|
|
|
@ -169,8 +169,12 @@ struct CascadeIntrinsics |
|
|
|
|
static float getFor(int channel, float scaling) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(channel < 10); |
|
|
|
|
#if defined WITH_DEBUG_OUT |
|
|
|
|
printf("QQQQQQQQQQQQQQQq: %f %f\n", scaling, fabs(scaling - 1.f)); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
if ((scaling - 1.f) < FLT_EPSILON) |
|
|
|
|
if (fabs(scaling - 1.f) < FLT_EPSILON) |
|
|
|
|
// if (scaling == 1.f)
|
|
|
|
|
return 1.f; |
|
|
|
|
|
|
|
|
|
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers
|
|
|
|
@ -190,7 +194,7 @@ struct CascadeIntrinsics |
|
|
|
|
float b = B[(int)(scaling >= 1)][(int)(channel > 6)]; |
|
|
|
|
|
|
|
|
|
#if defined WITH_DEBUG_OUT |
|
|
|
|
printf("scaling: %f %f %f %f\n", scaling, a, b, a * pow(scaling, b)); |
|
|
|
|
printf("!!! scaling: %f %f %f %f\n", scaling, a, b, a * pow(scaling, b)); |
|
|
|
|
#endif |
|
|
|
|
return a * pow(scaling, b); |
|
|
|
|
} |
|
|
|
@ -344,6 +348,47 @@ void calcHistBins(const cv::Mat& grey, cv::Mat& magIntegral, std::vector<cv::Mat |
|
|
|
|
histInts.push_back(magIntegral); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template< typename T> |
|
|
|
|
struct Decimate { |
|
|
|
|
int shrinkage; |
|
|
|
|
|
|
|
|
|
Decimate(const int sr) : shrinkage(sr) {} |
|
|
|
|
|
|
|
|
|
void operator()(const cv::Mat& in, cv::Mat& out) const |
|
|
|
|
{ |
|
|
|
|
int cols = in.cols / shrinkage; |
|
|
|
|
int rows = in.rows / shrinkage; |
|
|
|
|
out.create(rows, cols, in.type()); |
|
|
|
|
|
|
|
|
|
CV_Assert(cols * shrinkage == in.cols); |
|
|
|
|
CV_Assert(rows * shrinkage == in.rows); |
|
|
|
|
|
|
|
|
|
std::cout << "type: " << out.type() << std::endl; |
|
|
|
|
|
|
|
|
|
for (int outIdx_y = 0; outIdx_y < rows; ++outIdx_y) |
|
|
|
|
{ |
|
|
|
|
T* outPtr = out.ptr<T>(outIdx_y); |
|
|
|
|
for (int outIdx_x = 0; outIdx_x < cols; ++outIdx_x) |
|
|
|
|
{ |
|
|
|
|
// do desimate
|
|
|
|
|
int inIdx_y = outIdx_y * shrinkage; |
|
|
|
|
int inIdx_x = outIdx_x * shrinkage; |
|
|
|
|
int sum = 0; |
|
|
|
|
|
|
|
|
|
for (int y = inIdx_y; y < inIdx_y + shrinkage; ++y) |
|
|
|
|
for (int x = inIdx_x; x < inIdx_x + shrinkage; ++x) |
|
|
|
|
sum += in.at<T>(y, x); |
|
|
|
|
|
|
|
|
|
sum /= shrinkage * shrinkage; |
|
|
|
|
outPtr[outIdx_x] = cv::saturate_cast<T>(sum); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
//#define USE_REFERENCE_VALUES
|
|
|
|
|
|
|
|
|
|
struct ChannelStorage |
|
|
|
|
{ |
|
|
|
|
std::vector<cv::Mat> hog; |
|
|
|
@ -358,24 +403,65 @@ struct ChannelStorage |
|
|
|
|
ChannelStorage(cv::Mat& colored, int shr) : shrinkage(shr) |
|
|
|
|
{ |
|
|
|
|
hog.clear(); |
|
|
|
|
cv::FileStorage fs("/home/kellan/testInts.xml", cv::FileStorage::READ); |
|
|
|
|
Decimate<uchar> decimate(shr); |
|
|
|
|
|
|
|
|
|
#if defined USE_REFERENCE_VALUES |
|
|
|
|
cv::FileStorage imgs("/home/kellan/testInts.xml", cv::FileStorage::READ); |
|
|
|
|
#else |
|
|
|
|
|
|
|
|
|
// add gauss
|
|
|
|
|
cv::Mat gauss; |
|
|
|
|
cv::GaussianBlur(colored, gauss, cv::Size(3,3), 0 ,0); |
|
|
|
|
|
|
|
|
|
// convert to luv
|
|
|
|
|
cv::Mat luv; |
|
|
|
|
cv::cvtColor(colored, luv, CV_RGB2Luv); |
|
|
|
|
|
|
|
|
|
// split to 3 one channel matrix
|
|
|
|
|
std::vector<cv::Mat> splited, luvs; |
|
|
|
|
split(luv, splited); |
|
|
|
|
|
|
|
|
|
// shrink and integrate
|
|
|
|
|
for (int i = 0; i < (int)splited.size(); i++) |
