Vec3f> lines[2];
_imagePoints1 = cvMat(1, N, CV_32FC2, &points[0][0] ); for( i = 0; i < nimages; i++ )
_imagePoints2 = cvMat(1, N, CV_32FC2, &points[1][0] ); {
lines[0].resize(N); int npt = (int)imagePoints[0][i].size();
lines[1].resize(N); Mat imgpt[2];
CvMat _L1 = cvMat(1, N, CV_32FC3, &lines[0][0]); for( k = 0; k < 2; k++ )
CvMat _L2 = cvMat(1, N, CV_32FC3, &lines[1][0]);
//Always work in undistorted space
cvUndistortPoints( &_imagePoints1, &_imagePoints1,
&_M1, &_D1, 0, &_M1 );
cvUndistortPoints( &_imagePoints2, &_imagePoints2,
&_M2, &_D2, 0, &_M2 );
cvComputeCorrespondEpilines( &_imagePoints1, 1, &matF, &_L1 );
cvComputeCorrespondEpilines( &_imagePoints2, 2, &matF, &_L2 );
double avgErr = 0;
for( i = 0; i < N; i++ )
{ {
double err = fabs(points[0][i].x*lines[1][i].x + imgpt[k] = Mat(imagePoints[k][i]);
points[0][i].y*lines[1][i].y + lines[1][i].z) undistortPoints(imgpt[k], imgpt[k], cameraMatrix[k], distCoeffs[k], Mat(), cameraMatrix[k]);
+ fabs(points[1][i].x*lines[0][i].x + computeCorrespondEpilines(imgpt[k], k+1, F, lines[k]);
points[1][i].y*lines[0][i].y + lines[0][i].z); }
avgErr += err; for( j = 0; j < npt; j++ )
{
double errij = fabs(imagePoints[0][i][j].x*lines[1][j][0] +
imagePoints[0][i][j].y*lines[1][j][1] + lines[1][j][2]) +
fabs(imagePoints[1][i][j].x*lines[0][j][0] +
imagePoints[1][i][j].y*lines[0][j][1] + lines[0][j][2]);
err += errij;
}
npoints += npt;
} }
printf( "avg err = %g\n", avgErr/(nframes*n) ); cout << "average reprojection err = " << err/npoints << endl;
// save intrinsic parameters // save intrinsic parameters
CvFileStorage* fstorage = cvOpenFileStorage("intrinsics.yml", NULL, CV_STORAGE_WRITE); FileStorage fs("intrinsics.yml", CV_STORAGE_WRITE);
cvWrite(fstorage, "M1", &_M1); if( fs.isOpened() )
cvWrite(fstorage, "D1", &_D1);
cvWrite(fstorage, "M2", &_M2);
cvWrite(fstorage, "D2", &_D2);
cvReleaseFileStorage(&fstorage);
//COMPUTE AND DISPLAY RECTIFICATION
if( showUndistorted )
{
CvMat* mx1 = cvCreateMat( imageSize.height,
imageSize.width, CV_32F );
CvMat* my1 = cvCreateMat( imageSize.height,
imageSize.width, CV_32F );
CvMat* mx2 = cvCreateMat( imageSize.height,
imageSize.width, CV_32F );
CvMat* my2 = cvCreateMat( imageSize.height,
imageSize.width, CV_32F );
CvMat* img1r = cvCreateMat( imageSize.height,
imageSize.width, CV_8U );
CvMat* img2r = cvCreateMat( imageSize.height,
imageSize.width, CV_8U );
CvMat* disp = cvCreateMat( imageSize.height,
imageSize.width, CV_16S );
double R1[3][3], R2[3][3], P1[3][4], P2[3][4];
CvMat _R1 = cvMat(3, 3, CV_64F, R1);
CvMat _R2 = cvMat(3, 3, CV_64F, R2);
// IF BY CALIBRATED (BOUGUET'S METHOD)
if( useUncalibrated == 0 )
{ {
CvMat _P1 = cvMat(3, 4, CV_64F, P1); fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0] <<
CvMat _P2 = cvMat(3, 4, CV_64F, P2); "M2" << cameraMatrix[1] << "D2" << distCoeffs[1];
fs.release();
}
else
cout << "Error: can not save the intrinsic parameters\n";
Mat R1, R2, P1, P2, Q;
Rect roi1, roi2;
cvStereoRectify( &_M1, &_M2, &_D1, &_D2, imageSize, stereoRectify(cameraMatrix[0], distCoeffs[0],
&matR, &matT, cameraMatrix[1], distCoeffs[1],
&_R1, &_R2, &_P1, &_P2, &matQ, imageSize, R, T, R1, R2, P1, P2, Q,
CV_CALIB_ZERO_DISPARITY,
1, imageSize, &roi1, &roi2); 1, imageSize, &roi1, &roi2);
CvFileStorage* file = cvOpenFileStorage("extrinsics.yml", NULL, CV_STORAGE_WRITE); fs.open("extrinsics.yml", CV_STORAGE_WRITE);
cvWrite(file, "R", &matR); if( fs.isOpened() )
cvWrite(file, "T", &matT); {
cvWrite(file, "R1", &_R1); fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2 << "P1" << P1 << "P2" << P2 << "Q" << Q;
cvWrite(file, "R2", &_R2); fs.release();
cvWrite(file, "P1", &_P1); }
cvWrite(file, "P2", &_P2);
cvWrite(file, "Q", &matQ);
cvReleaseFileStorage(&file);
isVerticalStereo = fabs(P2[1][3]) > fabs(P2[0][3]);
if(!isVerticalStereo)
roi2.x += imageSize.width;
else else
roi2.y += imageSize.height; cout << "Error: can not save the intrinsic parameters\n";
//Precompute maps for cvRemap()
