Merge pull request #11397 from pengli:dnn_half

pull/11536/head
Alexander Alekhin 7 years ago
commit f0a4ec90b1
  1. 7
      modules/dnn/perf/perf_net.cpp
  2. 134
      modules/dnn/src/dnn.cpp
  3. 13
      modules/dnn/src/layers/batch_norm_layer.cpp
  4. 2
      modules/dnn/src/layers/blank_layer.cpp
  5. 12
      modules/dnn/src/layers/concat_layer.cpp
  6. 13
      modules/dnn/src/layers/convolution_layer.cpp
  7. 50
      modules/dnn/src/layers/detection_output_layer.cpp
  8. 81
      modules/dnn/src/layers/elementwise_layers.cpp
  9. 15
      modules/dnn/src/layers/eltwise_layer.cpp
  10. 2
      modules/dnn/src/layers/flatten_layer.cpp
  11. 21
      modules/dnn/src/layers/fully_connected_layer.cpp
  12. 4
      modules/dnn/src/layers/lrn_layer.cpp
  13. 21
      modules/dnn/src/layers/mvn_layer.cpp
  14. 5
      modules/dnn/src/layers/normalize_bbox_layer.cpp
  15. 6
      modules/dnn/src/layers/permute_layer.cpp
  16. 4
      modules/dnn/src/layers/pooling_layer.cpp
  17. 13
      modules/dnn/src/layers/prior_box_layer.cpp
  18. 5
      modules/dnn/src/layers/proposal_layer.cpp
  19. 4
      modules/dnn/src/layers/region_layer.cpp
  20. 5
      modules/dnn/src/layers/reorg_layer.cpp
  21. 2
      modules/dnn/src/layers/reshape_layer.cpp
  22. 10
      modules/dnn/src/layers/slice_layer.cpp
  23. 41
      modules/dnn/src/layers/softmax_layer.cpp
  24. 24
      modules/dnn/src/ocl4dnn/include/ocl4dnn.hpp
  25. 212
      modules/dnn/src/ocl4dnn/src/math_functions.cpp
  26. 143
      modules/dnn/src/ocl4dnn/src/ocl4dnn_conv_spatial.cpp
  27. 14
      modules/dnn/src/ocl4dnn/src/ocl4dnn_inner_product.cpp
  28. 5
      modules/dnn/src/ocl4dnn/src/ocl4dnn_lrn.cpp
  29. 19
      modules/dnn/src/ocl4dnn/src/ocl4dnn_pool.cpp
  30. 8
      modules/dnn/src/ocl4dnn/src/ocl4dnn_softmax.cpp
  31. 33
      modules/dnn/src/opencl/activations.cl
  32. 29
      modules/dnn/src/opencl/batchnorm.cl
  33. 41
      modules/dnn/src/opencl/concat.cl
  34. 61
      modules/dnn/src/opencl/conv_layer_spatial.cl
  35. 22
      modules/dnn/src/opencl/eltwise.cl
  36. 1342
      modules/dnn/src/opencl/gemm_buffer.cl
  37. 383
      modules/dnn/src/opencl/gemm_image.cl
  38. 10
      modules/dnn/src/opencl/math.cl
  39. 96
      modules/dnn/src/opencl/matvec_mul.cl
  40. 86
      modules/dnn/src/opencl/mvn.cl
  41. 18
      modules/dnn/src/opencl/ocl4dnn_lrn.cl
  42. 5
      modules/dnn/src/opencl/ocl4dnn_pooling.cl
  43. 4
      modules/dnn/src/opencl/permute.cl
  44. 27
      modules/dnn/src/opencl/prior_box.cl
  45. 4
      modules/dnn/src/opencl/reorg.cl
  46. 6
      modules/dnn/src/opencl/slice.cl
  47. 8
      modules/dnn/src/opencl/softmax.cl
  48. 25
      modules/dnn/src/opencl/softmax_loss.cl
  49. 1
      modules/dnn/src/precomp.hpp
  50. 30
      modules/dnn/test/test_backends.cpp
  51. 42
      modules/dnn/test/test_caffe_importer.cpp
  52. 34
      modules/dnn/test/test_tf_importer.cpp

@ -121,7 +121,9 @@ PERF_TEST_P_(DNNTestNetwork, Inception_5h)
PERF_TEST_P_(DNNTestNetwork, ENet)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE) throw SkipTestException("");
if ((backend == DNN_BACKEND_INFERENCE_ENGINE) ||
(backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16))
throw SkipTestException("");
processNet("dnn/Enet-model-best.net", "", "enet.yml",
Mat(cv::Size(512, 256), CV_32FC3));
}
@ -232,7 +234,8 @@ const tuple<DNNBackend, DNNTarget> testCases[] = {
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL_FP16),
#endif
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_DEFAULT, DNN_TARGET_CPU),
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_DEFAULT, DNN_TARGET_OPENCL)
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_DEFAULT, DNN_TARGET_OPENCL),
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_DEFAULT, DNN_TARGET_OPENCL_FP16)
};
INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, testing::ValuesIn(testCases));

@ -499,7 +499,7 @@ public:
}
}
void reuseOrCreate(const MatShape& shape, const LayerPin& lp, Mat& dst, bool forceCreate)
void reuseOrCreate(const MatShape& shape, const LayerPin& lp, Mat& dst, bool forceCreate, bool use_half)
{
if (!DNN_DISABLE_MEMORY_OPTIMIZATIONS && !forceCreate)
{
@ -540,14 +540,14 @@ public:
{
// if dst already has been allocated with total(shape) elements,
// it won't be recrreated and pointer of dst.data remains the same.
dst.create(shape, CV_32F);
dst.create(shape, use_half ? CV_16S : CV_32F);
addHost(lp, dst);
}
}
void allocateBlobsForLayer(LayerData &ld, const LayerShapes& layerShapes,
std::vector<LayerPin>& pinsForInternalBlobs,
bool forceCreate = false)
bool forceCreate = false, bool use_half = false)
{
CV_TRACE_FUNCTION();
@ -618,7 +618,7 @@ public:
reuse(ld.inputBlobsId[0], blobPin);
}
else
reuseOrCreate(shapes[index], blobPin, *blobs[index], forceCreate);
reuseOrCreate(shapes[index], blobPin, *blobs[index], forceCreate, use_half);
}
}
}
@ -656,7 +656,7 @@ static Ptr<BackendWrapper> wrapMat(int backendId, int targetId, cv::Mat& m)
{
if (targetId == DNN_TARGET_CPU)
return Ptr<BackendWrapper>();
else if (targetId == DNN_TARGET_OPENCL)
else if (IS_DNN_OPENCL_TARGET(targetId))
return OpenCLBackendWrapper::create(m);
else
CV_Error(Error::StsNotImplemented, "Unknown target identifier");
@ -721,6 +721,7 @@ struct Net::Impl
bool netWasAllocated;
bool fusion;
std::vector<int64> layersTimings;
Mat output_blob;
Ptr<BackendWrapper> wrap(Mat& host)
{
@ -737,7 +738,7 @@ struct Net::Impl
Ptr<BackendWrapper> baseBuffer = backendWrappers[data];
if (preferableBackend == DNN_BACKEND_DEFAULT)
{
CV_Assert(preferableTarget == DNN_TARGET_OPENCL);
CV_Assert(IS_DNN_OPENCL_TARGET(preferableTarget));
return OpenCLBackendWrapper::create(baseBuffer, host);
}
else if (preferableBackend == DNN_BACKEND_HALIDE)
@ -849,7 +850,7 @@ struct Net::Impl
if (!netWasAllocated || this->blobsToKeep != blobsToKeep_)
{
if (preferableBackend == DNN_BACKEND_DEFAULT && preferableTarget == DNN_TARGET_OPENCL)
if (preferableBackend == DNN_BACKEND_DEFAULT && IS_DNN_OPENCL_TARGET(preferableTarget))
#ifndef HAVE_OPENCL
{
CV_LOG_WARNING(NULL, "DNN: OpenCL target is not available in this OpenCV build, switching to CPU.");
@ -1034,7 +1035,7 @@ struct Net::Impl
{
CV_TRACE_FUNCTION();
if (preferableBackend == DNN_BACKEND_DEFAULT)
CV_Assert(preferableTarget == DNN_TARGET_CPU || preferableTarget == DNN_TARGET_OPENCL);
CV_Assert(preferableTarget == DNN_TARGET_CPU || IS_DNN_OPENCL_TARGET(preferableTarget));
else if (preferableBackend == DNN_BACKEND_HALIDE)
initHalideBackend();
else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE)
@ -1369,7 +1370,9 @@ struct Net::Impl
std::vector<LayerPin> pinsForInternalBlobs;
blobManager.allocateBlobsForLayer(ld, layerShapesIt->second, pinsForInternalBlobs,
preferableBackend == DNN_BACKEND_INFERENCE_ENGINE);
preferableBackend == DNN_BACKEND_INFERENCE_ENGINE,
preferableBackend == DNN_BACKEND_DEFAULT &&
preferableTarget == DNN_TARGET_OPENCL_FP16);
ld.outputBlobsWrappers.resize(ld.outputBlobs.size());
for (int i = 0; i < ld.outputBlobs.size(); ++i)
{
@ -1439,7 +1442,7 @@ struct Net::Impl
// some other layers.
// TODO: OpenCL target support more fusion styles.
if ( preferableBackend == DNN_BACKEND_DEFAULT && preferableTarget == DNN_TARGET_OPENCL &&
if ( preferableBackend == DNN_BACKEND_DEFAULT && IS_DNN_OPENCL_TARGET(preferableTarget) &&
(!cv::ocl::useOpenCL() || (ld.layerInstance->type != "Convolution" &&
ld.layerInstance->type != "MVN")) )
continue;
@ -1478,8 +1481,8 @@ struct Net::Impl
continue; // Go to the next layer.
// For now, OpenCL target support fusion with activation of ReLU/ChannelsPReLU/Power/Tanh
if ( preferableTarget != DNN_TARGET_OPENCL ||
(preferableTarget == DNN_TARGET_OPENCL &&
if ( !IS_DNN_OPENCL_TARGET(preferableTarget) ||
(IS_DNN_OPENCL_TARGET(preferableTarget) &&
nextData &&
((nextData->type == "ReLU") ||
(nextData->type == "ChannelsPReLU") ||
@ -1502,7 +1505,7 @@ struct Net::Impl
ld.outputBlobs = layers[lpNext.lid].outputBlobs;
ld.outputBlobsWrappers = layers[lpNext.lid].outputBlobsWrappers;
if ( preferableTarget == DNN_TARGET_OPENCL )
if ( IS_DNN_OPENCL_TARGET(preferableTarget) )
{
if ( !activData->consumers.empty() )
{
@ -1514,7 +1517,7 @@ struct Net::Impl
}
// fuse convlution layer followed by eltwise + relu
if ( preferableTarget == DNN_TARGET_OPENCL )
if ( IS_DNN_OPENCL_TARGET(preferableTarget) )
{
Ptr<EltwiseLayer> nextEltwiseLayer;
if( nextData )
@ -1727,6 +1730,13 @@ struct Net::Impl
for(int i = 0; i < layers[0].outputBlobs.size(); i++)
{
CV_Assert(layers[0].outputBlobs[i].total());
if (layers[0].outputBlobs[i].depth() == CV_32F &&
preferableBackend == DNN_BACKEND_DEFAULT &&
preferableTarget == DNN_TARGET_OPENCL_FP16)
{
Mat mat = layers[0].outputBlobs[i].clone();
convertFp16(mat, layers[0].outputBlobs[i]);
}
inputShapes.push_back(shape(layers[0].outputBlobs[i]));
}
LayersShapesMap layersShapes;
@ -1772,7 +1782,7 @@ struct Net::Impl
{
if( !ld.skip )
{
if (preferableBackend == DNN_BACKEND_DEFAULT && preferableTarget == DNN_TARGET_OPENCL)
if (preferableBackend == DNN_BACKEND_DEFAULT && IS_DNN_OPENCL_TARGET(preferableTarget))
{
std::vector<UMat> umat_outputBlobs = OpenCLBackendWrapper::getUMatVector(ld.outputBlobsWrappers);
layer->forward(OpenCLBackendWrapper::getUMatVector(ld.inputBlobsWrappers),
@ -1937,7 +1947,14 @@ struct Net::Impl
// Transfer data to CPU if it's require.
ld.outputBlobsWrappers[pin.oid]->copyToHost();
}
return ld.outputBlobs[pin.oid];
if (ld.outputBlobs[pin.oid].depth() == CV_16S)
{
convertFp16(ld.outputBlobs[pin.oid], output_blob);
return output_blob;
}
else
return ld.outputBlobs[pin.oid];
}
Mat getBlob(String outputName)
@ -2080,7 +2097,7 @@ void Net::forward(OutputArrayOfArrays outputBlobs, const String& outputName)
if (outputBlobs.isUMat())
{
outputBlobs.assign(ld.outputBlobs[pin.oid].getUMat(ACCESS_RW));
outputBlobs.assign(impl->getBlob(layerName).getUMat(ACCESS_RW));
}
else if (outputBlobs.isMat())
{
@ -2096,17 +2113,33 @@ void Net::forward(OutputArrayOfArrays outputBlobs, const String& outputName)
ld.outputBlobsWrappers[i]->copyToHost();
}
}
std::vector<Mat> & outputvec = *(std::vector<Mat> *)outputBlobs.getObj();
outputvec = ld.outputBlobs;
if (ld.outputBlobs[0].depth() == CV_32F)
{
std::vector<Mat> & outputvec = *(std::vector<Mat> *)outputBlobs.getObj();
outputvec = ld.outputBlobs;
} else {
std::vector<Mat> & outputvec = *(std::vector<Mat> *)outputBlobs.getObj();
outputvec.resize(ld.outputBlobs.size());
for (int i = 0; i < outputvec.size(); i++)
convertFp16(ld.outputBlobs[i], outputvec[i]);
}
}
else if (outputBlobs.isUMatVector())
{
std::vector<UMat> & outputvec = *(std::vector<UMat> *)outputBlobs.getObj();
if (impl->preferableBackend == DNN_BACKEND_DEFAULT &&
impl->preferableTarget == DNN_TARGET_OPENCL)
IS_DNN_OPENCL_TARGET(impl->preferableTarget))
{
outputvec = OpenCLBackendWrapper::getUMatVector(ld.outputBlobsWrappers);
if (impl->preferableTarget == DNN_TARGET_OPENCL)
outputvec = OpenCLBackendWrapper::getUMatVector(ld.outputBlobsWrappers);
else if (impl->preferableTarget == DNN_TARGET_OPENCL_FP16)
{
std::vector<UMat> out_vec = OpenCLBackendWrapper::getUMatVector(ld.outputBlobsWrappers);
outputvec.resize(out_vec.size());
for (int i = 0; i < out_vec.size(); i++)
convertFp16(out_vec[i], outputvec[i]);
}
}
else
{
@ -2194,6 +2227,16 @@ void Net::setPreferableTarget(int targetId)
if( impl->preferableTarget != targetId )
{
impl->preferableTarget = targetId;
if (IS_DNN_OPENCL_TARGET(targetId))
{
#ifndef HAVE_OPENCL
impl->preferableTarget = DNN_TARGET_CPU;
#else
bool fp16 = ocl::Device::getDefault().isExtensionSupported("cl_khr_fp16");
if (!fp16 && targetId == DNN_TARGET_OPENCL_FP16)
impl->preferableTarget = DNN_TARGET_OPENCL;
#endif
}
impl->netWasAllocated = false;
impl->clear();
}
@ -2222,7 +2265,17 @@ void Net::setInput(InputArray blob, const String& name)
ld.outputBlobs.resize( std::max(pin.oid+1, (int)ld.requiredOutputs.size()) );
ld.outputBlobsWrappers.resize(ld.outputBlobs.size());
MatShape prevShape = shape(ld.outputBlobs[pin.oid]);
Mat blob_ = blob.getMat();
Mat blob_;
if (impl->preferableBackend == DNN_BACKEND_DEFAULT &&
impl->preferableTarget == DNN_TARGET_OPENCL_FP16)
{
Mat blob_mat = blob.getMat();
convertFp16(blob_mat, blob_);
}
else
{
blob_ = blob.getMat();
}
bool oldShape = prevShape == shape(blob_);
if (oldShape)
{
@ -2747,6 +2800,43 @@ void Layer::forward_fallback(InputArrayOfArrays inputs_arr, OutputArrayOfArrays
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
if (preferableTarget == DNN_TARGET_OPENCL_FP16 && inputs_arr.depth() == CV_16S)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
std::vector<UMat> internals;
std::vector<UMat> orig_inputs;
std::vector<UMat> orig_outputs;
std::vector<UMat> orig_internals;
inputs_arr.getUMatVector(orig_inputs);
outputs_arr.getUMatVector(orig_outputs);
internals_arr.getUMatVector(orig_internals);
inputs.resize(orig_inputs.size());
for (size_t i = 0; i < orig_inputs.size(); i++)
convertFp16(orig_inputs[i], inputs[i]);
outputs.resize(orig_outputs.size());
for (size_t i = 0; i < orig_outputs.size(); i++)
outputs[i].create(shape(orig_outputs[i]), CV_32F);
internals.resize(orig_internals.size());
for (size_t i = 0; i < orig_internals.size(); i++)
internals[i].create(shape(orig_internals[i]), CV_32F);
forward(inputs, outputs, internals);
for (size_t i = 0; i < outputs.size(); i++)
convertFp16(outputs[i], orig_outputs[i]);
// sync results back
outputs_arr.assign(orig_outputs);
internals_arr.assign(orig_internals);
return;
}
std::vector<Mat> inpvec;
std::vector<Mat> outputs;
std::vector<Mat> internals;