|
|
|
|
{ |
|
|
|
|
cv::Mat shrunk, sum; |
|
|
|
|
decimate(splited[i], shrunk); |
|
|
|
|
cv::integral(shrunk, sum, cv::noArray(), CV_32S); |
|
|
|
|
luvs.push_back(sum); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// calculate magnitude
|
|
|
|
|
static const float magnitudeScaling = 1.f / sqrt(2); |
|
|
|
|
cv::Mat grey; |
|
|
|
|
cv::cvtColor(colored, grey, CV_RGB2GRAY); |
|
|
|
|
|
|
|
|
|
// channels
|
|
|
|
|
cv::FileStorage imgs("/home/kellan/testImgs.xml", cv::FileStorage::READ); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
char buff[33]; |
|
|
|
|
float scale = 1.f / shrinkage; |
|
|
|
|
for(int i = 0; i < 10; ++i) |
|
|
|
|
for(int i = 0; i < 7; ++i) |
|
|
|
|
{ |
|
|
|
|
cv::Mat channel; |
|
|
|
|
fs[std::string("channel") + itoa(i, buff, 10)] >> channel; |
|
|
|
|
|
|
|
|
|
cv::Mat shrunk, sum; |
|
|
|
|
// cv::resize(channel, shrunk, cv::Size(), scale, scale, cv::INTER_AREA);
|
|
|
|
|
// cv::imshow(std::string("channel") + itoa(i, buff, 10), shrunk);
|
|
|
|
|
// cv::waitKey(0);
|
|
|
|
|
// cv::integral(channel, sum);
|
|
|
|
|
// if (i == 1)
|
|
|
|
|
// std::cout << channel << std::endl;
|
|
|
|
|
cv::Mat channel, shrunk, sum; |
|
|
|
|
imgs[std::string("channel") + itoa(i, buff, 10)] >> channel; |
|
|
|
|
|
|
|
|
|
#if defined USE_REFERENCE_VALUES |
|
|
|
|
hog.push_back(channel); |
|
|
|
|
#else |
|
|
|
|
|
|
|
|
|
decimate(channel, shrunk); |
|
|
|
|
// cv::resize(channel, shrunk, cv::Size(), 1.f / shr, 1.f / shr, cv::INTER_AREA);
|
|
|
|
|
cv::integral(shrunk, sum, cv::noArray(), CV_32S); |
|
|
|
|
|
|
|
|
|
hog.push_back(sum); |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
// exit(1);
|
|
|
|
|
|
|
|
|
|
#if !defined USE_REFERENCE_VALUES |
|
|
|
|
hog.insert(hog.end(), luvs.begin(), luvs.end()); |
|
|
|
|
CV_Assert(hog.size() == 10); |
|
|
|
|
#endif |
|
|
|
|
// exit(10);
|
|
|
|
|
} |
|
|
|
|
// {
|
|
|
|
|
// // add gauss
|
|
|
|
@ -427,6 +513,12 @@ struct ChannelStorage |
|
|
|
|
printf("feature box %d %d %d %d ", area.x, area.y, area.width, area.height); |
|
|
|
|
printf("get for channel %d\n", channel); |
|
|
|
|
printf("!! %d\n", m.depth()); |
|
|
|
|
|
|
|
|
|
printf("extract feature for: [%d %d] [%d %d] [%d %d] [%d %d]\n", |
|
|
|
|
x + area.x, y + area.y, x + area.width,y + area.y, x + area.width,y + area.height, |
|
|
|
|
x + area.x, y + area.height); |
|
|
|
|
|
|
|
|
|
printf("at point %d %d with offset %d\n", x, y, 0); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
int a = m.ptr<int>(y + area.y)[x + area.x]; |
|
|
|
@ -493,7 +585,7 @@ struct cv::SoftCascade::Filds |
|
|
|
|
float sarea = (scaledRect.width - scaledRect.x) * (scaledRect.height - scaledRect.y); |
|
|
|
|
|
|
|
|
|
float approx = 1.f; |
|
|
|
|
if ((farea - 0.f) > FLT_EPSILON && (farea - 0.f) > FLT_EPSILON) |
|
|
|
|
if (fabs(farea - 0.f) > FLT_EPSILON && fabs(farea - 0.f) > FLT_EPSILON) |
|
|
|
|
{ |
|
|
|
|
const float expected_new_area = farea * relScale * relScale; |
|
|
|
|
approx = expected_new_area / sarea; |
|
|
|
@ -505,7 +597,7 @@ struct cv::SoftCascade::Filds |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// compensation areas rounding
|
|
|
|
|
float rootThreshold = threshold / approx;/ |
|
|
|
|
float rootThreshold = threshold / approx; |
|
|
|
|
rootThreshold *= scaling; |
|
|
|
|
|
|
|
|
|
#if defined WITH_DEBUG_OUT |
|
|
|
