|
|
|
@ -2691,17 +2691,17 @@ double cv::kmeans( InputArray _data, int K, |
|
|
|
|
int flags, OutputArray _centers ) |
|
|
|
|
{ |
|
|
|
|
const int SPP_TRIALS = 3; |
|
|
|
|
Mat data = _data.getMat(); |
|
|
|
|
bool isrow = data.rows == 1 && data.channels() > 1; |
|
|
|
|
int N = !isrow ? data.rows : data.cols; |
|
|
|
|
int dims = (!isrow ? data.cols : 1)*data.channels(); |
|
|
|
|
int type = data.depth(); |
|
|
|
|
Mat data0 = _data.getMat(); |
|
|
|
|
bool isrow = data0.rows == 1 && data0.channels() > 1; |
|
|
|
|
int N = !isrow ? data0.rows : data0.cols; |
|
|
|
|
int dims = (!isrow ? data0.cols : 1)*data0.channels(); |
|
|
|
|
int type = data0.depth(); |
|
|
|
|
|
|
|
|
|
attempts = std::max(attempts, 1); |
|
|
|
|
CV_Assert( data.dims <= 2 && type == CV_32F && K > 0 ); |
|
|
|
|
CV_Assert( data0.dims <= 2 && type == CV_32F && K > 0 ); |
|
|
|
|
CV_Assert( N >= K ); |
|
|
|
|
|
|
|
|
|
data = data.reshape(1, N); |
|
|
|
|
Mat data(N, dims, CV_32F, data0.data, isrow ? dims * sizeof(float) : static_cast<size_t>(data0.step)); |
|
|
|
|
|
|
|
|
|
_bestLabels.create(N, 1, CV_32S, -1, true); |
|
|
|
|
|
|
|
|
|