@ -120,12 +120,16 @@ public:
std::vector<UMat> inputs;
std::vector<UMat> outputs;
bool use_half = (inputs_.depth() == CV_16S);
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
CV_Assert(blobs.size() >= 2);
CV_Assert(inputs.size() == 1);
if (use_half && inputs[0].dims == 2)
return false;
if (umat_weight.empty())
{
umat_weight = weights_.getUMat(ACCESS_READ);
@ -139,6 +143,7 @@ public:
int rows = inpBlob.dims > 2 ? inpBlob.size[2] : 1;
int cols = inpBlob.dims > 2 ? inpBlob.size[3] : 1;
String opts = (use_half) ? " -DDtype=half" : " -DDtype=float";
for (size_t ii = 0; ii < outputs.size(); ii++)
{
if (inpBlob.dims == 2)
@ -154,8 +159,12 @@ public:
UMat src = inputs[ii].reshape(1, s.size(), &s[0]);
UMat dst = outputs[ii].reshape(1, s.size(), &s[0]);
int number = (s[1] % 8 == 0) ? 8 : ((s[1] % 4 == 0) ? 4 : 1);
String buildopt = format("-DNUM=%d", number);
String buildopt = format("-DNUM=%d", number) + opts;
String kname = format("batch_norm%d", number);
if (number == 1)
buildopt += format(" -Dconvert_T=convert_%s", use_half ? "half" : "float");
else
buildopt += format(" -Dconvert_T=convert_%s%d", use_half ? "half" : "float", number);
ocl::Kernel kernel(kname.c_str(), ocl::dnn::batchnorm_oclsrc, buildopt);
if (kernel.empty())
return false;
@ -181,7 +190,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -95,7 +95,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -128,14 +128,14 @@ public:
for( i = 0; i < ninputs; i++ )
{
Mat& inp = *inputs[i];
CV_Assert( inp.isContinuous() && inp.type() == CV_32F &&
CV_Assert( inp.isContinuous() && (inp.type() == CV_32F || inp.type() == CV_16S) &&
inp.dims == 4 && inp.size[0] == output.size[0] &&
inp.size[2] == output.size[2] &&
inp.size[3] == output.size[3] );
nchannels += inp.size[1];
}
CV_Assert( nchannels == output.size[1] );
CV_Assert( output.isContinuous() && output.type() == CV_32F );
CV_Assert( output.isContinuous() && (output.type() == CV_32F || output.type() == CV_16S) );
cc.chptrs.resize(nchannels*batchsz);
@ -186,6 +186,7 @@ public:
std::vector<UMat> inputs;
std::vector<UMat> outputs;
bool use_half = (inps.depth() == CV_16S);
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
@ -199,11 +200,12 @@ public:
int num_concats = total(shape(inputs[0]), 0, cAxis);
int offset_concat_axis = 0;
UMat& outMat = outputs[0];
String buildopt = String("-DDtype=") + ocl::typeToStr(inputs[0].type()) + String(" ");
String buildopt = format(" -DDtype=%s", (use_half) ? "half" : "float");
String kname = format("concat_%s", use_half ? "half" : "float");
for (size_t i = 0; i < inputs.size(); i++)
{
ocl::Kernel kernel("concat", ocl::dnn::concat_oclsrc, buildopt);
ocl::Kernel kernel(kname.c_str(), ocl::dnn::concat_oclsrc, buildopt);
if (kernel.empty())
return false;
@ -235,7 +237,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -94,7 +94,7 @@ public:
CV_Assert(blobs[0].dims == 4 && blobs[0].size[3] == kernel.width && blobs[0].size[2] == kernel.height);
const Mat &input = *inputs[0];
CV_Assert(input.dims == 4 && (input.type() == CV_32F || input.type() == CV_64F));
CV_Assert(input.dims == 4 && (input.type() == CV_32F || input.type() == CV_64F || input.type() == CV_16S));
for (size_t i = 0; i < inputs.size(); i++)
{
CV_Assert(inputs[i]->type() == input.type());
@ -288,7 +288,7 @@ public:
newActiv = true;
activType = OCL4DNN_CONV_FUSED_ACTIV_NONE;
if (preferableTarget == DNN_TARGET_OPENCL)
if (IS_DNN_OPENCL_TARGET(preferableTarget))
{
Ptr<PowerLayer> activ_power = activ.dynamicCast<PowerLayer>();
if (!activ_power.empty())
@ -842,6 +842,7 @@ public:
std::vector<UMat> inputs;
std::vector<UMat> outputs;
bool use_half = (inps.depth() == CV_16S);
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
@ -860,6 +861,7 @@ public:
config.dilation = dilation;
config.group = inputs[0].size[1] / umat_blobs[0].size[1];
config.bias_term = (hasBias()) ? true : false;
config.use_half = use_half;
convolutionOp = Ptr<OCL4DNNConvSpatial<float> >(new OCL4DNNConvSpatial<float>(config));
}
@ -964,7 +966,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
@ -1360,6 +1362,9 @@ public:
std::vector<UMat> outputs;
std::vector<UMat> internals;
if (inputs_.depth() == CV_16S)
return false;
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
internals_.getUMatVector(internals);
@ -1450,7 +1455,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -307,8 +307,24 @@ public:
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
bool use_half = (inps.depth() == CV_16S);
if (use_half)
{
std::vector<UMat> orig_inputs;
std::vector<UMat> orig_outputs;
inps.getUMatVector(orig_inputs);
outs.getUMatVector(orig_outputs);
inputs.resize(orig_inputs.size());
for (size_t i = 0; i < orig_inputs.size(); i++)
convertFp16(orig_inputs[i], inputs[i]);
}
else
{
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
}
std::vector<LabelBBox> allDecodedBBoxes;
std::vector<Mat> allConfidenceScores;
@ -342,7 +358,13 @@ public:
{
// Set confidences to zeros.
Range ranges[] = {Range::all(), Range::all(), Range::all(), Range(2, 3)};
outputs[0](ranges).setTo(0);
if (use_half)
{
std::vector<UMat> orig_outputs;
outs.getUMatVector(orig_outputs);
orig_outputs[0](ranges).setTo(0);
} else
outputs[0](ranges).setTo(0);
return true;
}
int outputShape[] = {1, 1, (int)numKept, 7};
@ -360,9 +382,23 @@ public:
}
CV_Assert(count == numKept);
}
outputs.clear();
outputs.push_back(umat);
outs.assign(outputs);
if (use_half)
{
UMat half_umat;
convertFp16(umat, half_umat);
std::vector<UMat> orig_outputs;
outs.getUMatVector(orig_outputs);
orig_outputs.clear();
orig_outputs.push_back(half_umat);
outs.assign(orig_outputs);
} else {
outputs.clear();
outputs.push_back(umat);
outs.assign(outputs);
}
return true;
}
#endif
@ -372,7 +408,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -176,7 +176,7 @@ public:
{
CV_TRACE_FUNCTION();
CV_OCL_RUN((this->preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(this->preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
func.applyOCL(inputs_arr, outputs_arr, internals_arr))
@ -223,7 +223,12 @@ public:
#ifdef HAVE_OPENCL
static String oclGetTMacro(const UMat &m)
{
return String("-DT=") + ocl::typeToStr(m.type()) + String(" ");
String str_name = ocl::typeToStr(m.type());
if (str_name == "short")
str_name = "half";
return format("-DT=%s -Dconvert_T=convert_%s ", str_name.c_str(), str_name.c_str());
}
#endif
@ -516,8 +521,28 @@ struct SigmoidFunctor
#ifdef HAVE_OPENCL
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
// TODO: implement OCL version
return false;
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
String buildopt = oclGetTMacro(inputs[0]);
for (size_t i = 0; i < inputs.size(); i++)
{
UMat& src = inputs[i];
UMat& dst = outputs[i];
ocl::Kernel kernel("SigmoidForward", ocl::dnn::activations_oclsrc, buildopt);
kernel.set(0, (int)src.total());
kernel.set(1, ocl::KernelArg::PtrReadOnly(src));
kernel.set(2, ocl::KernelArg::PtrWriteOnly(dst));
size_t gSize = src.total();
CV_Assert(kernel.run(1, &gSize, NULL, false));
}
return true;
}
#endif
@ -561,8 +586,28 @@ struct ELUFunctor
#ifdef HAVE_OPENCL
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
// TODO: implement OCL version
return false;
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
String buildopt = oclGetTMacro(inputs[0]);
for (size_t i = 0; i < inputs.size(); i++)
{
UMat& src = inputs[i];
UMat& dst = outputs[i];
ocl::Kernel kernel("ELUForward", ocl::dnn::activations_oclsrc, buildopt);
kernel.set(0, (int)src.total());
kernel.set(1, ocl::KernelArg::PtrReadOnly(src));
kernel.set(2, ocl::KernelArg::PtrWriteOnly(dst));
size_t gSize = src.total();
CV_Assert(kernel.run(1, &gSize, NULL, false));
}
return true;
}
#endif
@ -604,8 +649,28 @@ struct AbsValFunctor
#ifdef HAVE_OPENCL
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
// TODO: implement OCL version
return false;
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
String buildopt = oclGetTMacro(inputs[0]);
for (size_t i = 0; i < inputs.size(); i++)
{
UMat& src = inputs[i];
UMat& dst = outputs[i];
ocl::Kernel kernel("AbsValForward", ocl::dnn::activations_oclsrc, buildopt);
kernel.set(0, (int)src.total());
kernel.set(1, ocl::KernelArg::PtrReadOnly(src));
kernel.set(2, ocl::KernelArg::PtrWriteOnly(dst));
size_t gSize = src.total();
CV_Assert(kernel.run(1, &gSize, NULL, false));
}
return true;
}
#endif

@ -271,6 +271,9 @@ public:
std::vector<UMat> inputs;
std::vector<UMat> outputs;
if (inputs_.depth() == CV_16S && op != SUM)
return false;
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
@ -284,10 +287,15 @@ public:
{
size_t localsize[] = { 128 };
size_t globalsize[] = { (size_t)channels / 4 * localsize[0] };
String opts;
if (inputs_.depth() == CV_16S)
opts = " -DDtype=half -DDtype4=half4 -DDtype8=half8";
else
opts = " -DDtype=float -DDtype4=float4 -DDtype8=float8";
for (int i = 0; i < (inputs.size() - 1); ++i)
{
String buildopt = format("-DLOOP=%d", i);
String buildopt = format("-DLOOP=%d", i) + opts;
ocl::Kernel kernel("op_sum4", ocl::dnn::eltwise_oclsrc, buildopt);
int idx = 0;
UMat inpMat = (i == 0) ? inputs[0] : UMat();
@ -306,6 +314,9 @@ public:
}
else
{
if (inputs_.depth() == CV_16S)
return false;
float coeff1 = coeffs.empty() ? 1.f : coeffs[0];
float coeff2 = coeffs.empty() ? 1.f : coeffs[1];
UMat mul0, mul1;
@ -343,7 +354,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -140,7 +140,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
outputs_arr.isUMatVector() &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -64,6 +64,7 @@ public:
#ifdef HAVE_OPENCL
Ptr<OCL4DNNInnerProduct<float> > innerProductOp;
std::vector<UMat> umat_blobs;
std::vector<UMat> half_blobs;
#endif
FullyConnectedLayerImpl(const LayerParams& params)
@ -277,6 +278,7 @@ public:
std::vector<UMat> inputs;
std::vector<UMat> outputs;
bool use_half = (inps.depth() == CV_16S);
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
@ -293,6 +295,17 @@ public:
config.bias_term = bias;
config.M = outerSize;
config.K = innerSize;
config.use_half = use_half;
if (use_half)
{
half_blobs.resize(umat_blobs.size());
for (int i = 0; i < umat_blobs.size(); i++)
{
if (!umat_blobs[i].empty())
convertFp16(umat_blobs[i], half_blobs[i]);
}
}
innerProductOp = Ptr<OCL4DNNInnerProduct<float> >(new OCL4DNNInnerProduct<float>(config));
}
@ -309,13 +322,15 @@ public:
dstMat = outputs[i].reshape(1, outshape.size(), &outshape[0]);
dstMat.setTo(0.0f);
if (!innerProductOp->Forward(srcMat, umat_blobs[0], (bias) ? umat_blobs[1] : UMat(), dstMat))
if (!innerProductOp->Forward(srcMat, (use_half) ? half_blobs[0] : umat_blobs[0],
(bias) ? (use_half ? half_blobs[1] : umat_blobs[1]) : UMat(),
dstMat))
{
ret = false;
break;
}
if (bias && (outerSize > 1))
if (!use_half && bias && (outerSize > 1))
{
UMat& biases = umat_blobs[1];
cv::gemm(biasOnesMat, biases, 1, dstMat, 1, dstMat, 0);
@ -353,7 +368,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -106,6 +106,7 @@ public:
std::vector<UMat> inputs;
std::vector<UMat> outputs;
bool use_half = (inps.depth() == CV_16S);
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
@ -128,6 +129,7 @@ public:
config.height = inputs[0].size[2];
config.width = inputs[0].size[3];
config.norm_by_size = normBySize;
config.use_half = use_half;
lrnOp = Ptr<OCL4DNNLRN<float> >(new OCL4DNNLRN<float>(config));
}
@ -146,7 +148,7 @@ public:
CV_Assert(inputs_arr.total() == outputs_arr.total());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -102,6 +102,9 @@ public:
{
UMat bnorm_weight = scale.empty() ? UMat() : scale.getUMat(ACCESS_READ);
UMat bnorm_bias = shift.empty() ? UMat() : shift.getUMat(ACCESS_READ);
bool use_half = (inputs[0].depth() == CV_16S);
String opts = format(" -DT=%s -DT4=%s -Dconvert_T=%s", use_half ? "half" : "float",
use_half ? "half4" : "float4", use_half ? "convert_half4" : "convert_float4");
int splitDim = (acrossChannels) ? 1 : 2;
for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++)
@ -111,12 +114,11 @@ public:
int newRows = total(shape(inpMat), 0, splitDim);
MatShape s = shape(newRows, inpMat.total() / newRows);
UMat oneMat = UMat::ones(s[1], 1, CV_32F);
UMat meanMat = UMat(s[0], 1, CV_32F);
UMat meanMat = UMat(s[0], 1, (use_half) ? CV_16S : CV_32F);
UMat tmpMat = UMat(s[0], s[1], CV_32F);
float alpha = 1.0f / s[1];
String buildopt = "-DNUM=4";
String buildopt = "-DNUM=4" + opts;
ocl::Kernel k("mean_fuse4", ocl::dnn::mvn_oclsrc, buildopt);
size_t localsize[] = { 128 };
size_t globalsize[] = { (size_t)s[0] / 4 * localsize[0] };
@ -167,13 +169,14 @@ public:
int row_size = total(shape(inputs[0]), 0, splitDim);
int plane_size = total(shape(inputs[0]), splitDim);
if (normVariance && (row_size % 4 == 0) && (plane_size % 4 == 0))
{
bool ret = fast_forward_ocl(inputs, outputs);
return ret;
}
return fast_forward_ocl(inputs, outputs);
if (inputs[0].depth() == CV_16S)
return false;
UMat bnorm_weight = scale.empty() ? UMat() : scale.getUMat(ACCESS_READ);
UMat bnorm_bias = shift.empty() ? UMat() : shift.getUMat(ACCESS_READ);
String opts = format(" -DT=float -DT4=float4 -Dconvert_T=convert_float4");
for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++)
{
@ -195,7 +198,7 @@ public:
int number = (s[1] % 8 == 0) ? 8 : ((s[1] % 4 == 0) ? 4 : 1);
size_t global[] = { (size_t)s[0], (size_t)(s[1] / number) };
String buildopt = format("-DNUM=%d", number);
String buildopt = format("-DNUM=%d", number) + opts;
if (normVariance)
{
String kname = format("calc_mean%d", number);
@ -249,7 +252,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -87,6 +87,9 @@ public:
std::vector<UMat> outputs;
std::vector<UMat> internals;
if (inputs_.depth() == CV_16S)
return false;
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
internals_.getUMatVector(internals);
@ -162,7 +165,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -288,9 +288,11 @@ public:
if (!_needsPermute)
return false;
bool use_half = (inps.depth() == CV_16S);
String opts = format("-DDtype=%s", use_half ? "half" : "float");
for (size_t i = 0; i < inputs.size(); i++)
{
ocl::Kernel kernel("permute", ocl::dnn::permute_oclsrc);
ocl::Kernel kernel("permute", ocl::dnn::permute_oclsrc, opts);
kernel.set(0, (int)_count);
kernel.set(1, ocl::KernelArg::PtrReadOnly(inputs[i]));
@ -313,7 +315,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -147,6 +147,7 @@ public:
std::vector<UMat> inputs;
std::vector<UMat> outputs;
bool use_half = (inps.depth() == CV_16S);
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
@ -164,6 +165,7 @@ public:
(type == AVE ? LIBDNN_POOLING_METHOD_AVE :
LIBDNN_POOLING_METHOD_STO);
config.avePoolPaddedArea = avePoolPaddedArea;
config.use_half = use_half;
poolOp = Ptr<OCL4DNNPool<float> >(new OCL4DNNPool<float>(config));
}
@ -189,7 +191,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -316,6 +316,7 @@ public:
std::vector<UMat> inputs;
std::vector<UMat> outputs;
bool use_half = (inps.depth() == CV_16S);
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
@ -340,9 +341,15 @@ public:
heights.copyTo(umat_heights);
}
String opts;
if (use_half)
opts = "-DDtype=half -DDtype4=half4 -Dconvert_T=convert_half4";
else
opts = "-DDtype=float -DDtype4=float4 -Dconvert_T=convert_float4";
size_t nthreads = _layerHeight * _layerWidth;
ocl::Kernel kernel("prior_box", ocl::dnn::prior_box_oclsrc, opts);
ocl::Kernel kernel("prior_box", ocl::dnn::prior_box_oclsrc);
kernel.set(0, (int)nthreads);
kernel.set(1, (float)_stepX);
kernel.set(2, (float)_stepY);
@ -375,7 +382,7 @@ public:
// set the variance.
{
ocl::Kernel kernel("set_variance", ocl::dnn::prior_box_oclsrc);
ocl::Kernel kernel("set_variance", ocl::dnn::prior_box_oclsrc, opts);
int offset = total(shape(outputs[0]), 2);
size_t nthreads = _layerHeight * _layerWidth * _numPriors;
kernel.set(0, (int)nthreads);
@ -395,7 +402,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -158,6 +158,9 @@ public:
std::vector<UMat> outputs;
std::vector<UMat> internals;
if (inputs_.depth() == CV_16S)
return false;
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
internals_.getUMatVector(internals);
@ -237,7 +240,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -127,7 +127,7 @@ public:
std::vector<UMat> outputs;
// TODO: implement a logistic activation to classification scores.
if (useLogistic)
if (useLogistic || inps.depth() == CV_16S)
return false;
inps.getUMatVector(inputs);
@ -191,7 +191,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -96,9 +96,10 @@ public:
std::vector<UMat> inputs;
std::vector<UMat> outputs;
bool use_half = (inps.depth() == CV_16S);
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
String buildopt = String("-DDtype=") + ocl::typeToStr(inputs[0].type()) + String(" ");
String buildopt= format("-DDtype=%s ", use_half ? "half" : "float");
for (size_t i = 0; i < inputs.size(); i++)
{
@ -134,7 +135,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -219,7 +219,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -181,6 +181,7 @@ public:
std::vector<UMat> inputs;
std::vector<UMat> outputs;
bool use_half = (inputs_.depth() == CV_16S);
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
@ -188,6 +189,11 @@ public:
(total(shape(outputs[0]), 2) % 4 != 0))
return false;
String opts;
if (use_half)
opts = "-DDtype=half -DDtype4=half4 -DDtype8=half8";
else
opts = "-DDtype=float -DDtype4=float4 -DDtype8=float8";
const UMat& inpMat = inputs[0];
for (size_t i = 0; i < outputs.size(); i++)
{
@ -196,7 +202,7 @@ public:
int rows = outputs[i].size[2];
int cols = outputs[i].size[3];
ocl::Kernel kernel("slice", ocl::dnn::slice_oclsrc);
ocl::Kernel kernel("slice", ocl::dnn::slice_oclsrc, opts);
size_t local[] = { 128 };
size_t global[] = { (size_t)groups * channels / 4 * local[0] };
int idx = 0;
@ -222,7 +228,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -99,15 +99,16 @@ public:
softmaxOp.release();
}
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays itns)
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
std::vector<UMat> internals;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
itns.getUMatVector(internals);
bool use_half = (inputs_.depth() == CV_16S);
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
internals_.getUMatVector(internals);
if (softmaxOp.empty())
{
@ -117,6 +118,7 @@ public:
config.axis = axisRaw;
config.channels = inputs[0].size[axisRaw];
config.logsoftmax = logSoftMax;
config.use_half = use_half;
softmaxOp = Ptr<OCL4DNNSoftmax<float> >(new OCL4DNNSoftmax<float>(config));
}
@ -128,15 +130,13 @@ public:
return true;
UMat& bufMat = internals[0];
src.copyTo(dstMat);
int axis = clamp(axisRaw, src.dims);
MatShape s = shape(src);
size_t outerSize = total(s, 0, axis);
size_t channels = src.size[axis];
size_t innerSize = total(s, axis + 1);
String buildOpts = String("-DT=") + ocl::typeToStr(src.type());
String buildOpts = format("-DT=%s", use_half ? "half" : "float");
ocl::Kernel kmax, ksub, ksum, kdiv;
if (!kmax.create("kernel_channel_max", ocl::dnn::softmax_oclsrc, buildOpts))
@ -152,38 +152,31 @@ public:
if (!kdiv.create("kernel_channel_div", ocl::dnn::softmax_oclsrc, buildOpts))
return false;
size_t wgSize = ocl::Device::getDefault().maxWorkGroupSize();
size_t bufSize = internals[0].total();
size_t totalSize = src.total();
// adjust local/global size
size_t internal_localSize[1] = { (bufSize == 1) ? 1 : wgSize };
size_t internal_globalSize[1] = { divUp(bufSize, (unsigned int)internal_localSize[0]) * internal_localSize[0] };
// adjust local/global size (total)
size_t total_localSize[1] = { (totalSize == 1) ? 1 : wgSize };
size_t total_globalSize[1] = { divUp(totalSize, (unsigned int)total_localSize[0]) * total_localSize[0] };
size_t internal_globalSize[1] = { bufSize };
size_t total_globalSize[1] = { totalSize };
kmax.args((int)outerSize, (int)channels, (int)innerSize,
ocl::KernelArg::PtrReadOnly(dstMat), ocl::KernelArg::PtrReadWrite(bufMat));
if (!kmax.run(1, internal_globalSize, internal_localSize, false))
ocl::KernelArg::PtrReadOnly(src), ocl::KernelArg::PtrReadWrite(bufMat));
if (!kmax.run(1, internal_globalSize, NULL, false))
return false;
ksub.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize,
ocl::KernelArg::PtrReadOnly(bufMat), ocl::KernelArg::PtrReadWrite(dstMat));
if (!ksub.run(1, total_globalSize, total_localSize, false))
ocl::KernelArg::PtrReadOnly(bufMat),
ocl::KernelArg::PtrReadOnly(src), ocl::KernelArg::PtrWriteOnly(dstMat));
if (!ksub.run(1, total_globalSize, NULL, false))
return false;
cv::exp(dstMat, dstMat);
ksum.args((int)outerSize, (int)channels, (int)innerSize,
ocl::KernelArg::PtrReadOnly(dstMat), ocl::KernelArg::PtrReadWrite(bufMat));
if (!ksum.run(1, internal_globalSize, internal_localSize, false))
if (!ksum.run(1, internal_globalSize, NULL, false))
return false;
kdiv.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize,
ocl::KernelArg::PtrReadOnly(bufMat), ocl::KernelArg::PtrReadWrite(dstMat));
if (!kdiv.run(1, total_globalSize, total_localSize, false))
if (!kdiv.run(1, total_globalSize, NULL, false))
return false;
return true;
@ -195,7 +188,7 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))