cvInitUndistortRectifyMap(&_M1,&_D1,&_R1,&_P1,mx1,my1); // OpenCV can handle left-right
cvInitUndistortRectifyMap(&_M2,&_D2,&_R2,&_P2,mx2,my2); // or up-down camera arrangements
bool isVerticalStereo = fabs(P2.at<double>(1, 3)) > fabs(P2.at<double>(0, 3));
//COMPUTE AND DISPLAY RECTIFICATION
if( !showRectified )
return;
Mat rmap[2][2];
// IF BY CALIBRATED (BOUGUET'S METHOD)
if( !useCalibrated )
{
// we already computed everything
} }
//OR ELSE HARTLEY'S METHOD //OR ELSE HARTLEY'S METHOD
else if( useUncalibrated == 1 || useUncalibrated == 2 ) else
// use intrinsic parameters of each camera, but // use intrinsic parameters of each camera, but
// compute the rectification transformation directly // compute the rectification transformation directly
// from the fundamental matrix // from the fundamental matrix
{ {
double H1[3][3], H2[3][3], iM[3][3]; vector<Point2f> allimgpt[2];
CvMat _H1 = cvMat(3, 3, CV_64F, H1); for( k = 0; k < 2; k++ )
CvMat _H2 = cvMat(3, 3, CV_64F, H2); {
CvMat _iM = cvMat(3, 3, CV_64F, iM); for( i = 0; i < nimages; i++ )
//Just to show you could have independently used F std::copy(imagePoints[k][i].begin(), imagePoints[k][i].end(), back_inserter(allimgpt[k]));
if( useUncalibrated == 2 )
cvFindFundamentalMat( &_imagePoints1,
&_imagePoints2, &matF);
cvStereoRectifyUncalibrated( &_imagePoints1,
&_imagePoints2, &matF,
imageSize,
&_H1, &_H2, 3);
cvInvert(&_M1, &_iM);
cvMatMul(&_H1, &_M1, &_R1);
cvMatMul(&_iM, &_R1, &_R1);
cvInvert(&_M2, &_iM);
cvMatMul(&_H2, &_M2, &_R2);
cvMatMul(&_iM, &_R2, &_R2);
//Precompute map for cvRemap()
cvInitUndistortRectifyMap(&_M1,&_D1,&_R1,&_M1,mx1,my1);
cvInitUndistortRectifyMap(&_M2,&_D1,&_R2,&_M2,mx2,my2);
} }
else F = findFundamentalMat(Mat(allimgpt[0]), Mat(allimgpt[1]), FM_8POINT, 0, 0);
assert(0); Mat H1, H2;
stereoRectifyUncalibrated(Mat(allimgpt[0]), Mat(allimgpt[1]), F, imageSize, H1, H2, 3);
R1 = cameraMatrix[0].inv()*H1*cameraMatrix[0];
R2 = cameraMatrix[1].inv()*H2*cameraMatrix[1];
}
//Precompute maps for cv::remap()
initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1, imageSize, CV_16SC2, rmap[0][0], rmap[0][1]);
initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2, imageSize, CV_16SC2, rmap[1][0], rmap[1][1]);
/*for( i = 0; i < nimages; i++ )
{
Mat img =
}*/
}
cvReleaseMat( &mx1 );
cvReleaseMat( &my1 ); static bool readStringList( const string& filename, vector<string>& l )
cvReleaseMat( &mx2 ); {
cvReleaseMat( &my2 ); l.resize(0);
cvReleaseMat( &img1r ); FileStorage fs(filename, FileStorage::READ);
cvReleaseMat( &img2r ); if( !fs.isOpened() )
cvReleaseMat( &disp ); return false;
FileNode n = fs.getFirstTopLevelNode();
if( n.type() != FileNode::SEQ )
return false;
FileNodeIterator it = n.begin(), it_end = n.end();
for( ; it != it_end; ++it )
l.push_back((string)*it);
return true;
} }
int print_help()
{
cout << "Usage:\n ./stereo_calib -w board_width -h board_height <image list XML/YML file>\n";
return 0;
} }
int main(int argc, char** argv) int main(int argc, char** argv)
{ {
if(argc > 1 && !strcmp(argv[1], "--help")) Size boardSize;
string imagelistfn;
for( int i = 1; i < argc; i++ )
{
if( string(argv[i]) == "-w" )
sscanf(argv[++i], "%d", &boardSize.width);
else if( string(argv[i]) == "-h" )
sscanf(argv[++i], "%d", &boardSize.height);
else if( string(argv[i]) == "--help" )
return print_help();
else if( argv[i][0] == '-' )
{ {
printf("Usage:\n ./stereo_calib <path to images> <file wtih image list>\n"); cout << "invalid option " << argv[i] << endl;
return 0; return 0;
} }
else
imagelistfn = argv[i];
}
if( imagelistfn == "" )
{
imagelistfn = "stereo_calib.xml";
boardSize = Size(9, 6);
}
vector<string> imagelist;
bool ok = readStringList(imagelistfn, imagelist);
if( !ok || imagelist.empty() || boardSize.width <= 0 || boardSize.height <= 0 )
return print_help();
StereoCalib(argc > 1 ? argv[1] : ".", argc > 2 ? argv[2] : "stereo_calib.txt", 0); StereoCalib(imagelist, boardSize);
return 0; return 0;
} }

Loading…
Cancel
Save