@ -583,7 +675,7 @@ struct cv::SoftCascade::Filds |
|
|
|
|
printf("extracted stage:\n"); |
|
|
|
|
printf("ct %f\n", stage.threshold); |
|
|
|
|
printf("computed score %f\n\n", detectionScore); |
|
|
|
|
// if (st - stBegin > 100) break;
|
|
|
|
|
if (st - stBegin > 50 ) break; |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
if (detectionScore <= stage.threshold) break; |
|
|
|
@ -681,7 +773,7 @@ struct cv::SoftCascade::Filds |
|
|
|
|
static const char *const SC_LEAF = "leafValues"; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// only boost supported
|
|
|
|
|
// only Ada Boost supported
|
|
|
|
|
std::string stageTypeStr = (string)root[SC_STAGE_TYPE]; |
|
|
|
|
CV_Assert(stageTypeStr == SC_BOOST); |
|
|
|
|
|
|
|
|
@ -799,7 +891,7 @@ bool cv::SoftCascade::load( const string& filename, const float minScale, const |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#define DEBUG_STORE_IMAGES |
|
|
|
|
// #define DEBUG_STORE_IMAGES
|
|
|
|
|
#define DEBUG_SHOW_RESULT |
|
|
|
|
|
|
|
|
|
void cv::SoftCascade::detectMultiScale(const Mat& image, const std::vector<cv::Rect>& /*rois*/, |
|
|
|
@ -833,7 +925,8 @@ void cv::SoftCascade::detectMultiScale(const Mat& image, const std::vector<cv::R |
|
|
|
|
|
|
|
|
|
fs << "absdiff" << diff; |
|
|
|
|
fs.release(); |
|
|
|
|
#if defined DEBUG_STORE_IMAGES |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
// create integrals
|
|
|
|
|
ChannelStorage storage(image1, fld.shrinkage); |
|
|
|
@ -843,13 +936,14 @@ void cv::SoftCascade::detectMultiScale(const Mat& image, const std::vector<cv::R |
|
|
|
|
|
|
|
|
|
typedef std::vector<Level>::const_iterator lIt; |
|
|
|
|
int total = 0, l = 0; |
|
|
|
|
for (lIt it = fld.levels.begin() + 26; it != fld.levels.end(); ++it) |
|
|
|
|
for (lIt it = fld.levels.begin(); it != fld.levels.end(); ++it) |
|
|
|
|
{ |
|
|
|
|
const Level& level = *it; |
|
|
|
|
|
|
|
|
|
#if defined WITH_DEBUG_OUT |
|
|
|
|
std::cout << "================================ " << l++ << std::endl; |
|
|
|
|
#endif |
|
|
|
|
// int dx = 79; int dy = 76;
|
|
|
|
|
for (int dy = 0; dy < level.workRect.height; ++dy) |
|
|
|
|
{ |
|
|
|
|
for (int dx = 0; dx < level.workRect.width; ++dx) |
|
|
|
@ -860,22 +954,24 @@ void cv::SoftCascade::detectMultiScale(const Mat& image, const std::vector<cv::R |
|
|
|
|
} |
|
|
|
|
// break;
|
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::Mat out = image.clone(); |
|
|
|
|
|
|
|
|
|
#if defined DEBUG_SHOW_RESULT |
|
|
|
|
|
|
|
|
|
printf("TOTAL: %d from %d\n", (int)detections.size(),total) ; |
|
|
|
|
printf("TOTAL: %d from %d\n", (int)detections.size(),total) ; |
|
|
|
|
|
|
|
|
|
for(int i = 0; i < (int)detections.size(); ++i) |
|
|
|
|
{ |
|
|
|
|
cv::rectangle(out, detections[i].rect, cv::Scalar(255, 0, 0, 255), 2); |
|
|
|
|
} |
|
|
|
|
for(int i = 0; i < (int)detections.size(); ++i) |
|
|
|
|
{ |
|
|
|
|
cv::rectangle(out, detections[i].rect, cv::Scalar(255, 0, 0, 255), 1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::imshow("out", out); |
|
|
|
|
cv::waitKey(0); |
|
|
|
|
cv::imshow("out", out); |
|
|
|
|
cv::waitKey(0); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
std::cout << "work rect: " << level.workRect.width << " " << level.workRect.height << std::endl; |
|
|
|
|
detections.clear(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// std::swap(detections, objects);
|
|
|
|
|
} |