@ -59,7 +59,8 @@ struct OCL4DNNConvConfig
stride(1, 1),
dilation(1, 1),
group(1),
bias_term(false)
bias_term(false),
use_half(false)
{}
MatShape in_shape;
MatShape out_shape;
@ -69,6 +70,7 @@ struct OCL4DNNConvConfig
Size dilation;
int group; // = 1;
bool bias_term; // = false;
bool use_half; // = false;
};
typedef enum {
@ -272,6 +274,8 @@ class OCL4DNNConvSpatial
int32_t group_;
bool bias_term_;
UMat swizzled_weights_umat;
UMat weights_half;
UMat bias_half;
UMat bottom_data2_;
int32_t bottom_index_;
@ -327,6 +331,7 @@ class OCL4DNNConvSpatial
ocl4dnnFusedActiv_t fused_activ_;
float power_;
bool fused_eltwise_;
bool use_half_;
};
typedef enum {
@ -345,7 +350,8 @@ struct OCL4DNNPoolConfig
channels(0),
pool_method(LIBDNN_POOLING_METHOD_MAX),
global_pooling(false),
avePoolPaddedArea(false)
avePoolPaddedArea(true),
use_half(false)
{}
MatShape in_shape;
MatShape out_shape;
@ -358,6 +364,7 @@ struct OCL4DNNPoolConfig
ocl4dnnPoolingMethod_t pool_method; // = LIBDNN_POOLING_METHOD_MAX;
bool global_pooling; // = false;
bool avePoolPaddedArea;
bool use_half;
};
template<typename Dtype>
@ -391,13 +398,14 @@ class OCL4DNNPool
int32_t pooled_height_;
int32_t pooled_width_;
bool avePoolPaddedArea;
bool use_half;
};
struct OCL4DNNInnerProductConfig
{
OCL4DNNInnerProductConfig() :
num_output(0), M(0), K(0),
bias_term(false), transpose(false), phase_test(true)
bias_term(false), transpose(false), phase_test(true), use_half(false)
{}
int num_output;
int M;
@ -405,6 +413,7 @@ struct OCL4DNNInnerProductConfig
bool bias_term;
bool transpose; // = false;
bool phase_test; // = true;
bool use_half; // = false;
};
template<typename Dtype>
@ -428,6 +437,7 @@ class OCL4DNNInnerProduct
bool transpose_;
bool image_copied_;
bool phase_test_;
bool use_half_;
};
typedef enum {
@ -441,7 +451,7 @@ struct OCL4DNNLRNConfig
lrn_type(LRNParameter_NormRegion_ACROSS_CHANNELS),
phase_test(true),
local_size(0), alpha(0.f), beta(0.f), k(0.f), norm_by_size(false),
batch_size(0), channels(0), height(0), width(0)
batch_size(0), channels(0), height(0), width(0), use_half(false)
{}
MatShape in_shape;
LRNParameter_NormRegion_WITHIN_CHANNEL_t lrn_type;
@ -455,6 +465,7 @@ struct OCL4DNNLRNConfig
int32_t channels;
int32_t height;
int32_t width;
bool use_half;
};
template<typename Dtype>
@ -477,16 +488,18 @@ class OCL4DNNLRN
int32_t height_;
int32_t width_;
bool norm_by_size_;
bool use_half_;
};
struct OCL4DNNSoftmaxConfig
{
OCL4DNNSoftmaxConfig() : axis(0), channels(0), logsoftmax(false)
OCL4DNNSoftmaxConfig() : axis(0), channels(0), logsoftmax(false), use_half(false)
{}
MatShape in_shape;
int axis;
int channels;
bool logsoftmax;
bool use_half;
};
template<typename Dtype>
@ -506,6 +519,7 @@ class OCL4DNNSoftmax
bool use_slm_;
bool log_softmax_;
UMat scale_data_;
bool use_half_;
};
}}} // namespace cv::dnn::ocl4dnn

@ -48,6 +48,12 @@
namespace cv { namespace dnn { namespace ocl4dnn {
enum gemm_data_type_t
{
TYPE_FLOAT = 1,
TYPE_HALF = 2
};
// Create and copy buffer to image for GEMM's matrix A and B.
// Will return image to caller if the input image is NULL. Otherwise,
// will use the image directly. It's caller's responsibility to
@ -60,6 +66,7 @@ ocl::Image2D ocl4dnnGEMMCopyBufferToImage(UMat buffer, int offset,
int width, int ld)
{
ocl::Image2D image;
String opts = format("-DTYPE=%d", TYPE_FLOAT);
if (!is_matrix_a && transpose)
{
@ -73,7 +80,8 @@ ocl::Image2D ocl4dnnGEMMCopyBufferToImage(UMat buffer, int offset,
UMat mat(height, width, CV_32FC1);
image = ocl::Image2D(mat);
ocl::Kernel oclk_gemm_copy("gemm_buffer_copy_image_transpose_float", ocl::dnn::gemm_image_oclsrc);
ocl::Kernel oclk_gemm_copy("gemm_buffer_copy_image_transpose_float",
ocl::dnn::gemm_image_oclsrc, opts);
size_t global_copy[2];
global_copy[0] = width;
@ -96,7 +104,7 @@ ocl::Image2D ocl4dnnGEMMCopyBufferToImage(UMat buffer, int offset,
image = ocl::Image2D(mat);
ocl::Kernel oclk_gemm_copy("gemm_buffer_copy_image_no_transpose_float",
ocl::dnn::gemm_image_oclsrc);
ocl::dnn::gemm_image_oclsrc, opts);
size_t global_copy[2];
global_copy[0] = padded_width;
@ -129,7 +137,7 @@ enum gemm_type_t
GEMM_TYPE_FAST_IMAGE_32_1,
GEMM_TYPE_FAST_IMAGE_32_2,
GEMM_TYPE_FAST_IMAGE_B_IMAGE,
GEMM_TYPE_MAX
GEMM_TYPE_FAST_BUFFER
};
template<typename Dtype>
@ -145,6 +153,8 @@ static bool ocl4dnnFastImageGEMM(const CBLAS_TRANSPOSE TransA,
CHECK_EQ(gemm_type == GEMM_TYPE_FAST_IMAGE_32_1 || gemm_type == GEMM_TYPE_FAST_IMAGE_32_2 ||
gemm_type == GEMM_TYPE_FAST_IMAGE_B_IMAGE, true) << "Invalid fast image gemm type." << std::endl;
bool halfPrecisionMode = (A.depth() == CV_16S);
if (is_image_a)
{
CHECK_EQ(offA, 0) << "Invalid input image offset." << std::endl;
@ -157,6 +167,7 @@ static bool ocl4dnnFastImageGEMM(const CBLAS_TRANSPOSE TransA,
return false;
}
String opts = format("-DTYPE=%d", halfPrecisionMode ? TYPE_HALF : TYPE_FLOAT);
int widthA = (TransA == CblasNoTrans) ? K : M;
int heightA = (TransA == CblasNoTrans) ? M : K;
int widthB = (TransB == CblasNoTrans) ? N : K;
@ -178,7 +189,7 @@ static bool ocl4dnnFastImageGEMM(const CBLAS_TRANSPOSE TransA,
int blockC_width = blocksize;
int blockC_height = blocksize;
int use_buffer_indicator = 8;
int use_buffer_indicator = (halfPrecisionMode) ? 16 : 8;
// To fix the edge problem caused by the sub group block read.
// we have to pad the image if it's not multiple of tile.
// just padding one line is enough as the sub group block read
@ -221,9 +232,13 @@ static bool ocl4dnnFastImageGEMM(const CBLAS_TRANSPOSE TransA,
else
kernel_name += "1";
kernel_name += "_float";
if (halfPrecisionMode) {
kernel_name += "_half";
} else {
kernel_name += "_float";
}
ocl::Kernel oclk_gemm_float(kernel_name.c_str(), ocl::dnn::gemm_image_oclsrc);
ocl::Kernel oclk_gemm_float(kernel_name.c_str(), ocl::dnn::gemm_image_oclsrc, opts);
if (oclk_gemm_float.empty())
return false;
@ -255,6 +270,10 @@ static bool ocl4dnnFastImageGEMM(const CBLAS_TRANSPOSE TransA,
bool padding_A = false;
bool padding_B = false;
if (halfPrecisionMode && is_image_b) {
padding_A = true;
}
if (!is_image_a && !is_image_b)
{
if (M * K < N * K)
@ -265,17 +284,19 @@ static bool ocl4dnnFastImageGEMM(const CBLAS_TRANSPOSE TransA,
if (!is_image_a)
{
ImA = ocl4dnnGEMMCopyBufferToImage<Dtype>(A, blockA_offset,
true, TransA != CblasNoTrans,
padding_A, imageA_h, imageA_w,
blockA_height, blockA_width, ldA);
if (!halfPrecisionMode)
ImA = ocl4dnnGEMMCopyBufferToImage<Dtype>(A, blockA_offset,
true, TransA != CblasNoTrans,
padding_A, imageA_h, imageA_w,
blockA_height, blockA_width, ldA);
}
if (!is_image_b)
{
ImB = ocl4dnnGEMMCopyBufferToImage<Dtype>(B, blockB_offset,
false, false,
padding_B, imageB_h, imageB_w,
blockB_height, blockB_width, ldB);
if (!halfPrecisionMode)
ImB = ocl4dnnGEMMCopyBufferToImage<Dtype>(B, blockB_offset,
false, false,
padding_B, imageB_h, imageB_w,
blockB_height, blockB_width, ldB);
}
} else {
// We will use normal read_imagef to read image B when B has transpose.
@ -283,32 +304,48 @@ static bool ocl4dnnFastImageGEMM(const CBLAS_TRANSPOSE TransA,
if (!is_image_a)
{
bool padding;
padding = !is_image_b;
ImA = ocl4dnnGEMMCopyBufferToImage<Dtype>(A, blockA_offset,
true, TransA != CblasNoTrans,
padding, imageA_h, imageA_w,
blockA_height, blockA_width, ldA);
padding = !is_image_b || halfPrecisionMode;
if (!halfPrecisionMode)
ImA = ocl4dnnGEMMCopyBufferToImage<Dtype>(A, blockA_offset,
true, TransA != CblasNoTrans,
padding, imageA_h, imageA_w,
blockA_height, blockA_width, ldA);
}
if (!is_image_b && (K % use_buffer_indicator != 0))
{
ImB = ocl4dnnGEMMCopyBufferToImage<Dtype>(B, blockB_offset,
false, true, false, imageB_h, imageB_w,
blockB_height, blockB_width, ldB);
if (!halfPrecisionMode)
ImB = ocl4dnnGEMMCopyBufferToImage<Dtype>(B, blockB_offset,
false, true, false,
imageB_h, imageB_w,
blockB_height, blockB_width, ldB);
}
}
size_t global[2];
if (gemm_type == GEMM_TYPE_FAST_IMAGE_32_1 || gemm_type == GEMM_TYPE_FAST_IMAGE_B_IMAGE)
{
global[0] = (size_t)( blockC_width + 7 ) & ~7;
if (halfPrecisionMode) {
global[0] = (size_t)( blockC_width + 15 ) & ~15;
} else {
global[0] = (size_t)( blockC_width + 7 ) & ~7;
}
} else {
global[0] = (size_t)( (blockC_width / 2 ) + 7 ) ^ ~7;
if (halfPrecisionMode) {
global[0] = (size_t)( (blockC_width / 2 ) + 15 ) ^ ~15;
} else {
global[0] = (size_t)( (blockC_width / 2 ) + 7 ) ^ ~7;
}
}
global[1] = (size_t)(blockC_height + 31) / 32;
size_t local[2];
local[0] = 8;
if (halfPrecisionMode)
{
local[0] = 16;
} else {
local[0] = 8;
}
local[1] = 1;
cl_uint arg_idx = 0;
@ -385,6 +422,101 @@ static bool ocl4dnnFastImageGEMM(const CBLAS_TRANSPOSE TransA,
return true;
}
template<typename Dtype>
static bool ocl4dnnFastBufferGEMM(const CBLAS_TRANSPOSE TransA,
const CBLAS_TRANSPOSE TransB, const int32_t M,
const int32_t N, const int32_t K, const Dtype alpha,
const UMat A, const int32_t offA, const UMat B,
const int32_t offB, const Dtype beta, UMat C,
const int32_t offC, enum gemm_type_t gemm_type)
{
CHECK_EQ(gemm_type == GEMM_TYPE_FAST_BUFFER, true)
<< "Invalid fast buffer gemm type." << std::endl;
bool halfPrecisionMode = (A.depth() == CV_16S);
size_t sub_group_size = 8;
bool is_small_batch = (M == 2 || M == 4 || M == 8);
String kernel_name("gemm_buffer_");
if (TransA == CblasNoTrans && TransB == CblasNoTrans) {
kernel_name += "NN";
if (halfPrecisionMode) {
sub_group_size = 16;
}
} else if (TransA == CblasNoTrans && TransB != CblasNoTrans) {
if (M == 2)
kernel_name +="NT_M_2";
else if (M == 4)
kernel_name +="NT_M_4";
else if (M == 8)
kernel_name +="NT_M_8";
else
kernel_name += "NT";
}
if (halfPrecisionMode) {
kernel_name += "_half";
} else {
kernel_name += "_float";
}
String opts = format("-DTYPE=%d", halfPrecisionMode ? TYPE_HALF : TYPE_FLOAT);
ocl::Kernel oclk_gemm_float(kernel_name.c_str(), ocl::dnn::gemm_buffer_oclsrc, opts);
size_t local[2] = {};
size_t global[2] = {};
if (TransA == CblasNoTrans && TransB != CblasNoTrans && is_small_batch) {
if (M == 8)
local[0] = 16;
else if (M == 4)
local[0] = 32;
else
local[0] = 64;
local[1] = 1;
if (M == 8)
global[0] = N * local[0];
else
global[0] = (N + 3) / 4 * local[0];
global[1] = 1;
} else {
size_t lx = sub_group_size;
size_t ly = (TransB != CblasNoTrans && TransA == CblasNoTrans && halfPrecisionMode) ? 2 : 4;
int dx = (TransB != CblasNoTrans && TransA == CblasNoTrans) ? 1 : 4;
int dy = 8;
size_t gx = (size_t)(N + dx - 1) / dx;
size_t gy = (size_t)(M + dy - 1) / dy;
global[0] = (gx + lx - 1) / lx * lx;
global[1] = (gy + ly - 1) / ly * ly;
local[0] = lx;
local[1] = ly;
}
int arg_idx = 0;
oclk_gemm_float.set(arg_idx++, ocl::KernelArg::PtrReadOnly(A));
oclk_gemm_float.set(arg_idx++, offA);
oclk_gemm_float.set(arg_idx++, ocl::KernelArg::PtrReadOnly(B));
oclk_gemm_float.set(arg_idx++, offB);
oclk_gemm_float.set(arg_idx++, ocl::KernelArg::PtrWriteOnly(C));
oclk_gemm_float.set(arg_idx++, offC);
oclk_gemm_float.set(arg_idx++, M);
oclk_gemm_float.set(arg_idx++, N);
oclk_gemm_float.set(arg_idx++, K);
oclk_gemm_float.set(arg_idx++, (float)alpha);
oclk_gemm_float.set(arg_idx++, (float)beta);
bool ret;
if (TransB == CblasNoTrans || TransA != CblasNoTrans) {
int stride = 256;
for (int start_index = 0; start_index < K; start_index += stride) {
oclk_gemm_float.set(arg_idx, start_index);
ret = oclk_gemm_float.run(2, global, local, false);
}
} else {
ret = oclk_gemm_float.run(2, global, local, false);
}
return ret;
}
template<typename Dtype>
bool ocl4dnnGEMMCommon(const CBLAS_TRANSPOSE TransB,
const int32_t M, const int32_t N, const int32_t K,
@ -392,7 +524,8 @@ bool ocl4dnnGEMMCommon(const CBLAS_TRANSPOSE TransB,
const UMat B_image, UMat C,
const size_t max_image_size)
{
gemm_type_t gemm_type = GEMM_TYPE_FAST_IMAGE_32_1;
bool halfPrecisionMode = (A.depth() == CV_16S);
gemm_type_t gemm_type = halfPrecisionMode ? GEMM_TYPE_FAST_BUFFER : GEMM_TYPE_FAST_IMAGE_32_1;
if (gemm_type == GEMM_TYPE_FAST_IMAGE_32_1 ||
gemm_type == GEMM_TYPE_FAST_IMAGE_32_2)
@ -409,6 +542,11 @@ bool ocl4dnnGEMMCommon(const CBLAS_TRANSPOSE TransB,
GEMM_TYPE_FAST_IMAGE_B_IMAGE,
max_image_size);
}
else if (gemm_type == GEMM_TYPE_FAST_BUFFER)
{
return ocl4dnnFastBufferGEMM<Dtype>(CblasNoTrans, TransB, M, N, K,
1.f, A, 0, B, 0, 0.f, C, 0, gemm_type);
}
return false;
}
@ -436,10 +574,17 @@ bool ocl4dnnGEMV<float>(const CBLAS_TRANSPOSE TransA,
const int32_t offy)
{
bool ret = false;
bool use_half = (A.depth() == CV_16S);
String opts;
if (use_half)
opts = format("-DDtype=%s -DDtype4=%s -Dconvert_Dtype=convert_%s", "half", "half4", "half");
else
opts = format("-DDtype=%s -DDtype4=%s -Dconvert_Dtype=convert_%s", "float", "float4", "float");
if (TransA == CblasNoTrans)
{
ocl::Kernel k(CL_KERNEL_SELECT("matvec_mul4"), cv::ocl::dnn::matvec_mul_oclsrc);
String kname = format("matvec_mul4_%s", use_half ? "half" : "float");
ocl::Kernel k(kname.c_str(), cv::ocl::dnn::matvec_mul_oclsrc, opts);
if (k.empty())
return false;
@ -469,7 +614,8 @@ bool ocl4dnnGEMV<float>(const CBLAS_TRANSPOSE TransA,
if ((row_size % 4) != 0 && ret)
{
ocl::Kernel k_1(CL_KERNEL_SELECT("matvec_mul1"), cv::ocl::dnn::matvec_mul_oclsrc);
String kname = format("matvec_mul1_%s", use_half ? "half" : "float");
ocl::Kernel k_1(kname.c_str(), cv::ocl::dnn::matvec_mul_oclsrc, opts);
size_t localsize[] = { 128 };
size_t globalsize[] = { row_size % 4 * localsize[0] };
uint row_offset = row_size - (row_size % 4);
@ -499,7 +645,15 @@ bool ocl4dnnAXPY(const int32_t N, const Dtype alpha,
const UMat X, const int32_t offX, UMat Y,
const int32_t offY)
{
ocl::Kernel oclk_axpy(CL_KERNEL_SELECT("axpy"), cv::ocl::dnn::math_oclsrc);
bool use_half = (X.depth() == CV_16S);
String opts;
if (use_half)
opts = "-DDtype=half -DDtype4=half4 -Dconvert_Dtype=convert_half";
else
opts = "-DDtype=float -DDtype4=float4 -Dconvert_Dtype=convert_float";
String kname = format("axpy_%s", use_half ? "half" : "float");
ocl::Kernel oclk_axpy(kname.c_str(), cv::ocl::dnn::math_oclsrc, opts);
if (oclk_axpy.empty())
return false;

@ -54,6 +54,7 @@
#include "opencl_kernels_dnn.hpp"
#include "../include/math_functions.hpp"
#include "../include/default_kernel_config.hpp"
#include "opencv2/dnn/shape_utils.hpp"
#if defined WIN32 || defined _WIN32
#include <windows.h>
@ -85,6 +86,7 @@ OCL4DNNConvSpatial<Dtype>::OCL4DNNConvSpatial(OCL4DNNConvConfig config)
max_value_ = 0;
prev_kernel_type_ = -1;
tuned_ = false;
use_half_ = config.use_half;
// assumption: spatial dimension is 2.
kernel_h_ = config.kernel.height;
@ -204,18 +206,40 @@ void OCL4DNNConvSpatial<Dtype>::setFusionArg(ocl4dnnFusedActiv_t fused_activ, bo
return;
}
typedef enum {
TYPE_FLOAT = 1,
TYPE_HALF = 2
} ocl4dnnConvSpatialType_t;
template<typename Dtype>
void OCL4DNNConvSpatial<Dtype>::collectCommonInformation()
{
addDef("Dtype", "float");
addDef("Dtype2", "float2");
addDef("Dtype4", "float4");
addDef("Dtype8", "float8");
addDef("Dtype16", "float16");
addDef("as_Dtype", "as_float");
addDef("as_Dtype2", "as_float2");
addDef("as_Dtype4", "as_float4");
addDef("as_Dtype8", "as_float8");
if (use_half_)
{
addDef("TYPE", TYPE_HALF);
addDef("Dtype", "half");
addDef("Dtype2", "half2");
addDef("Dtype4", "half4");
addDef("Dtype8", "half8");
addDef("Dtype16", "half16");
addDef("as_Dtype", "as_half");
addDef("as_Dtype2", "as_half2");
addDef("as_Dtype4", "as_half4");
addDef("as_Dtype8", "as_half8");
}
else
{
addDef("TYPE", TYPE_FLOAT);
addDef("Dtype", "float");
addDef("Dtype2", "float2");
addDef("Dtype4", "float4");
addDef("Dtype8", "float8");
addDef("Dtype16", "float16");
addDef("as_Dtype", "as_float");
addDef("as_Dtype2", "as_float2");
addDef("as_Dtype4", "as_float4");
addDef("as_Dtype8", "as_float8");
}
}
typedef enum {
@ -477,10 +501,16 @@ bool OCL4DNNConvSpatial<Dtype>::Forward(const UMat& bottom,
fused_eltwise_ = false;
}
prepareKernel(bottom, top, weight, bias, numImages);
if (use_half_ && bias_half.empty() && !bias.empty())
convertFp16((UMat&)bias, bias_half);
if (use_half_ && weights_half.empty())
convertFp16((UMat&)weight, weights_half);
prepareKernel(bottom, top, weight, (use_half_) ? bias_half : bias, numImages);
if (bestKernelConfig.empty())
return false;
return convolve(bottom, top, weight, bias, numImages, bestKernelConfig);
return convolve(bottom, top, weight, (use_half_) ? bias_half : bias, numImages, bestKernelConfig);
}
template<typename Dtype>
@ -556,6 +586,12 @@ std::string OCL4DNNConvSpatial<Dtype>::generateSpecificKey(int32_t type, int32_t
<< "_" << blockWidth
<< "_" << blockHeight
<< "_" << blockDepth;
if (!use_half_)
keyBuilder << "_float";
else
keyBuilder << "_half";
return keyBuilder.str();
}
@ -637,9 +673,13 @@ bool OCL4DNNConvSpatial<Dtype>::swizzleWeight(const UMat &weight,
if (swizzled_weights_umat.empty())
swizzled_weights_umat.create(1, (int)alignSize(num_output_, 16) * channels_ *
kernel_h_ * (int)alignSize(kernel_w_, 2), CV_32FC1);
kernel_h_ * (int)alignSize(kernel_w_, 2),
(use_half_) ? CV_16SC1 : CV_32FC1);
UMat swizzled_weights_tmp;
if (use_half_)
swizzled_weights_tmp.create(shape(swizzled_weights_umat), CV_32F);
ocl::Queue queue = ocl::Queue::getDefault();
if (!interleave) {
cl_uint argIdx = 0;
int32_t channels = channels_ / group_;
@ -650,7 +690,10 @@ bool OCL4DNNConvSpatial<Dtype>::swizzleWeight(const UMat &weight,
return false;
oclk_copy_weight.set(argIdx++, ocl::KernelArg::PtrReadOnly(weight));
oclk_copy_weight.set(argIdx++, ocl::KernelArg::PtrWriteOnly(swizzled_weights_umat));
if (use_half_)
oclk_copy_weight.set(argIdx++, ocl::KernelArg::PtrWriteOnly(swizzled_weights_tmp));
else
oclk_copy_weight.set(argIdx++, ocl::KernelArg::PtrWriteOnly(swizzled_weights_umat));
oclk_copy_weight.set(argIdx++, kernel_w_);
oclk_copy_weight.set(argIdx++, kernel_h_);
oclk_copy_weight.set(argIdx++, channels);
@ -669,7 +712,11 @@ bool OCL4DNNConvSpatial<Dtype>::swizzleWeight(const UMat &weight,
// assumption: kernel dimesion is 2
Mat weightMat = weight.getMat(ACCESS_READ);
Dtype* cpu_weight = (Dtype *)weightMat.ptr<float>();
Mat swizzledWeightMat = swizzled_weights_umat.getMat(ACCESS_WRITE);
Mat swizzledWeightMat;
if (use_half_)
swizzledWeightMat = swizzled_weights_tmp.getMat(ACCESS_WRITE);
else
swizzledWeightMat = swizzled_weights_umat.getMat(ACCESS_WRITE);
Dtype* cpu_swizzled_weight = (Dtype *)swizzledWeightMat.ptr<float>();
int interleavedRows = (kernel_w_ / 2) * 2;
@ -694,6 +741,10 @@ bool OCL4DNNConvSpatial<Dtype>::swizzleWeight(const UMat &weight,
rowAlignment);
free(tmpSwizzledWeight);
}
if (use_half_)
convertFp16(swizzled_weights_tmp, swizzled_weights_umat);
return true;
}
@ -727,9 +778,10 @@ void OCL4DNNConvSpatial<float>::CreateSubBuffer(const UMat& buffer, UMat& sub_bu
cl_mem sub_mem;
cl_buffer_region region;
cl_int err;
size_t element_size = (use_half_) ? sizeof(short) : sizeof(float);
region.origin = offset * sizeof(float);
region.size = size * sizeof(float);
region.origin = offset * element_size;
region.size = size * element_size;
sub_mem = clCreateSubBuffer((cl_mem)buffer.handle(ACCESS_READ),
write_only ? CL_MEM_WRITE_ONLY : CL_MEM_READ_ONLY,
CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
@ -739,8 +791,9 @@ void OCL4DNNConvSpatial<float>::CreateSubBuffer(const UMat& buffer, UMat& sub_bu
return;
}
int step = sizeof(float), rows = size, cols = 1;
ocl::convertFromBuffer(sub_mem, step, rows, cols, CV_32FC1, sub_buffer);
int step = element_size, rows = size, cols = 1;
ocl::convertFromBuffer(sub_mem, step, rows, cols,
(use_half_) ? CV_16SC1 : CV_32FC1, sub_buffer);
//decrease ocl mem refcount
clReleaseMemObject(sub_mem);
@ -978,7 +1031,10 @@ bool OCL4DNNConvSpatial<float>::convolve(const UMat &bottom, UMat &top,
cl_uint argIdx = 0;
setFusionArg(fused_activ_, fused_eltwise_, kernel, argIdx);
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(bottom));
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(weight));
if (use_half_)
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(weights_half));
else
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(weight));
if (bias_term_)
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(bias));
kernel.set(argIdx++, ocl::KernelArg::PtrWriteOnly(top));
@ -1018,7 +1074,10 @@ bool OCL4DNNConvSpatial<float>::convolve(const UMat &bottom, UMat &top,
setFusionArg(fused_activ_, fused_eltwise_, kernel, argIdx);
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(bottom));
kernel.set(argIdx++, image_offset);
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(weight));
if (use_half_)
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(weights_half));
else
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(weight));
kernel.set(argIdx++, kernel_offset);
if (bias_term_)
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(bias));
@ -1132,14 +1191,27 @@ bool OCL4DNNConvSpatial<float>::verifyResult(const UMat &bottom,
return false;
int32_t sz[4] = {numImages, num_output_, output_h_, output_w_};
top.zeros(4, sz, CV_32FC1);
top.zeros(4, sz, (use_half_) ? CV_16SC1 : CV_32FC1);
bool saved_tuned = tuned_;
tuned_ = false;
convolve(bottom, top, weight, bias, numImages, config);
tuned_ = saved_tuned;
float *data = (float *)top.getMat(ACCESS_READ).ptr<float>();
float *verify_data = (float *)verifyTop.getMat(ACCESS_READ).ptr<float>();
UMat new_top, new_verify_top;
float *data, *verify_data;
if (use_half_)
{
convertFp16(top, new_top);
convertFp16(verifyTop, new_verify_top);
data = (float *)new_top.getMat(ACCESS_READ).ptr<float>();
verify_data = (float *)new_verify_top.getMat(ACCESS_READ).ptr<float>();
}
else
{
data = (float *)top.getMat(ACCESS_READ).ptr<float>();
verify_data = (float *)verifyTop.getMat(ACCESS_READ).ptr<float>();
}
for (int32_t n = 0; n < num_; ++n) {
for (int32_t g = 0; g < group_; ++g) {
@ -1148,9 +1220,19 @@ bool OCL4DNNConvSpatial<float>::verifyResult(const UMat &bottom,
for (int h = 0; h < output_h_ && !verificationFail; h++)
for (int w = 0; w < output_w_; w++) {
size_t offset = output_image_offset + out_ch * output_w_ * output_h_ + h * output_w_ + w;
if (fabs(data[offset] - verify_data[offset]) > 0.1 * fabs(verify_data[offset]) &&
!(fabs(verify_data[offset]) < 1.e-3 &&
fabs(data[offset] - verify_data[offset]) < 1.e-4))
float error_factor = fabs(data[offset] - verify_data[offset]);
if (use_half_ && error_factor > 0.1 * fabs(verify_data[offset]) &&
error_factor > 0.04 && !(fabs(verify_data[offset]) < 1.e-3 && error_factor < 1.e-4))
{
dbgPrint(printf("test verification failed @ image %d group %d"
"out_ch %d h %d w %d got %G expected %G\n",
n, g, out_ch, h, w, data[offset], verify_data[offset]));
verificationFail = 1;
goto out;
}
else if (!use_half_ && error_factor > 0.1 * fabs(verify_data[offset]) &&
!(fabs(verify_data[offset]) < 1.e-3 && error_factor < 1.e-4))
{
dbgPrint(printf("test verification failed @ image %d group %d"
"out_ch %d h %d w %d got %G expected %G\n",
@ -1719,15 +1801,16 @@ void OCL4DNNConvSpatial<Dtype>::prepareKernel(const UMat &bottom, UMat &top,
if (loadTunedConfig()) // check external storage
return;
UMat benchData(1, numImages * top_dim_, CV_32FC1);
UMat benchData(1, numImages * top_dim_, (use_half_) ? CV_16SC1 : CV_32FC1);
calculateBenchmark(bottom, benchData, (use_half_) ? weights_half : weight, bias, numImages);
if (force_auto_tuning_)
{
calculateBenchmark(bottom, benchData, weight, bias, numImages);
setupConvolution(bottom, top, weight, bias, numImages, benchData);
}
else
{
calculateBenchmark(bottom, benchData, weight, bias, numImages);
useFirstAvailable(bottom, top, weight, bias, numImages, benchData);
}
cacheTunedConfig();

@ -56,6 +56,7 @@ OCL4DNNInnerProduct<Dtype>::OCL4DNNInnerProduct(OCL4DNNInnerProductConfig config
K_ = config.K;
phase_test_ = config.phase_test;
image_copied_ = false;
use_half_ = config.use_half;
}
template<typename Dtype>
@ -89,13 +90,24 @@ bool OCL4DNNInnerProduct<Dtype>::Forward(const UMat& bottom,
if (M_ <= max_image_size &&
N_ <= max_image_size &&
K_ <= max_image_size &&
cv::traits::Depth<Dtype>::value == CV_32F &&
ocl::Device::getDefault().intelSubgroupsSupport())
{
ret = ocl4dnnGEMMCommon<Dtype>(transpose_ ? CblasNoTrans : CblasTrans,
M_, N_, K_, bottom, weight, UMat(), top,
max_image_size);
}
if (use_half_ && bias_term_)
{
UMat biasOneMat = UMat::ones(M_, 1, CV_32F);
UMat newbias, tmpTop;
convertFp16(bias, newbias);
convertFp16(top, tmpTop);
cv::gemm(biasOneMat, newbias, 1, tmpTop, 1, tmpTop, 0);
convertFp16(tmpTop, top);
}
return ret;
}
}

@ -61,6 +61,7 @@ OCL4DNNLRN<Dtype>::OCL4DNNLRN(OCL4DNNLRNConfig config)
channels_ = config.channels;
height_ = config.height;
width_ = config.width;
use_half_ = config.use_half;
}
template<typename Dtype>
@ -97,8 +98,10 @@ bool OCL4DNNLRN<Dtype>::crossChannelForward(const UMat& bottom, UMat& top)
int32_t n_threads = num_ * height_ * width_;
size_t global_work_size_[1] = {(size_t)n_threads};
String opts = clOptionSupport("-cl-no-subgroup-ifp") ? " -cl-no-subgroup-ifp " : "";
opts += format("-D Dtype=%s", (use_half_) ? "half" : "float");
ocl::Kernel oclk_lrn_fill;
if (!oclk_lrn_fill.create(CL_KERNEL_SELECT("lrn_full_no_scale"), ocl::dnn::ocl4dnn_lrn_oclsrc, opts))
String kname = format("lrn_full_no_scale_%s", (use_half_) ? "half" : "float");
if (!oclk_lrn_fill.create(kname.c_str(), ocl::dnn::ocl4dnn_lrn_oclsrc, opts))
return false;
oclk_lrn_fill.set(argIdx++, n_threads);

@ -56,6 +56,7 @@ OCL4DNNPool<Dtype>::OCL4DNNPool(OCL4DNNPoolConfig config)
channels_ = config.channels;
pool_method_ = config.pool_method;
avePoolPaddedArea = config.avePoolPaddedArea;
use_half = config.use_half;
for (int i = 0; i < spatial_dims; ++i)
{
@ -105,12 +106,15 @@ bool OCL4DNNPool<Dtype>::Forward(const UMat& bottom,
case LIBDNN_POOLING_METHOD_MAX:
{
bool haveMask = !top_mask.empty();
String kname = haveMask ? "max_pool_forward_mask" : "max_pool_forward";
kname += (use_half) ? "_half" : "_float";
ocl::Kernel oclk_max_pool_forward(
haveMask ? CL_KERNEL_SELECT("max_pool_forward_mask") : CL_KERNEL_SELECT("max_pool_forward"),
kname.c_str(),
ocl::dnn::ocl4dnn_pooling_oclsrc,
format("-D KERNEL_MAX_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
format(" -D Dtype=%s -D KERNEL_MAX_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
" -D STRIDE_W=%d -D STRIDE_H=%d"
" -D PAD_W=%d -D PAD_H=%d%s",
(use_half) ? "half" : "float",
kernel_w_, kernel_h_,
stride_w_, stride_h_,
pad_w_, pad_h_,
@ -139,11 +143,14 @@ bool OCL4DNNPool<Dtype>::Forward(const UMat& bottom,
{
CV_Assert(top_mask.empty());
ocl::Kernel oclk_ave_pool_forward(CL_KERNEL_SELECT("ave_pool_forward"),
String kname = format("ave_pool_forward_%s", (use_half) ? "half" : "float");
ocl::Kernel oclk_ave_pool_forward(
kname.c_str(),
ocl::dnn::ocl4dnn_pooling_oclsrc,
format("-D KERNEL_AVE_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
format(" -D Dtype=%s -D KERNEL_AVE_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
" -D STRIDE_W=%d -D STRIDE_H=%d"
" -D PAD_W=%d -D PAD_H=%d%s",
(use_half) ? "half" : "float",
kernel_w_, kernel_h_,
stride_w_, stride_h_,
pad_w_, pad_h_,
@ -171,7 +178,9 @@ bool OCL4DNNPool<Dtype>::Forward(const UMat& bottom,
{
CV_Assert(top_mask.empty());
ocl::Kernel oclk_sto_pool_forward(CL_KERNEL_SELECT("sto_pool_forward_test"),
String kname = format("sto_pool_forward_test_%s", (use_half) ? "half" : "float");
ocl::Kernel oclk_sto_pool_forward(
kname.c_str(),
ocl::dnn::ocl4dnn_pooling_oclsrc,
format("-D KERNEL_STO_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
" -D STRIDE_W=%d -D STRIDE_H=%d",

@ -52,6 +52,7 @@ OCL4DNNSoftmax<Dtype>::OCL4DNNSoftmax(OCL4DNNSoftmaxConfig config)
softmax_axis_ = config.axis;
channels_ = config.channels;
log_softmax_ = config.logsoftmax;
use_half_ = config.use_half;
inner_num_ = 1;
outer_num_ = 1;
@ -91,10 +92,13 @@ bool OCL4DNNSoftmax<Dtype>::Forward(const UMat& bottom, UMat& top)
if (log_softmax_) opts += " -DLOG_SOFTMAX ";
if (use_slm_)
kname = CL_KERNEL_SELECT("softmax_forward_slm");
kname = "softmax_forward_slm";
else
kname = CL_KERNEL_SELECT("softmax_forward");
kname = "softmax_forward";
kname += format("%s", (use_half_) ? "_half" : "_float");
opts += format(" -D Dtype=%s -D DTYPE_MAX=%s", (use_half_) ? "half" : "float",
(use_half_) ? "HALF_MAX" : "FLT_MAX");
if (!oclk_softmax_forward_kernel.create(kname.c_str(), ocl::dnn::softmax_loss_oclsrc, opts))
return false;

@ -40,9 +40,17 @@
//
//M*/
#define CONCAT(A,B) A##_##B
#define TEMPLATE(name,type) CONCAT(name,type)
#define KERNEL_ARG_DTYPE float
#if defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif
__kernel void ReLUForward(const int count, __global const T* in, __global T* out
#ifndef RELU_NO_SLOPE
, T negative_slope
, KERNEL_ARG_DTYPE negative_slope
#endif
) {
int index = get_global_id(0);
@ -55,18 +63,19 @@ __kernel void ReLUForward(const int count, __global const T* in, __global T* out
}
__kernel void ReLU6Forward(const int count, __global const T* in, __global T* out,
const T minValue, const T maxValue)
const KERNEL_ARG_DTYPE minValue, const KERNEL_ARG_DTYPE maxValue)
{
int index = get_global_id(0);
if(index < count)
{
T x = in[index];
out[index] = clamp(x, minValue, maxValue);
out[index] = clamp(x, convert_T(minValue), convert_T(maxValue));
}
}
__kernel void PReLUForward(const int count, const int channels, const int plane_size,
__global const T* in, __global T* out, __global const T* slope_data)
__global const T* in, __global T* out,
__global const KERNEL_ARG_DTYPE* slope_data)
{
int index = get_global_id(0);
int c = (index / plane_size) % channels;
@ -99,8 +108,22 @@ __kernel void AbsValForward(const int n, __global const T* in, __global T* out)
out[index] = fabs(in[index]);
}
__kernel void PowForward(const int n, __global const T* in, __global T* out, const T power, const T scale, const T shift) {
__kernel void PowForward(const int n, __global const T* in, __global T* out,
const KERNEL_ARG_DTYPE power,
const KERNEL_ARG_DTYPE scale,
const KERNEL_ARG_DTYPE shift)
{
int index = get_global_id(0);
if (index < n)
out[index] = pow(shift + scale * in[index], power);
}
__kernel void ELUForward(const int n, __global const T* in, __global T* out)
{
int index = get_global_id(0);
if (index < n)
{
T src = in[index];
out[index] = (src >= 0.f) ? src : exp(src) - 1;
}
}

@ -40,24 +40,27 @@
//
//M*/
#define Dtype float
#define Dtype4 float4
#define Dtype8 float8
#if defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif
#if NUM == 8
#define load(src, index) vload8(0, src + index)
#define store(vec, dst, index) vstore8(vec, 0, dst + index)
#define vec_type Dtype8
#define float_type float8
#define convert_f convert_float8
#define BATCH_NORM batch_norm8
#elif NUM == 4
#define load(src, index) vload4(0, src + index)
#define store(vec, dst, index) vstore4(vec, 0, dst + index)
#define vec_type Dtype4
#define float_type float4
#define convert_f convert_float4
#define BATCH_NORM batch_norm4
#elif NUM == 1
#define load(src, index) src[index]
#define store(vec, dst, index) dst[index] = vec
#define vec_type Dtype
#define float_type float
#define convert_f convert_float
#define BATCH_NORM batch_norm1
#endif
@ -65,8 +68,8 @@ __kernel void BATCH_NORM(__global const Dtype* src,
const int rows,
const int cols,
const int channels,
__global const Dtype* weight,
__global const Dtype* bias,
__global const float* weight,
__global const float* bias,
__global Dtype* dst)
{
int x = get_global_id(0);
@ -76,9 +79,9 @@ __kernel void BATCH_NORM(__global const Dtype* src,
if (x >= rows || y >= cols)
return;
Dtype w = weight[x % channels];
Dtype b = bias[x % channels];
vec_type src_vec = load(src, index);
vec_type dst_vec = src_vec * w + (vec_type)b;
store(dst_vec, dst, index);
float w = weight[x % channels];
float b = bias[x % channels];
float_type src_vec = convert_f(load(src, index));
float_type dst_vec = src_vec * w + (float_type)b;
store(convert_T(dst_vec), dst, index);
}

@ -39,22 +39,29 @@
//
//M*/
__kernel void concat(const int nthreads,
__global const Dtype* in_data,
const int num_concats,
const int concat_size,
const int top_concat_axis,
const int bottom_concat_axis,
const int offset_concat_axis,
__global Dtype* out_data) {
#if defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif
for (int index = get_global_id(0); index < nthreads;
index += get_global_size(0)) {
const int total_concat_size = concat_size * bottom_concat_axis;
const int concat_num = index / total_concat_size;
const int concat_index = index % total_concat_size;
const int top_index = concat_index
+ (concat_num * top_concat_axis + offset_concat_axis) * concat_size;
out_data[top_index] = in_data[index];
}
#define CONCAT(A,B) A##_##B
#define TEMPLATE(name,type) CONCAT(name,type)
__kernel void TEMPLATE(concat, Dtype)(const int nthreads,
__global const Dtype* in_data,
const int num_concats,
const int concat_size,
const int top_concat_axis,
const int bottom_concat_axis,
const int offset_concat_axis,
__global Dtype* out_data)
{
for (int index = get_global_id(0); index < nthreads; index += get_global_size(0))
{
const int total_concat_size = concat_size * bottom_concat_axis;
const int concat_num = index / total_concat_size;
const int concat_index = index % total_concat_size;
const int top_index = concat_index +
(concat_num * top_concat_axis + offset_concat_axis) * concat_size;
out_data[top_index] = in_data[index];
}
}

@ -40,27 +40,29 @@
//
//M*/
#if APPLY_BIAS
#define BIAS_KERNEL_ARG __global Dtype * biases_base,
#else
#define BIAS_KERNEL_ARG
#if defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif
#define KERNEL_ARG_DTYPE float
#define TYPE_FLOAT 1
#define TYPE_HALF 2
#if defined(FUSED_CONV_RELU)
#define ACTIVATION_RELU_FUNCTION(x, c) ((Dtype)(x) > 0 ? (Dtype)(x) : ((Dtype)(x) * (Dtype)(negative_slope)))
#define FUSED_ARG Dtype negative_slope,
#define ACTIVATION_RELU_FUNCTION(x, c) ((Dtype)(x) > 0 ? (Dtype)(x) : ((Dtype)(x) * (negative_slope)))
#define FUSED_ARG KERNEL_ARG_DTYPE negative_slope,
#elif defined(FUSED_CONV_PRELU)
#define ACTIVATION_RELU_FUNCTION(x, c) ((Dtype)(x) > 0 ? (Dtype)(x) : ((Dtype)(x) * (Dtype)(negative_slope[c])))
#define FUSED_ARG __global const Dtype *negative_slope,
#define ACTIVATION_RELU_FUNCTION(x, c) ((Dtype)(x) > 0 ? (Dtype)(x) : ((Dtype)(x) * (negative_slope[c])))
#define FUSED_ARG __global const KERNEL_ARG_DTYPE* negative_slope,
#elif defined(FUSED_CONV_POWER)
#define ACTIVATION_RELU_FUNCTION(x, c) pow(x, power)
#define FUSED_ARG Dtype power,
#define ACTIVATION_RELU_FUNCTION(x, c) pow(x, (Dtype)power)
#define FUSED_ARG KERNEL_ARG_DTYPE power,
#elif defined(FUSED_CONV_TANH)
#define ACTIVATION_RELU_FUNCTION(x, c) tanh(x)
#define FUSED_ARG
#elif defined(FUSED_CONV_RELU6)
#define ACTIVATION_RELU_FUNCTION(x, c) (clamp((Dtype)(x), min_value, max_value))
#define FUSED_ARG Dtype min_value, Dtype max_value,
#define ACTIVATION_RELU_FUNCTION(x, c) (clamp((Dtype)(x), (Dtype)min_value, (Dtype)max_value))
#define FUSED_ARG KERNEL_ARG_DTYPE min_value, KERNEL_ARG_DTYPE max_value,
#else
#define ACTIVATION_RELU_FUNCTION(x, c) (x)
#define FUSED_ARG
@ -74,6 +76,11 @@
#define ELTWISE_DATA_ARG
#endif
#if APPLY_BIAS
#define BIAS_KERNEL_ARG __global Dtype * biases_base,
#else
#define BIAS_KERNEL_ARG
#endif
#define __CAT(x, y) x##y
#define CAT(x, y) __CAT(x, y)
@ -97,6 +104,16 @@
#define LOOP(N, VAR, STMT) CAT(LOOP, N)((VAR), (STMT))
#if defined(convolve_simd) || defined(Conv_Interleaved)
#if TYPE == TYPE_HALF
#define INT_TYPE ushort
#define INT_TYPE2 ushort2
#define INT_TYPE4 ushort4
#define INT_TYPE8 ushort8
#define SUB_GROUP_BLOCK_READ2 intel_sub_group_block_read_us2
#define SUB_GROUP_BLOCK_READ4 intel_sub_group_block_read_us4
#define SUB_GROUP_BLOCK_READ8 intel_sub_group_block_read_us8
#define SUB_GROUP_BLOCK_READ intel_sub_group_block_read_us
#else
#define INT_TYPE uint
#define INT_TYPE2 uint2
#define INT_TYPE4 uint4
@ -106,6 +123,7 @@
#define SUB_GROUP_BLOCK_READ8 intel_sub_group_block_read8
#define SUB_GROUP_BLOCK_READ intel_sub_group_block_read
#endif
#endif
#ifdef KERNEL_BASIC
@ -418,6 +436,25 @@ typedef struct float15 { float s0; float s1; float s2; float s3; float s4; float
float s6; float s7; float s8; float s9; float sa; float sb; float sc; float sd; float se; } float15;
typedef struct float0 { float s0; } float0; //never used but makes compiler happy.
typedef struct half1 { half s0; } half1;
typedef struct half5 { half s0; half s1; half s2; half s3; half s4; } half5;
typedef struct half6 { half s0; half s1; half s2; half s3; half s4; half s5; } half6;
typedef struct half7 { half s0; half s1; half s2; half s3; half s4; half s5; half s6; } half7;
typedef struct half9 { half s0; half s1; half s2; half s3; half s4; half s5; half s6; half s7; half s8; } half9;
typedef struct half10 { half s0; half s1; half s2; half s3; half s4; half s5;
half s6; half s7; half s8; half s9; } half10;
typedef struct half11 { half s0; half s1; half s2; half s3; half s4; half s5;
half s6; half s7; half s8; half s9; half sa; } half11;
typedef struct half12 { half s0; half s1; half s2; half s3; half s4; half s5;
half s6; half s7; half s8; half s9; half sa; half sb; } half12;
typedef struct half13 { half s0; half s1; half s2; half s3; half s4; half s5;
half s6; half s7; half s8; half s9; half sa; half sb; half sc; } half13;
typedef struct half14 { half s0; half s1; half s2; half s3; half s4; half s5;
half s6; half s7; half s8; half s9; half sa; half sb; half sc; half sd; } half14;
typedef struct half15 { half s0; half s1; half s2; half s3; half s4; half s5;
half s6; half s7; half s8; half s9; half sa; half sb; half sc; half sd; half se; } half15;
typedef struct half0 { half s0; } half0; //never used but makes compiler happy.
#define OUT_PITCH_X output_width
#define ROW_PITCH input_width

@ -40,9 +40,9 @@
//
//M*/
#define Dtype float
#define Dtype4 float4
#define Dtype8 float8
#if defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif
__kernel void op_sum4(__global const Dtype * A,
__global const Dtype * B,
@ -73,20 +73,20 @@ __kernel void op_sum4(__global const Dtype * A,
a2 = vload4(i, src0_read + 2 * A_col_size);
a3 = vload4(i, src0_read + 3 * A_col_size);
dot0 = a0 * coeff1 + b0 * coeff2;
dot1 = a1 * coeff1 + b1 * coeff2;
dot2 = a2 * coeff1 + b2 * coeff2;
dot3 = a3 * coeff1 + b3 * coeff2;
dot0 = a0 * (Dtype4)coeff1 + b0 * (Dtype4)coeff2;
dot1 = a1 * (Dtype4)coeff1 + b1 * (Dtype4)coeff2;
dot2 = a2 * (Dtype4)coeff1 + b2 * (Dtype4)coeff2;
dot3 = a3 * (Dtype4)coeff1 + b3 * (Dtype4)coeff2;
#else
a0 = vload4(i, dst0_read);
a1 = vload4(i, dst0_read + A_col_size);
a2 = vload4(i, dst0_read + 2 * A_col_size);
a3 = vload4(i, dst0_read + 3 * A_col_size);
dot0 = a0 + b0 * coeff2;
dot1 = a1 + b1 * coeff2;
dot2 = a2 + b2 * coeff2;
dot3 = a3 + b3 * coeff2;
dot0 = a0 + b0 * (Dtype4)coeff2;
dot1 = a1 + b1 * (Dtype4)coeff2;
dot2 = a2 + b2 * (Dtype4)coeff2;
dot3 = a3 + b3 * (Dtype4)coeff2;
#endif
vstore4(dot0, i, dst0_read);
vstore4(dot1, i, dst0_read + A_col_size);

File diff suppressed because it is too large Load Diff

@ -39,24 +39,42 @@
//
//M*/
#if defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif
#define CONCAT(A,B) A##_##B
#define TEMPLATE(name,type) CONCAT(name,type)
// Types used for parameters, offset computations and so on
#define int_tp int
#define uint_tp unsigned int
#define KERNEL_ARG_DTYPE float
#define TYPE_FLOAT 1
#define TYPE_HALF 2
#if TYPE == TYPE_HALF
#define Dtype half
#define Dtype2 half2
#define Dtype4 half4
#define Dtype8 half8
#define Dtype16 half16
#define as_Dtype as_half
#define as_Dtype2 as_half2
#define as_Dtype4 as_half4
#define as_Dtype8 as_half8
#define as_Dtype16 as_half16
#else
#define Dtype float
#define Dtype2 float2
#define Dtype4 float4
#define Dtype8 float8
#define Dtype16 float16
#define as_Dtype as_float
#define as_Dtype2 as_float2
#define as_Dtype4 as_float4
#define as_Dtype8 as_float8
#define KERNEL_ARG_DTYPE float
#define as_Dtype16 as_float16
#endif
#if defined(cl_intel_subgroups)
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
@ -67,6 +85,15 @@
// common block to calculate (alpha * AxB + beta * C) and output to destination image.
#if TYPE == TYPE_HALF
#define SUBGROUP_BLOCK_READ8( __image, __coord ) intel_sub_group_block_read_us8( __image, __coord )
#define SHUFFLE_TYPE2(val) as_ushort2(val)
#define SHUFFLE_TYPE8(val) as_ushort8(val)
#define READ_IMAGE(__image, __coord) read_imageh(__image, sampler, __coord)
#define SIZE_OF_ELEMENT sizeof(ushort)
#define SIMD_SIZE_GEMM 16
#define TILE_N 16
#else
#define SUBGROUP_BLOCK_READ8( __image, __coord ) intel_sub_group_block_read8( __image, __coord )
#define SHUFFLE_TYPE2(val) val
#define SHUFFLE_TYPE8(val) val
@ -74,11 +101,17 @@
#define SIZE_OF_ELEMENT sizeof(uint)
#define SIMD_SIZE_GEMM 8
#define TILE_N 8
#endif
//#define USE_IMAGE_C
#ifdef USE_IMAGE_C
#if TYPE == TYPE_HALF
#define BLOCKC_READ8( _C, _coordC ) as_Dtype8( intel_sub_group_block_read_us8( _C, _coordC ) )
#define BLOCKC_WRITE8( _C, _coordC, _val ) intel_sub_group_block_write_us8( _C, _coordC, as_ushort8( _val ) )
#else
#define BLOCKC_READ8( _C, _coordC ) as_Dtype8( intel_sub_group_block_read8( _C, _coordC ) )
#define BLOCKC_WRITE8( _C, _coordC, _val ) intel_sub_group_block_write8( _C, _coordC, as_uint8( _val ) )
#endif
#define MATC_PARAMETER __read_only image2d_t C, __write_only image2d_t dst
#define GEMM_OUTPUT(ALPHA1, BETA_NOT0) GEMM_OUTPUT_EXT(ALPHA1, BETA_NOT0, C, dst, sizeof(uint))
#else
@ -139,10 +172,10 @@
blockC03 += blockAxB03; \
} \
} else { \
blockC00 = isFirstColBlock ? BLOCKC_READ8( _C, coordC ) * beta : BLOCKC_READ8( _C, coordC ); coordC.y += 8; \
blockC01 = isFirstColBlock ? BLOCKC_READ8( _C, coordC ) * beta : BLOCKC_READ8( _C, coordC ); coordC.y += 8; \
blockC02 = isFirstColBlock ? BLOCKC_READ8( _C, coordC ) * beta : BLOCKC_READ8( _C, coordC ); coordC.y += 8; \
blockC03 = isFirstColBlock ? BLOCKC_READ8( _C, coordC ) * beta : BLOCKC_READ8( _C, coordC ); \
blockC00 = isFirstColBlock ? (Dtype)0. : BLOCKC_READ8( _C, coordC ); coordC.y += 8; \
blockC01 = isFirstColBlock ? (Dtype)0. : BLOCKC_READ8( _C, coordC ); coordC.y += 8; \
blockC02 = isFirstColBlock ? (Dtype)0. : BLOCKC_READ8( _C, coordC ); coordC.y += 8; \
blockC03 = isFirstColBlock ? (Dtype)0. : BLOCKC_READ8( _C, coordC ); \
if (!ALPHA1) { \
blockC00 = mad(blockAxB00, (Dtype8)alpha, blockC00); \
blockC01 = mad(blockAxB01, (Dtype8)alpha, blockC01); \
@ -172,6 +205,43 @@
intel_sub_group_shuffle( _block.s7, _col ) );
// A's column block multiply B 's row block.
#if TYPE == TYPE_HALF
#define MULTIPLY_BLOCKS_8x8( _result, _blockA, _blockB00, _blockB01 ) \
{ \
const Dtype8 acol0 = TRANSPOSE_BLOCK_8( _blockA, 0 ); \
const Dtype8 acol1 = TRANSPOSE_BLOCK_8( _blockA, 1 ); \
const Dtype8 acol2 = TRANSPOSE_BLOCK_8( _blockA, 2 ); \
const Dtype8 acol3 = TRANSPOSE_BLOCK_8( _blockA, 3 ); \
const Dtype8 acol4 = TRANSPOSE_BLOCK_8( _blockA, 4 ); \
const Dtype8 acol5 = TRANSPOSE_BLOCK_8( _blockA, 5 ); \
const Dtype8 acol6 = TRANSPOSE_BLOCK_8( _blockA, 6 ); \
const Dtype8 acol7 = TRANSPOSE_BLOCK_8( _blockA, 7 ); \
const Dtype8 acol8 = TRANSPOSE_BLOCK_8( _blockA, 8 ); \
const Dtype8 acol9 = TRANSPOSE_BLOCK_8( _blockA, 9 ); \
const Dtype8 acola = TRANSPOSE_BLOCK_8( _blockA, 10 ); \
const Dtype8 acolb = TRANSPOSE_BLOCK_8( _blockA, 11 ); \
const Dtype8 acolc = TRANSPOSE_BLOCK_8( _blockA, 12 ); \
const Dtype8 acold = TRANSPOSE_BLOCK_8( _blockA, 13 ); \
const Dtype8 acole = TRANSPOSE_BLOCK_8( _blockA, 14 ); \
const Dtype8 acolf = TRANSPOSE_BLOCK_8( _blockA, 15 ); \
_result = mad( (Dtype8)(_blockB00.s0), acol0, _result ); \
_result = mad( (Dtype8)(_blockB00.s1), acol1, _result ); \
_result = mad( (Dtype8)(_blockB00.s2), acol2, _result ); \
_result = mad( (Dtype8)(_blockB00.s3), acol3, _result ); \
_result = mad( (Dtype8)(_blockB00.s4), acol4, _result ); \
_result = mad( (Dtype8)(_blockB00.s5), acol5, _result ); \
_result = mad( (Dtype8)(_blockB00.s6), acol6, _result ); \
_result = mad( (Dtype8)(_blockB00.s7), acol7, _result ); \
_result = mad( (Dtype8)(_blockB01.s0), acol8, _result ); \
_result = mad( (Dtype8)(_blockB01.s1), acol9, _result ); \
_result = mad( (Dtype8)(_blockB01.s2), acola, _result ); \
_result = mad( (Dtype8)(_blockB01.s3), acolb, _result ); \
_result = mad( (Dtype8)(_blockB01.s4), acolc, _result ); \
_result = mad( (Dtype8)(_blockB01.s5), acold, _result ); \
_result = mad( (Dtype8)(_blockB01.s6), acole, _result ); \
_result = mad( (Dtype8)(_blockB01.s7), acolf, _result ); \
}
#else
#define MULTIPLY_BLOCKS_8x8( _result, _blockA, _blockB ) \
{ \
const Dtype8 acol0 = TRANSPOSE_BLOCK_8( _blockA, 0 ); \
@ -191,7 +261,50 @@
_result = mad( (Dtype8)(_blockB.s6), acol6, _result ); \
_result = mad( (Dtype8)(_blockB.s7), acol7, _result ); \
}
#endif
#if TYPE == TYPE_HALF
#define GEMM_NN(ALPHA1, BETA_NOT0) \
__attribute__((intel_reqd_sub_group_size(SIMD_SIZE_GEMM))) \
__attribute__((reqd_work_group_size(SIMD_SIZE_GEMM, 1, 1))) \
__kernel void TEMPLATE(gemm_32_1_NN_ ##ALPHA1 ##_ ##BETA_NOT0, Dtype)( \
__read_only image2d_t A, \
__read_only image2d_t B, \
MATC_PARAMETER, \
KERNEL_ARG_DTYPE alpha_in, \
KERNEL_ARG_DTYPE beta_in, \
int width0, \
int isFirstColBlock) \
{ \
const Dtype alpha = (Dtype)alpha_in; \
const Dtype beta = (Dtype)beta_in; \
const int group_x = get_group_id(0); \
const int group_y = get_group_id(1); \
Dtype8 blockAxB00 = 0; \
Dtype8 blockAxB01 = 0; \
Dtype8 blockAxB02 = 0; \
Dtype8 blockAxB03 = 0; \
int2 coordA = (int2)( 0, group_y * TILE_M ); \
int2 coordB = (int2)( ( group_x * TILE_N ) * SIZE_OF_ELEMENT, 0 ); \
do \
{ \
int2 coordBTemp = coordB; \
Dtype8 blockB00 = as_Dtype8( SUBGROUP_BLOCK_READ8( B, coordBTemp ) ); coordB.y += TILE_K; \
Dtype8 blockB01 = as_Dtype8( SUBGROUP_BLOCK_READ8( B, coordBTemp ) ); coordB.y += TILE_K; \
int2 coordATemp = coordA; \
Dtype8 blockA00 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordATemp.y += 8; \
Dtype8 blockA01 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordATemp.y += 8; \
Dtype8 blockA02 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordATemp.y += 8; \
Dtype8 blockA03 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordA.x += TILE_K * SIZE_OF_ELEMENT * 2; \
MULTIPLY_BLOCKS_8x8( blockAxB00, blockA00, blockB00, blockB01 ); \
MULTIPLY_BLOCKS_8x8( blockAxB01, blockA01, blockB00, blockB01 ); \
MULTIPLY_BLOCKS_8x8( blockAxB02, blockA02, blockB00, blockB01 ); \
MULTIPLY_BLOCKS_8x8( blockAxB03, blockA03, blockB00, blockB01 ); \
} \
while( coordB.y < width0 ); \
GEMM_OUTPUT(ALPHA1, BETA_NOT0); \
}
#else
#define GEMM_NN(ALPHA1, BETA_NOT0) \
__attribute__((intel_reqd_sub_group_size(SIMD_SIZE_GEMM))) \
__attribute__((reqd_work_group_size(SIMD_SIZE_GEMM, 1, 1))) \
@ -231,6 +344,7 @@ __kernel void TEMPLATE(gemm_32_1_NN_ ##ALPHA1 ##_ ##BETA_NOT0, Dtype)( \
while( coordB.y < width0 ); \
GEMM_OUTPUT(ALPHA1, BETA_NOT0); \
}
#endif
GEMM_NN(1, 0) // ALPHA == 1, BETA == 0
GEMM_NN(1, 1) // ALPHA == 1, BETA != 0
@ -264,6 +378,45 @@ GEMM_NN(0, 1) // ALPHA != 1, BETA != 0
_result = mad( (Dtype8)(_blockB.s7), TRANSPOSE_BLOCK_8(_blockA.s7, _col), _result ); \
}
#if TYPE == TYPE_HALF
#define GEMM_TN(ALPHA1, BETA_NOT0) \
__attribute__((intel_reqd_sub_group_size(SIMD_SIZE_GEMM))) \
__attribute__((reqd_work_group_size(SIMD_SIZE_GEMM, 1, 1))) \
__kernel void TEMPLATE(gemm_32_1_TN_ ##ALPHA1 ##_ ##BETA_NOT0,Dtype)( \
__read_only image2d_t A, \
__read_only image2d_t B, \
MATC_PARAMETER, \
KERNEL_ARG_DTYPE alpha_in, \
KERNEL_ARG_DTYPE beta_in, \
int width0, \
int isFirstColBlock) \
{ \
const Dtype alpha = (Dtype)alpha_in; \
const Dtype beta = (Dtype)beta_in; \
const int group_x = get_group_id(0);\
const int group_y = get_group_id(1);\
Dtype8 blockAxB00 = 0;\
Dtype8 blockAxB01 = 0;\
Dtype8 blockAxB02 = 0;\
Dtype8 blockAxB03 = 0;\
int2 coordA = (int2)( group_y * TILE_M * SIZE_OF_ELEMENT, 0 );\
int2 coordB = (int2)( ( group_x * TILE_N ) * SIZE_OF_ELEMENT, 0 );\
do\
{\
int2 coordBTemp = coordB;\
Dtype8 blockB00 = as_Dtype8( SUBGROUP_BLOCK_READ8( B, coordBTemp ) ); coordB.y += TILE_K;\
int2 coordATemp = coordA;\
Dtype8 blockA00 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordATemp.x += 16 * SIZE_OF_ELEMENT;\
Dtype8 blockA01 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordA.y += TILE_K;\
MULTIPLY_BLOCKS_8x8( blockAxB00, blockA00, blockB00, 0); \
MULTIPLY_BLOCKS_8x8( blockAxB01, blockA00, blockB00, 8); \
MULTIPLY_BLOCKS_8x8( blockAxB02, blockA01, blockB00, 0); \
MULTIPLY_BLOCKS_8x8( blockAxB03, blockA01, blockB00, 8); \
} \
while( coordB.y < width0 ); \
GEMM_OUTPUT(ALPHA1, BETA_NOT0); \
}
#else
#define GEMM_TN(ALPHA1, BETA_NOT0) \
__attribute__((intel_reqd_sub_group_size(SIMD_SIZE_GEMM))) \
__attribute__((reqd_work_group_size(SIMD_SIZE_GEMM, 1, 1))) \
@ -303,6 +456,7 @@ __kernel void TEMPLATE(gemm_32_1_TN_ ##ALPHA1 ##_ ##BETA_NOT0,Dtype)( \
while( coordB.y < width0 ); \
GEMM_OUTPUT(ALPHA1, BETA_NOT0); \
}
#endif
GEMM_TN(1, 0) // ALPHA == 1, BETA == 0
GEMM_TN(1, 1) // ALPHA == 1, BETA != 0
@ -324,6 +478,7 @@ GEMM_TN(0, 1) // ALPHA != 1, BETA != 0
intel_sub_group_shuffle( _block.s6, _col), \
intel_sub_group_shuffle( _block.s7, _col) )
#if TYPE == TYPE_HALF
#define MULTIPLY_BLOCKS_8x8( _result, _blockA, _blockB ) \
{ \
const Dtype8 acol0 = TRANSPOSE_BLOCK_8( _blockA, 0 ); \
@ -334,6 +489,14 @@ GEMM_TN(0, 1) // ALPHA != 1, BETA != 0
const Dtype8 acol5 = TRANSPOSE_BLOCK_8( _blockA, 5 ); \
const Dtype8 acol6 = TRANSPOSE_BLOCK_8( _blockA, 6 ); \
const Dtype8 acol7 = TRANSPOSE_BLOCK_8( _blockA, 7 ); \
const Dtype8 acol8 = TRANSPOSE_BLOCK_8( _blockA, 8 ); \
const Dtype8 acol9 = TRANSPOSE_BLOCK_8( _blockA, 9 ); \
const Dtype8 acola = TRANSPOSE_BLOCK_8( _blockA, 10 ); \
const Dtype8 acolb = TRANSPOSE_BLOCK_8( _blockA, 11 ); \
const Dtype8 acolc = TRANSPOSE_BLOCK_8( _blockA, 12 ); \
const Dtype8 acold = TRANSPOSE_BLOCK_8( _blockA, 13 ); \
const Dtype8 acole = TRANSPOSE_BLOCK_8( _blockA, 14 ); \
const Dtype8 acolf = TRANSPOSE_BLOCK_8( _blockA, 15 ); \
_result = mad( (Dtype8)_blockB.s0, acol0, _result ); \
_result = mad( (Dtype8)_blockB.s1, acol1, _result ); \
_result = mad( (Dtype8)_blockB.s2, acol2, _result ); \
@ -342,8 +505,80 @@ GEMM_TN(0, 1) // ALPHA != 1, BETA != 0
_result = mad( (Dtype8)_blockB.s5, acol5, _result ); \
_result = mad( (Dtype8)_blockB.s6, acol6, _result ); \
_result = mad( (Dtype8)_blockB.s7, acol7, _result ); \
_result = mad( (Dtype8)_blockB.s8, acol8, _result ); \
_result = mad( (Dtype8)_blockB.s9, acol9, _result ); \
_result = mad( (Dtype8)_blockB.sa, acola, _result ); \
_result = mad( (Dtype8)_blockB.sb, acolb, _result ); \
_result = mad( (Dtype8)_blockB.sc, acolc, _result ); \
_result = mad( (Dtype8)_blockB.sd, acold, _result ); \
_result = mad( (Dtype8)_blockB.se, acole, _result ); \
_result = mad( (Dtype8)_blockB.sf, acolf, _result ); \
}
#else
#define MULTIPLY_BLOCKS_8x8( _result, _blockA, _blockB ) \
{ \
const Dtype8 acol0 = TRANSPOSE_BLOCK_8( _blockA, 0 ); \
const Dtype8 acol1 = TRANSPOSE_BLOCK_8( _blockA, 1 ); \
const Dtype8 acol2 = TRANSPOSE_BLOCK_8( _blockA, 2 ); \
const Dtype8 acol3 = TRANSPOSE_BLOCK_8( _blockA, 3 ); \
const Dtype8 acol4 = TRANSPOSE_BLOCK_8( _blockA, 4 ); \
const Dtype8 acol5 = TRANSPOSE_BLOCK_8( _blockA, 5 ); \
const Dtype8 acol6 = TRANSPOSE_BLOCK_8( _blockA, 6 ); \
const Dtype8 acol7 = TRANSPOSE_BLOCK_8( _blockA, 7 ); \
_result = mad( (Dtype8)_blockB.s0, acol0, _result ); \
_result = mad( (Dtype8)_blockB.s1, acol1, _result ); \
_result = mad( (Dtype8)_blockB.s2, acol2, _result ); \
_result = mad( (Dtype8)_blockB.s3, acol3, _result ); \
_result = mad( (Dtype8)_blockB.s4, acol4, _result ); \
_result = mad( (Dtype8)_blockB.s5, acol5, _result ); \
_result = mad( (Dtype8)_blockB.s6, acol6, _result ); \
_result = mad( (Dtype8)_blockB.s7, acol7, _result ); \
}
#endif
#if TYPE == TYPE_HALF
#define GEMM_NT(ALPHA1, BETA_NOT0, VECSCALAR, VECSIZE) \
__attribute__((intel_reqd_sub_group_size(SIMD_SIZE_GEMM))) \
__attribute__((reqd_work_group_size(SIMD_SIZE_GEMM, 1, 1))) \
__kernel void TEMPLATE(gemm_32_1_NT_ ##VECSCALAR ##_ ##ALPHA1 ##_ ##BETA_NOT0,Dtype)( \
__read_only image2d_t A, \
MATB_PARAMETER, \
MATC_PARAMETER, \
KERNEL_ARG_DTYPE alpha_in, \
KERNEL_ARG_DTYPE beta_in, \
int padded_k, \
int k, \
int isFirstColBlock) \
{ \
const Dtype alpha = (Dtype)alpha_in; \
const Dtype beta = (Dtype)beta_in; \
const int group_x = get_group_id(0); \
const int group_y = get_group_id(1); \
Dtype8 blockAxB00 = 0; \
Dtype8 blockAxB01 = 0; \
Dtype8 blockAxB02 = 0; \
Dtype8 blockAxB03 = 0; \
int2 coordA = (int2)( 0, group_y * TILE_M ); \
int2 coordB = (int2)( 0, ( group_x * TILE_N )); \
const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST; \
do \
{ \
Dtype16 blockB00; \
BLOCKB_READ8(blockB00, B, coordB); \
int2 coordATemp = coordA; \
Dtype8 blockA00 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordATemp.y += 8; \
Dtype8 blockA01 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordATemp.y += 8; \
Dtype8 blockA02 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordATemp.y += 8; \
Dtype8 blockA03 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordA.x += TILE_K * SIZE_OF_ELEMENT * 2; \
MULTIPLY_BLOCKS_8x8( blockAxB00, blockA00, blockB00 ); \
MULTIPLY_BLOCKS_8x8( blockAxB01, blockA01, blockB00 ); \
MULTIPLY_BLOCKS_8x8( blockAxB02, blockA02, blockB00 ); \
MULTIPLY_BLOCKS_8x8( blockAxB03, blockA03, blockB00 ); \
} \
while( coordB.x < padded_k / VECSIZE ); \
GEMM_OUTPUT(ALPHA1, BETA_NOT0); \
}
#else
#define GEMM_NT(ALPHA1, BETA_NOT0, VECSCALAR, VECSIZE) \
__attribute__((intel_reqd_sub_group_size(SIMD_SIZE_GEMM))) \
__attribute__((reqd_work_group_size(SIMD_SIZE_GEMM, 1, 1))) \
@ -385,12 +620,23 @@ __kernel void TEMPLATE(gemm_32_1_NT_ ##VECSCALAR ##_ ##ALPHA1 ##_ ##BETA_NOT0,Dt
while( coordB.x < padded_k / VECSIZE ); \
GEMM_OUTPUT(ALPHA1, BETA_NOT0); \
}
#endif
#if TYPE == TYPE_HALF
#define BLOCKB_READ8(_blockb, _B, _coordB) \
int2 _coordBTemp = _coordB; \
_coordBTemp.y += get_local_id(0); \
_blockb.s0123 = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.s4567 = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.s89ab = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.scdef = READ_IMAGE(_B, _coordBTemp); _coordB.x += 4;
#else
#define BLOCKB_READ8(_blockb, _B, _coordB) \
int2 _coordBTemp = _coordB; \
_coordBTemp.y += get_local_id(0); \
_blockb.s0123 = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.s4567 = READ_IMAGE(_B, _coordBTemp); _coordB.x += 2;
#endif
#define MATB_PARAMETER __read_only image2d_t B
@ -401,12 +647,21 @@ GEMM_NT(0, 1, VEC4, 4) // ALPHA != 1, BETA != 0
#undef BLOCKB_READ8
#undef MATB_PARAMETER
#if TYPE == TYPE_HALF
#define BLOCKB_READ8(_blockb, _B, _coordB) \
int2 _coordBTemp = _coordB; \
_coordBTemp.y += get_local_id(0); \
const __global float *B_read = (__global float *)(_B + (_coordBTemp.y * ldb) + _coordBTemp.x + offB); \
_blockb = as_Dtype16(as_ushort16(vload8(0, B_read))); \
_coordB.x += TILE_K * 2;
#else
#define BLOCKB_READ8(_blockb, _B, _coordB) \
int2 _coordBTemp = _coordB; \
_coordBTemp.y += get_local_id(0); \
const __global Dtype *B_read = (__global Dtype *)(_B + (_coordBTemp.y * ldb) + _coordBTemp.x + offB); \
_blockb = vload8(0, B_read); \
_coordB.x += TILE_K;
#endif
#define MATB_PARAMETER __global Dtype *B, int offB, int ldb
@ -417,6 +672,45 @@ GEMM_NT(0, 1, BUFFER, 1) // ALPHA != 1, BETA != 0
#undef BLOCKB_READ8
#undef MATB_PARAMETER
#if TYPE == TYPE_HALF
#define BLOCKB_READ8(_blockb, _B, _coordB) \
int2 _coordBTemp = _coordB; \
_coordBTemp.y += get_local_id(0); \
Dtype4 temp; \
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.s0 = temp.s0; \
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.s1 = temp.s0; \
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.s2 = temp.s0; \
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.s3 = temp.s0; \
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.s4 = temp.s0; \
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.s5 = temp.s0; \
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.s6 = temp.s0; \
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.s7 = temp.s0; \
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.s8 = temp.s0; \
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.s9 = temp.s0; \
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.sa = temp.s0; \
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.sb = temp.s0; \
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.sc = temp.s0; \
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.sd = temp.s0; \
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.se = temp.s0; \
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.sf = temp.s0; \
_coordB.x += 16;
#else
#define BLOCKB_READ8(_blockb, _B, _coordB) \
int2 _coordBTemp = _coordB; \
_coordBTemp.y += get_local_id(0); \
@ -438,6 +732,7 @@ GEMM_NT(0, 1, BUFFER, 1) // ALPHA != 1, BETA != 0
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
_blockb.s7 = temp.s0; \
_coordB.x += 8;
#endif
#define MATB_PARAMETER __read_only image2d_t B
@ -483,6 +778,47 @@ GEMM_NT(0, 1, SCALAR, 1) // ALPHA != 1, BETA != 0
_result = mad( (Dtype8)_blockB.s7, acol7, _result ); \
}
#if TYPE == TYPE_HALF
#define GEMM_TT(ALPHA1, BETA_NOT0, VECSCALAR, VECSIZE) \
__attribute__((intel_reqd_sub_group_size(SIMD_SIZE_GEMM))) \
__attribute__((reqd_work_group_size(SIMD_SIZE_GEMM, 1, 1))) \
__kernel void TEMPLATE(gemm_32_1_TT_ ##VECSCALAR ##_ ##ALPHA1 ##_ ##BETA_NOT0, Dtype)( \
__read_only image2d_t A, \
MATB_PARAMETER, \
MATC_PARAMETER, \
KERNEL_ARG_DTYPE alpha_in, \
KERNEL_ARG_DTYPE beta_in, \
int padded_k, \
int k, \
int isFirstColBlock) \
{ \
const Dtype alpha = (Dtype)alpha_in; \
const Dtype beta = (Dtype)beta_in; \
const int group_x = get_group_id(0); \
const int group_y = get_group_id(1); \
Dtype8 blockAxB00 = 0; \
Dtype8 blockAxB01 = 0; \
Dtype8 blockAxB02 = 0; \
Dtype8 blockAxB03 = 0; \
int2 coordA = (int2)( group_y * TILE_M * SIZE_OF_ELEMENT, 0 ); \
int2 coordB = (int2)( 0, ( group_x * TILE_N )); \
const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST; \
do \
{ \
Dtype8 blockB00; \
BLOCKB_READ8(blockB00, B, coordB); \
int2 coordATemp = coordA; \
Dtype8 blockA00 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordATemp.x += 16 * SIZE_OF_ELEMENT;\
Dtype8 blockA01 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordA.y += TILE_K;\
MULTIPLY_BLOCKS_8x8( blockAxB00, blockA00, blockB00, 0); \
MULTIPLY_BLOCKS_8x8( blockAxB01, blockA00, blockB00, 8); \
MULTIPLY_BLOCKS_8x8( blockAxB02, blockA01, blockB00, 0); \
MULTIPLY_BLOCKS_8x8( blockAxB03, blockA01, blockB00, 8); \
} \
while( coordB.x < padded_k / VECSIZE ); \
GEMM_OUTPUT(ALPHA1, BETA_NOT0);\
}
#else
#define GEMM_TT(ALPHA1, BETA_NOT0, VECSCALAR, VECSIZE) \
__attribute__((intel_reqd_sub_group_size(SIMD_SIZE_GEMM))) \
__attribute__((reqd_work_group_size(SIMD_SIZE_GEMM, 1, 1))) \
@ -524,6 +860,7 @@ __kernel void TEMPLATE(gemm_32_1_TT_ ##VECSCALAR ##_ ##ALPHA1 ##_ ##BETA_NOT0, D
while( coordB.x < padded_k / VECSIZE ); \
GEMM_OUTPUT(ALPHA1, BETA_NOT0);\
}
#endif
#define BLOCKB_READ8(_blockb, _B, _coordB) \
int2 _coordBTemp = _coordB; \
@ -540,12 +877,21 @@ GEMM_TT(0, 1, VEC4, 4) // ALPHA != 1, BETA != 0
#undef BLOCKB_READ8
#undef MATB_PARAMETER
#if TYPE == TYPE_HALF
#define BLOCKB_READ8(_blockb, _B, _coordB) \
int2 _coordBTemp = _coordB; \
_coordBTemp.y += get_local_id(0); \
const __global float *B_read = (__global float *)(_B + (_coordBTemp.y * k) + _coordBTemp.x + offB); \
_blockb = as_Dtype8(as_ushort8(vload4(0, B_read))); \
_coordB.x += TILE_K;
#else
#define BLOCKB_READ8(_blockb, _B, _coordB) \
int2 _coordBTemp = _coordB; \
_coordBTemp.y += get_local_id(0); \
const __global Dtype *B_read = (__global Dtype *)(_B + (_coordBTemp.y * k) + _coordBTemp.x + offB); \
_blockb = vload8(0, B_read); \
_coordB.x += TILE_K;
#endif
#define MATB_PARAMETER __global Dtype *B, int offB, int ldb
@ -598,7 +944,7 @@ GEMM_TT(0, 1, SCALAR, 1) // ALPHA != 1, BETA != 0
#undef READ_IMAGE
#undef SIZE_OF_ELEMENT
__kernel void TEMPLATE(gemm_buffer_copy_image_transpose,Dtype)(
__kernel void TEMPLATE(gemm_buffer_copy_image_transpose, Dtype)(
__global Dtype* A,
__write_only image2d_t ImA,
int offA,
@ -611,10 +957,14 @@ __kernel void TEMPLATE(gemm_buffer_copy_image_transpose,Dtype)(
int2 coord_dst = (int2)(gidx, gidy);
__global Dtype* A_off = A + offA;
Dtype srcA = A_off[gidy * ldA + gidx];
#if TYPE == TYPE_HALF
write_imageh(ImA, coord_dst, (Dtype4)srcA);
#else
write_imagef(ImA, coord_dst, (Dtype4)srcA);
#endif
}
__kernel void TEMPLATE(gemm_buffer_copy_image_no_transpose,Dtype)(
__kernel void TEMPLATE(gemm_buffer_copy_image_no_transpose, Dtype)(
__global Dtype* A,
__write_only image2d_t ImA,
int offA,
@ -625,6 +975,14 @@ __kernel void TEMPLATE(gemm_buffer_copy_image_no_transpose,Dtype)(
const int gidx = get_global_id(0);
const int gidy = get_global_id(1);
int2 coord_dst = (int2)(gidx, gidy);
#if TYPE == TYPE_HALF
if (gidx >= width || gidy >= height) {
write_imageh(ImA, coord_dst, 0);
return;
}
__global Dtype* A_off = A + offA;
write_imageh(ImA, coord_dst, A_off[gidy * ldA + gidx]);
#else
if (gidx >= width || gidy >= height) {
write_imageui(ImA, coord_dst, (uint4)0);
return;
@ -632,4 +990,5 @@ __kernel void TEMPLATE(gemm_buffer_copy_image_no_transpose,Dtype)(
__global Dtype* A_off = A + offA;
uint4 srcA = convert_uint4(as_uchar4(A_off[gidy * ldA + gidx]));
write_imageui(ImA, coord_dst, srcA);
#endif
}

@ -40,16 +40,20 @@
//
//M*/
#if defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif
#define CONCAT(A,B) A##_##B
#define TEMPLATE(name,type) CONCAT(name,type)
#define Dtype float
#define KERNEL_ARG_DTYPE float
__kernel void TEMPLATE(axpy,Dtype)(const int n, const Dtype alpha, __global const Dtype* x,
__kernel void TEMPLATE(axpy,Dtype)(const int n, const KERNEL_ARG_DTYPE alpha, __global const Dtype* x,
const int offx, __global Dtype* y,
const int offy) {
for (int index = get_global_id(0); index < n; index += get_global_size(0)) {
Dtype src = x[offx + index];
Dtype dst = y[offy + index];
y[offy + index] = alpha * src + dst;
y[offy + index] = convert_Dtype(alpha) * src + dst;
}
}

@ -39,41 +39,45 @@
//
//M*/
#if defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif
#define CONCAT(A,B) A##_##B
#define TEMPLATE(name,type) CONCAT(name,type)
#define Dtype float
#define KERNEL_ARG_DTYPE float
__kernel void TEMPLATE(matvec_mul4,Dtype)(
__global const float * A,
__global const Dtype * A,
int offA,
unsigned int A_col_size,
unsigned int trail_item,
__global const float * v,
__global const Dtype * v,
int offv,
float alpha,
float beta,
__global float4 * result,
KERNEL_ARG_DTYPE alpha,
KERNEL_ARG_DTYPE beta,
__global Dtype4* result,
int offr,
__local float4 * work)
__local Dtype4* work)
{
unsigned int row_gid = get_group_id(0);
unsigned int lid = get_local_id(0);
const __global float *src0_read = A + row_gid * 4 * A_col_size + offA;
const __global float *src1_read = v + offv;
result = (__global float4*)((__global float*)result + offr);
float4 dot0 = (float4)(0.f);
float4 dot1 = (float4)(0.f);
float4 dot2 = (float4)(0.f);
float4 dot3 = (float4)(0.f);
const __global Dtype *src0_read = A + row_gid * 4 * A_col_size + offA;
const __global Dtype *src1_read = v + offv;
result = (__global Dtype4*)((__global Dtype*)result + offr);
Dtype4 dot0 = (Dtype4)(0.f);
Dtype4 dot1 = (Dtype4)(0.f);
Dtype4 dot2 = (Dtype4)(0.f);
Dtype4 dot3 = (Dtype4)(0.f);
unsigned int i = lid;
while( i < A_col_size / 4) {
const float4 a0 = vload4(i, src0_read);
const float4 a1 = vload4(i, src0_read + A_col_size);
const float4 a2 = vload4(i, src0_read + 2 * A_col_size);
const float4 a3 = vload4(i, src0_read + 3 * A_col_size);
const Dtype4 a0 = vload4(i, src0_read);
const Dtype4 a1 = vload4(i, src0_read + A_col_size);
const Dtype4 a2 = vload4(i, src0_read + 2 * A_col_size);
const Dtype4 a3 = vload4(i, src0_read + 3 * A_col_size);
const float4 b0 = vload4(i, src1_read);
const Dtype4 b0 = vload4(i, src1_read);
dot0 += a0 * b0;
dot1 += a1 * b0;
@ -92,15 +96,15 @@ __kernel void TEMPLATE(matvec_mul4,Dtype)(
{
if(trail_item != 0)
{
const __global float *src0_trail = src0_read + i * 4;
const __global float *src1_trail = src1_read + i * 4;
const __global Dtype *src0_trail = src0_read + i * 4;
const __global Dtype *src1_trail = src1_read + i * 4;
for(unsigned int i = 0; i < trail_item; ++i) {
const float at0 = src0_trail[i];
const float at1 = src0_trail[i + A_col_size];
const float at2 = src0_trail[i + 2 * A_col_size];
const float at3 = src0_trail[i + 3 * A_col_size];
const Dtype at0 = src0_trail[i];
const Dtype at1 = src0_trail[i + A_col_size];
const Dtype at2 = src0_trail[i + 2 * A_col_size];
const Dtype at3 = src0_trail[i + 3 * A_col_size];
const float bt = src1_trail[i];
const Dtype bt = src1_trail[i];
work[lid].s0 += at0 * bt;
work[lid].s1 += at1 * bt;
@ -118,40 +122,40 @@ __kernel void TEMPLATE(matvec_mul4,Dtype)(
}
if(lid == 0) {
if(beta == (Dtype)0)
result[row_gid] = alpha * work[0];
result[row_gid] = convert_Dtype(alpha) * work[0];
else
result[row_gid] = alpha * work[0] + beta * result[row_gid];
result[row_gid] = convert_Dtype(alpha) * work[0] + convert_Dtype(beta) * result[row_gid];
}
}
/* This kernel used for the trailing rows when row_of_A %4 !=0 */
__kernel void TEMPLATE(matvec_mul1,Dtype)(
__global const float * A,
__global const Dtype * A,
int offA,
unsigned int A_col_size,
unsigned int row_offset,
unsigned int trail_item,
__global const float * v,
__global const Dtype * v,
int offv,
float alpha,
float beta,
__global float * result,
KERNEL_ARG_DTYPE alpha,
KERNEL_ARG_DTYPE beta,
__global Dtype * result,
int offr,
__local float * work)
__local Dtype * work)
{
unsigned int row_gid = get_group_id(0);
unsigned int lid = get_local_id(0);
const __global float *src0_read = A + (row_offset + row_gid) * A_col_size + offA;
const __global float *src1_read = v + + offv;
const __global Dtype *src0_read = A + (row_offset + row_gid) * A_col_size + offA;
const __global Dtype *src1_read = v + + offv;
result = result + offr;
float4 dot0 = (float4)(0.f);
Dtype4 dot0 = (Dtype4)(0.f);
unsigned int i = lid;
while( i < A_col_size / 4)
{
const float4 a0 = vload4(i, src0_read);
const float4 b0 = vload4(i, src1_read);
const Dtype4 a0 = vload4(i, src0_read);
const Dtype4 b0 = vload4(i, src1_read);
dot0 += a0 * b0;
i += get_local_size(0);
@ -163,11 +167,11 @@ __kernel void TEMPLATE(matvec_mul1,Dtype)(
{
if(trail_item != 0)
{
const __global float *src0_trail = src0_read + i * 4;
const __global float *src1_trail = src1_read + i * 4;
const __global Dtype *src0_trail = src0_read + i * 4;
const __global Dtype *src1_trail = src1_read + i * 4;
for(unsigned int i = 0; i < trail_item; ++i) {
const float at0 = src0_trail[i];
const float bt = src1_trail[i];
const Dtype at0 = src0_trail[i];
const Dtype bt = src1_trail[i];
work[lid] += at0 * bt;
}
@ -182,10 +186,10 @@ __kernel void TEMPLATE(matvec_mul1,Dtype)(
if(lid == 0) {
if(beta == (Dtype)0) {
result[row_gid+row_offset] = alpha * work[0];
result[row_gid+row_offset] = convert_Dtype(alpha) * work[0];
} else {
result[row_gid+row_offset] *= beta;
result[row_gid+row_offset] += alpha * work[0];
result[row_gid+row_offset] *= convert_Dtype(beta);
result[row_gid+row_offset] += convert_Dtype(alpha) * work[0];
}
}
}

@ -40,7 +40,11 @@
//
//M*/
#define Dtype float
#if defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif
#define Dtype float
#define Dtype4 float4
#define Dtype8 float8
@ -135,17 +139,17 @@ __kernel void MVN(__global const Dtype* src,
store(dst_vec, dst, index);
}
__kernel void MEAN_FUSE(__global const Dtype * A,
__kernel void MEAN_FUSE(__global const T * A,
unsigned int A_col_size,
float alpha,
__global Dtype4 * result,
__global Dtype * B,
__global T4 * mean,
__global Dtype * tmp,
__local Dtype4 * work)
{
unsigned int row_gid = get_group_id(0);
unsigned int lid = get_local_id(0);
const __global Dtype *src0_read = A + row_gid * 4 * A_col_size;
__global Dtype *dst0_read = B + row_gid * 4 * A_col_size;
const __global T *src0_read = A + row_gid * 4 * A_col_size;
__global Dtype *dst0_read = tmp + row_gid * 4 * A_col_size;
Dtype4 dot0, dot1, dot2, dot3;
dot0 = dot1 = dot2 = dot3 = (Dtype4)(0.f);
@ -153,15 +157,15 @@ __kernel void MEAN_FUSE(__global const Dtype * A,
const Dtype4 b0 = (Dtype4)1.f;
while( i < A_col_size / 4)
{
const Dtype4 a0 = vload4(i, src0_read);
const Dtype4 a1 = vload4(i, src0_read + A_col_size);
const Dtype4 a2 = vload4(i, src0_read + 2 * A_col_size);
const Dtype4 a3 = vload4(i, src0_read + 3 * A_col_size);
const T4 a0 = vload4(i, src0_read);
const T4 a1 = vload4(i, src0_read + A_col_size);
const T4 a2 = vload4(i, src0_read + 2 * A_col_size);
const T4 a3 = vload4(i, src0_read + 3 * A_col_size);
dot0 += a0;
dot1 += a1;
dot2 += a2;
dot3 += a3;
dot0 += convert_float4(a0);
dot1 += convert_float4(a1);
dot2 += convert_float4(a2);
dot3 += convert_float4(a3);
i += get_local_size(0);
}
@ -181,22 +185,22 @@ __kernel void MEAN_FUSE(__global const Dtype * A,
if(lid == 0)
{
result[row_gid] = alpha * work[0];
mean[row_gid] = convert_T(alpha * work[0]);
}
Dtype4 sum = work[0] * alpha;
i = lid;
while( i < A_col_size / 4)
{
const Dtype4 a0 = vload4(i, src0_read);
const Dtype4 a1 = vload4(i, src0_read + A_col_size);
const Dtype4 a2 = vload4(i, src0_read + 2 * A_col_size);
const Dtype4 a3 = vload4(i, src0_read + 3 * A_col_size);
const T4 a0 = vload4(i, src0_read);
const T4 a1 = vload4(i, src0_read + A_col_size);
const T4 a2 = vload4(i, src0_read + 2 * A_col_size);
const T4 a3 = vload4(i, src0_read + 3 * A_col_size);
dot0 = native_powr(a0 - (Dtype4)sum.x, 2);
dot1 = native_powr(a1 - (Dtype4)sum.y, 2);
dot2 = native_powr(a2 - (Dtype4)sum.z, 2);
dot3 = native_powr(a3 - (Dtype4)sum.w, 2);
dot0 = native_powr(convert_float4(a0) - (Dtype4)sum.x, 2);
dot1 = native_powr(convert_float4(a1) - (Dtype4)sum.y, 2);
dot2 = native_powr(convert_float4(a2) - (Dtype4)sum.z, 2);
dot3 = native_powr(convert_float4(a3) - (Dtype4)sum.w, 2);
vstore4(dot0, i, dst0_read);
vstore4(dot1, i, dst0_read + A_col_size);
@ -208,22 +212,22 @@ __kernel void MEAN_FUSE(__global const Dtype * A,
}
__kernel void MVN_FUSE(__global const Dtype * tmp,
__global const Dtype * A,
__global const Dtype4 * mean,
__global const T * A,
__global const T4 * mean,
unsigned int A_col_size,
const float alpha_val,
const float eps,
const float relu_slope,
__global const Dtype4 * bnorm_weight,
__global const Dtype4 * bnorm_bias,
__global Dtype * B,
__global T * B,
__local Dtype4 * work)
{
unsigned int row_gid = get_group_id(0);
unsigned int lid = get_local_id(0);
const __global Dtype *src0_read = tmp + row_gid * 4 * A_col_size;
const __global Dtype *src1_read = A + row_gid * 4 * A_col_size;
__global Dtype *dst0_read = B + row_gid * 4 * A_col_size;
const __global T *src1_read = A + row_gid * 4 * A_col_size;
__global T *dst0_read = B + row_gid * 4 * A_col_size;
Dtype4 dot0, dot1, dot2, dot3;
dot0 = dot1 = dot2 = dot3 = (Dtype4)(0.f);
@ -257,7 +261,7 @@ __kernel void MVN_FUSE(__global const Dtype * tmp,
}
barrier(CLK_LOCAL_MEM_FENCE);
Dtype4 mean_val = mean[row_gid];
Dtype4 mean_val = convert_float4(mean[row_gid]);
Dtype4 dev_val = sqrt(work[0] * alpha_val) + (Dtype4)eps;
Dtype4 alpha = (Dtype4)1.f / dev_val;
@ -271,15 +275,15 @@ __kernel void MVN_FUSE(__global const Dtype * tmp,
i = lid;
while( i < A_col_size / 4)
{
const Dtype4 a0 = vload4(i, src1_read);
const Dtype4 a1 = vload4(i, src1_read + A_col_size);
const Dtype4 a2 = vload4(i, src1_read + 2 * A_col_size);
const Dtype4 a3 = vload4(i, src1_read + 3 * A_col_size);
const T4 a0 = vload4(i, src1_read);
const T4 a1 = vload4(i, src1_read + A_col_size);
const T4 a2 = vload4(i, src1_read + 2 * A_col_size);
const T4 a3 = vload4(i, src1_read + 3 * A_col_size);
dot0 = (a0 - (Dtype4)mean_val.x) * alpha.x;
dot1 = (a1 - (Dtype4)mean_val.y) * alpha.y;
dot2 = (a2 - (Dtype4)mean_val.z) * alpha.z;
dot3 = (a3 - (Dtype4)mean_val.w) * alpha.w;
dot0 = (convert_float4(a0) - (Dtype4)mean_val.x) * alpha.x;
dot1 = (convert_float4(a1) - (Dtype4)mean_val.y) * alpha.y;
dot2 = (convert_float4(a2) - (Dtype4)mean_val.z) * alpha.z;
dot3 = (convert_float4(a3) - (Dtype4)mean_val.w) * alpha.w;
dot0 = dot0 * w.x + (Dtype4)b.x;
dot1 = dot1 * w.y + (Dtype4)b.y;
@ -300,10 +304,10 @@ __kernel void MVN_FUSE(__global const Dtype * tmp,
dot3 = select(new3, dot3, dot3 > (Dtype4)0.f);
#endif
vstore4(dot0, i, dst0_read);
vstore4(dot1, i, dst0_read + A_col_size);
vstore4(dot2, i, dst0_read + 2 * A_col_size);
vstore4(dot3, i, dst0_read + 3 * A_col_size);
vstore4(convert_T(dot0), i, dst0_read);
vstore4(convert_T(dot1), i, dst0_read + A_col_size);
vstore4(convert_T(dot2), i, dst0_read + 2 * A_col_size);
vstore4(convert_T(dot3), i, dst0_read + 3 * A_col_size);
i += get_local_size(0);
}

@ -42,14 +42,18 @@
#define CONCAT(A,B) A##_##B
#define TEMPLATE(name,type) CONCAT(name,type)
#define Dtype float
#define KERNEL_ARG_DTYPE float
#if defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif
__kernel void TEMPLATE(lrn_full_no_scale,Dtype)(const int nthreads, __global const Dtype* in,
const int num, const int channels,
const int height, const int width, const int size,
const Dtype alpha_over_size, const Dtype k,
const KERNEL_ARG_DTYPE alpha_over_size, const KERNEL_ARG_DTYPE k,
__global Dtype* const out,
const Dtype negative_beta) {
const KERNEL_ARG_DTYPE negative_beta) {
for (int index = get_global_id(0); index < nthreads;
index += get_global_size(0)) {
// find out the local offset
@ -60,11 +64,11 @@ __kernel void TEMPLATE(lrn_full_no_scale,Dtype)(const int nthreads, __global con
const int step = height * width;
__global const Dtype* in_off = in + offset;
__global Dtype* out_off = out + offset;
Dtype scale_val;
KERNEL_ARG_DTYPE scale_val;
int head = 0;
const int pre_pad = (size - 1) / 2;
const int post_pad = size - pre_pad - 1;
Dtype accum_scale = 0;
KERNEL_ARG_DTYPE accum_scale = 0;
// fill the scale at [n, :, h, w]
// accumulate values
while (head < post_pad && head < channels) {
@ -79,7 +83,7 @@ __kernel void TEMPLATE(lrn_full_no_scale,Dtype)(const int nthreads, __global con
* in_off[(head - size) * step];
}
scale_val = k + accum_scale * alpha_over_size;
out_off[(head - post_pad) * step] = in_off[(head - post_pad) * step] * (Dtype)native_powr((float)scale_val, (float)negative_beta);
out_off[(head - post_pad) * step] = in_off[(head - post_pad) * step] * (Dtype)native_powr((Dtype)scale_val, (Dtype)negative_beta);
++head;
}
// subtract only
@ -89,7 +93,7 @@ __kernel void TEMPLATE(lrn_full_no_scale,Dtype)(const int nthreads, __global con
* in_off[(head - size) * step];
}
scale_val = k + accum_scale * alpha_over_size;
out_off[(head - post_pad) * step] = in_off[(head - post_pad) * step] * (Dtype)native_powr((float)scale_val, (float)negative_beta);
out_off[(head - post_pad) * step] = in_off[(head - post_pad) * step] * (Dtype)native_powr((Dtype)scale_val, (Dtype)negative_beta);
++head;
}
}

@ -42,7 +42,10 @@
#define CONCAT(A,B) A##_##B
#define TEMPLATE(name,type) CONCAT(name,type)
#define Dtype float
#if defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif
#if defined KERNEL_MAX_POOL

@ -40,7 +40,9 @@
//
//M*/
#define Dtype float
#if defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif
__kernel void permute(const int nthreads,
__global Dtype* bottom_data,

@ -39,17 +39,18 @@
//
//M*/
#define Dtype float
#define Dtype4 float4
#if defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif
__kernel void prior_box(const int nthreads,
const Dtype stepX,
const Dtype stepY,
__global const Dtype* _offsetsX,
__global const Dtype* _offsetsY,
const float stepX,
const float stepY,
__global const float* _offsetsX,
__global const float* _offsetsY,
const int offsetsX_size,
__global const Dtype* _widths,
__global const Dtype* _heights,
__global const float* _widths,
__global const float* _heights,
const int widths_size,
__global Dtype* dst,
const int _layerHeight,
@ -65,7 +66,7 @@ __kernel void prior_box(const int nthreads,
outputPtr = dst + index * 4 * offsetsX_size * widths_size;
Dtype _boxWidth, _boxHeight;
float _boxWidth, _boxHeight;
Dtype4 vec;
for (int i = 0; i < widths_size; ++i)
{
@ -73,8 +74,8 @@ __kernel void prior_box(const int nthreads,
_boxHeight = _heights[i];
for (int j = 0; j < offsetsX_size; ++j)
{
float center_x = (w + _offsetsX[j]) * stepX;
float center_y = (h + _offsetsY[j]) * stepY;
Dtype center_x = (w + _offsetsX[j]) * (Dtype)stepX;
Dtype center_y = (h + _offsetsY[j]) * (Dtype)stepY;
vec.x = (center_x - _boxWidth * 0.5f) / imgWidth; // xmin
vec.y = (center_y - _boxHeight * 0.5f) / imgHeight; // ymin
@ -91,7 +92,7 @@ __kernel void prior_box(const int nthreads,
__kernel void set_variance(const int nthreads,
const int offset,
const int variance_size,
__global const Dtype* variance,
__global const float* variance,
__global Dtype* dst)
{
for (int index = get_global_id(0); index < nthreads; index += get_global_size(0))
@ -101,7 +102,7 @@ __kernel void set_variance(const int nthreads,
if (variance_size == 1)
var_vec = (Dtype4)(variance[0]);
else
var_vec = vload4(0, variance);
var_vec = convert_T(vload4(0, variance));
vstore4(var_vec, 0, dst + offset + index * 4);
}

@ -39,6 +39,10 @@
//
//M*/
#if defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif
__kernel void reorg(const int count,
__global const Dtype* src,
const int channels,

@ -40,9 +40,9 @@
//
//M*/
#define Dtype float
#define Dtype4 float4
#define Dtype8 float8
#if defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif
__kernel void slice(__global const Dtype* src,
const int src_plane_size,

@ -24,6 +24,10 @@
* POSSIBILITY OF SUCH DAMAGE.
**************************************************************************************/
#if defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif
__kernel void kernel_channel_max(const int num, const int channels,
const int spatial_dim, __global const T* data, __global T* out) {
int index = get_global_id(0);
@ -40,12 +44,12 @@ __kernel void kernel_channel_max(const int num, const int channels,
__kernel void kernel_channel_subtract(const int count,
const int num, const int channels,
const int spatial_dim, __global const T* channel_max, __global T* data) {
const int spatial_dim, __global const T* channel_max, __global const T* src, __global T* data) {
int index = get_global_id(0);
if(index < count) {
int n = index / channels / spatial_dim;
int s = index % spatial_dim;
data[index] -= channel_max[n * spatial_dim + s];
data[index] = exp(src[index] - channel_max[n * spatial_dim + s]);
}
}

@ -42,12 +42,15 @@
#define CONCAT(A,B) A##_##B
#define TEMPLATE(name,type) CONCAT(name,type)
#define Dtype float
#if defined(cl_intel_subgroups)
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
#endif
#if defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif
__kernel void TEMPLATE(softmax_forward_slm,Dtype)(const int num, const int channels,
const int spatial_dim,
__global Dtype* scale,
@ -60,12 +63,12 @@ __kernel void TEMPLATE(softmax_forward_slm,Dtype)(const int num, const int chann
int n = get_global_id(1);
for (int index = get_global_id(0), s = 0; index < spatial_dim * get_local_size(0); index +=
get_global_size(0), ++s) {
float maxval = -FLT_MAX;
Dtype maxval = -DTYPE_MAX;
for (int c = get_global_id(0); c < channels; c += get_global_size(0)) {
Dtype tmp = data[(n * channels + c) * spatial_dim + s];
maxval = max((Dtype)tmp, (Dtype)maxval);
}
maxval = sub_group_reduce_max(maxval * 100000);
maxval = sub_group_reduce_max(maxval);
//if (get_sub_group_local_id() == 0)
group_tmp[get_sub_group_id() * spatial_dim + s] = maxval;
}
@ -77,7 +80,7 @@ __kernel void TEMPLATE(softmax_forward_slm,Dtype)(const int num, const int chann
int s = index / get_max_sub_group_size();
Dtype maxval = sub_group_reduce_max(group_tmp[get_sub_group_local_id() * spatial_dim + s]);
//if (get_sub_group_local_id() == 0)
scale_tmp[s] = maxval / 100000;
scale_tmp[s] = maxval;
}
barrier(CLK_LOCAL_MEM_FENCE);
@ -95,7 +98,7 @@ __kernel void TEMPLATE(softmax_forward_slm,Dtype)(const int num, const int chann
for (int c = get_global_id(0); c < channels; c += get_global_size(0)) {
sum += out_tmp[c * spatial_dim + s];
}
sum = sub_group_reduce_add(sum * 100000);
sum = sub_group_reduce_add(sum);
group_tmp[get_sub_group_id() * spatial_dim + s] = sum;
}
barrier(CLK_LOCAL_MEM_FENCE);
@ -105,7 +108,7 @@ __kernel void TEMPLATE(softmax_forward_slm,Dtype)(const int num, const int chann
int s = index / get_max_sub_group_size();
Dtype sum = sub_group_reduce_add(group_tmp[get_sub_group_local_id() * spatial_dim + s]);
//if (get_sub_group_local_id() == 0)
scale_tmp[s] = sum / 100000;
scale_tmp[s] = sum;
}
barrier(CLK_LOCAL_MEM_FENCE);
@ -130,12 +133,12 @@ __kernel void TEMPLATE(softmax_forward,Dtype)(const int num, const int channels,
__global Dtype *group_tmp = scale + spatial_dim * num + n * get_max_sub_group_size() * spatial_dim;
for (int index = get_global_id(0), s = 0; index < spatial_dim * get_local_size(0); index +=
get_global_size(0), ++s) {
float maxval = -FLT_MAX;
Dtype maxval = -DTYPE_MAX;
for (int c = get_global_id(0); c < channels; c += get_global_size(0)) {
Dtype tmp = data[(n * channels + c) * spatial_dim + s];
maxval = max((Dtype)tmp, (Dtype)maxval);
}
maxval = sub_group_reduce_max(maxval * 100000);
maxval = sub_group_reduce_max(maxval);
//if (get_sub_group_local_id() == 0)
group_tmp[get_sub_group_id() * spatial_dim + s] = maxval;
}
@ -146,7 +149,7 @@ __kernel void TEMPLATE(softmax_forward,Dtype)(const int num, const int channels,
int s = index / get_max_sub_group_size();
Dtype maxval = sub_group_reduce_max(group_tmp[get_sub_group_local_id() * spatial_dim + s]);
//if (get_sub_group_local_id() == 0)
scale[n * spatial_dim + s] = maxval / 100000;
scale[n * spatial_dim + s] = maxval;
}
barrier(CLK_GLOBAL_MEM_FENCE);
@ -164,7 +167,7 @@ __kernel void TEMPLATE(softmax_forward,Dtype)(const int num, const int channels,
for (int c = get_global_id(0); c < channels; c += get_global_size(0)) {
sum += out[n * channels * spatial_dim + c * spatial_dim + s];
}
sum = sub_group_reduce_add(sum * 100000);
sum = sub_group_reduce_add(sum);
group_tmp[get_sub_group_id() * spatial_dim + s] = sum;
}
barrier(CLK_GLOBAL_MEM_FENCE);
@ -174,7 +177,7 @@ __kernel void TEMPLATE(softmax_forward,Dtype)(const int num, const int channels,
int s = index / get_max_sub_group_size();
Dtype sum = sub_group_reduce_add(group_tmp[get_sub_group_local_id() * spatial_dim + s]);
//if (get_sub_group_local_id() == 0)
scale[n * spatial_dim + s] = sum / 100000;
scale[n * spatial_dim + s] = sum;
}
barrier(CLK_GLOBAL_MEM_FENCE);

@ -64,6 +64,7 @@
namespace cv { namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
#define IS_DNN_OPENCL_TARGET(id) (id == DNN_TARGET_OPENCL || id == DNN_TARGET_OPENCL_FP16)
Mutex& getInitializationMutex();
void initializeLayerFactory();
CV__DNN_EXPERIMENTAL_NS_END

@ -147,7 +147,9 @@ TEST_P(DNNTestNetwork, Inception_5h)
TEST_P(DNNTestNetwork, ENet)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE) throw SkipTestException("");
if ((backend == DNN_BACKEND_INFERENCE_ENGINE) ||
(backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16))
throw SkipTestException("");
processNet("dnn/Enet-model-best.net", "", Size(512, 512), "l367_Deconvolution",
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_enet.yml" :
"dnn/halide_scheduler_enet.yml",
@ -161,9 +163,11 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe)
throw SkipTestException("");
Mat sample = imread(findDataFile("dnn/street.png", false));
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
float l1 = (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) ? 0.0007 : 0.0;
float lInf = (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) ? 0.011 : 0.0;
processNet("dnn/MobileNetSSD_deploy.caffemodel", "dnn/MobileNetSSD_deploy.prototxt",
inp, "detection_out");
inp, "detection_out", "", l1, lInf);
}
TEST_P(DNNTestNetwork, MobileNet_SSD_TensorFlow)
@ -173,15 +177,17 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_TensorFlow)
throw SkipTestException("");
Mat sample = imread(findDataFile("dnn/street.png", false));
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
float l1 = (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) ? 0.008 : 0.0;
float lInf = (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) ? 0.06 : 0.0;
processNet("dnn/ssd_mobilenet_v1_coco.pb", "dnn/ssd_mobilenet_v1_coco.pbtxt",
inp, "detection_out");
inp, "detection_out", "", l1, lInf);
}
TEST_P(DNNTestNetwork, SSD_VGG16)
{
if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL ||
backend == DNN_BACKEND_HALIDE && target == DNN_TARGET_CPU ||
backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU)
if ((backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) ||
(backend == DNN_BACKEND_HALIDE && target == DNN_TARGET_CPU) ||
(backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU))
throw SkipTestException("");
processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel",
"dnn/ssd_vgg16.prototxt", Size(300, 300), "detection_out");
@ -236,14 +242,17 @@ TEST_P(DNNTestNetwork, Inception_v2_SSD_TensorFlow)
throw SkipTestException("");
Mat sample = imread(findDataFile("dnn/street.png", false));
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
float l1 = (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) ? 0.008 : 0.0;
float lInf = (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) ? 0.07 : 0.0;
processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "dnn/ssd_inception_v2_coco_2017_11_17.pbtxt",
inp, "detection_out");
inp, "detection_out", "", l1, lInf);
}
TEST_P(DNNTestNetwork, DenseNet_121)
{
if (backend == DNN_BACKEND_HALIDE ||
backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)
if ((backend == DNN_BACKEND_HALIDE) ||
(backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) ||
(backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16))
throw SkipTestException("");
processNet("dnn/DenseNet_121.caffemodel", "dnn/DenseNet_121.prototxt", Size(224, 224), "", "caffe");
}
@ -258,7 +267,8 @@ const tuple<DNNBackend, DNNTarget> testCases[] = {
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL),
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL_FP16),
#endif
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_DEFAULT, DNN_TARGET_OPENCL)
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_DEFAULT, DNN_TARGET_OPENCL),
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_DEFAULT, DNN_TARGET_OPENCL_FP16)
};
INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, testing::ValuesIn(testCases));

@ -104,7 +104,11 @@ TEST_P(Reproducibility_AlexNet, Accuracy)
ASSERT_FALSE(net.empty());
}
net.setPreferableTarget(get<1>(GetParam()));
int targetId = get<1>(GetParam());
const float l1 = 1e-5;
const float lInf = (targetId == DNN_TARGET_OPENCL_FP16) ? 3e-3 : 1e-4;
net.setPreferableTarget(targetId);
Mat sample = imread(_tf("grace_hopper_227.png"));
ASSERT_TRUE(!sample.empty());
@ -112,10 +116,11 @@ TEST_P(Reproducibility_AlexNet, Accuracy)
net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar(), false), "data");
Mat out = net.forward("prob");
Mat ref = blobFromNPY(_tf("caffe_alexnet_prob.npy"));
normAssert(ref, out);
normAssert(ref, out, "", l1, lInf);
}
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_AlexNet, Combine(testing::Bool(), availableDnnTargets()));
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_AlexNet, Combine(testing::Bool(),
Values(DNN_TARGET_CPU, DNN_TARGET_OPENCL, DNN_TARGET_OPENCL_FP16)));
#if !defined(_WIN32) || defined(_WIN64)
TEST(Reproducibility_FCN, Accuracy)
@ -176,8 +181,11 @@ TEST_P(Reproducibility_MobileNet_SSD, Accuracy)
const string proto = findDataFile("dnn/MobileNetSSD_deploy.prototxt", false);
const string model = findDataFile("dnn/MobileNetSSD_deploy.caffemodel", false);
Net net = readNetFromCaffe(proto, model);
int targetId = GetParam();
const float l1 = (targetId == DNN_TARGET_OPENCL_FP16) ? 1.5e-4 : 1e-5;
const float lInf = (targetId == DNN_TARGET_OPENCL_FP16) ? 4e-4 : 1e-4;
net.setPreferableTarget(GetParam());
net.setPreferableTarget(targetId);
Mat sample = imread(_tf("street.png"));
@ -185,8 +193,10 @@ TEST_P(Reproducibility_MobileNet_SSD, Accuracy)
net.setInput(inp);
Mat out = net.forward();
const float scores_diff = (targetId == DNN_TARGET_OPENCL_FP16) ? 4e-4 : 1e-5;
const float boxes_iou_diff = (targetId == DNN_TARGET_OPENCL_FP16) ? 5e-3 : 1e-4;
Mat ref = blobFromNPY(_tf("mobilenet_ssd_caffe_out.npy"));
normAssertDetections(ref, out);
normAssertDetections(ref, out, "", 0.0, scores_diff, boxes_iou_diff);
// Check that detections aren't preserved.
inp.setTo(0.0f);
@ -212,10 +222,12 @@ TEST_P(Reproducibility_MobileNet_SSD, Accuracy)
// a single sample in batch. The first numbers of detection vectors are batch id.
outBatch = outBatch.reshape(1, outBatch.total() / 7);
EXPECT_EQ(outBatch.rows, 2 * numDetections);
normAssert(outBatch.rowRange(0, numDetections), ref);
normAssert(outBatch.rowRange(numDetections, 2 * numDetections).colRange(1, 7), ref.colRange(1, 7));
normAssert(outBatch.rowRange(0, numDetections), ref, "", l1, lInf);
normAssert(outBatch.rowRange(numDetections, 2 * numDetections).colRange(1, 7), ref.colRange(1, 7),
"", l1, lInf);
}
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_MobileNet_SSD, availableDnnTargets());
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_MobileNet_SSD,
Values(DNN_TARGET_CPU, DNN_TARGET_OPENCL, DNN_TARGET_OPENCL_FP16));
typedef testing::TestWithParam<DNNTarget> Reproducibility_ResNet50;
TEST_P(Reproducibility_ResNet50, Accuracy)
@ -226,6 +238,9 @@ TEST_P(Reproducibility_ResNet50, Accuracy)
int targetId = GetParam();
net.setPreferableTarget(targetId);
float l1 = (targetId == DNN_TARGET_OPENCL_FP16) ? 3e-5 : 1e-5;
float lInf = (targetId == DNN_TARGET_OPENCL_FP16) ? 6e-3 : 1e-4;
Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(224,224), Scalar(), false);
ASSERT_TRUE(!input.empty());
@ -233,20 +248,21 @@ TEST_P(Reproducibility_ResNet50, Accuracy)
Mat out = net.forward();
Mat ref = blobFromNPY(_tf("resnet50_prob.npy"));
normAssert(ref, out);
normAssert(ref, out, "", l1, lInf);
if (targetId == DNN_TARGET_OPENCL)
if (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16)
{
UMat out_umat;
net.forward(out_umat);
normAssert(ref, out_umat, "out_umat");
normAssert(ref, out_umat, "out_umat", l1, lInf);
std::vector<UMat> out_umats;
net.forward(out_umats);
normAssert(ref, out_umats[0], "out_umat_vector");
normAssert(ref, out_umats[0], "out_umat_vector", l1, lInf);
}
}
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_ResNet50, availableDnnTargets());
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_ResNet50,
Values(DNN_TARGET_CPU, DNN_TARGET_OPENCL, DNN_TARGET_OPENCL_FP16));
typedef testing::TestWithParam<DNNTarget> Reproducibility_SqueezeNet_v1_1;
TEST_P(Reproducibility_SqueezeNet_v1_1, Accuracy)

@ -295,24 +295,30 @@ TEST_P(Test_TensorFlow_nets, opencv_face_detector_uint8)
INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_nets, availableDnnTargets());
TEST(Test_TensorFlow, defun)
typedef testing::TestWithParam<DNNTarget> Test_TensorFlow_fp16;
TEST_P(Test_TensorFlow_fp16, tests)
{
runTensorFlowNet("defun_dropout");
int targetId = GetParam();
const float l1 = 7e-4;
const float lInf = 1e-2;
runTensorFlowNet("fp16_single_conv", targetId, false, l1, lInf);
runTensorFlowNet("fp16_deconvolution", targetId, false, l1, lInf);
runTensorFlowNet("fp16_max_pool_odd_same", targetId, false, l1, lInf);
runTensorFlowNet("fp16_padding_valid", targetId, false, l1, lInf);
runTensorFlowNet("fp16_eltwise_add_mul", targetId, false, l1, lInf);
runTensorFlowNet("fp16_max_pool_odd_valid", targetId, false, l1, lInf);
runTensorFlowNet("fp16_pad_and_concat", targetId, false, l1, lInf);
runTensorFlowNet("fp16_max_pool_even", targetId, false, l1, lInf);
runTensorFlowNet("fp16_padding_same", targetId, false, l1, lInf);
}
TEST(Test_TensorFlow, fp16)
INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_fp16,
Values(DNN_TARGET_CPU, DNN_TARGET_OPENCL, DNN_TARGET_OPENCL_FP16));
TEST(Test_TensorFlow, defun)
{
const float l1 = 1e-3;
const float lInf = 1e-2;
runTensorFlowNet("fp16_single_conv", DNN_TARGET_CPU, false, l1, lInf);
runTensorFlowNet("fp16_deconvolution", DNN_TARGET_CPU, false, l1, lInf);
runTensorFlowNet("fp16_max_pool_odd_same", DNN_TARGET_CPU, false, l1, lInf);
runTensorFlowNet("fp16_padding_valid", DNN_TARGET_CPU, false, l1, lInf);
runTensorFlowNet("fp16_eltwise_add_mul", DNN_TARGET_CPU, false, l1, lInf);
runTensorFlowNet("fp16_max_pool_odd_valid", DNN_TARGET_CPU, false, l1, lInf);
runTensorFlowNet("fp16_pad_and_concat", DNN_TARGET_CPU, false, l1, lInf);
runTensorFlowNet("fp16_max_pool_even", DNN_TARGET_CPU, false, l1, lInf);
runTensorFlowNet("fp16_padding_same", DNN_TARGET_CPU, false, l1, lInf);
runTensorFlowNet("defun_dropout");
}
TEST(Test_TensorFlow, quantized)

Loading…
Cancel
Save