|
|
@ -285,7 +285,7 @@ public: |
|
|
|
<number_of_variables_in_responses>`, containing types of each input and output variable. See |
|
|
|
<number_of_variables_in_responses>`, containing types of each input and output variable. See |
|
|
|
ml::VariableTypes. |
|
|
|
ml::VariableTypes. |
|
|
|
*/ |
|
|
|
*/ |
|
|
|
CV_WRAP static Ptr<TrainData> create(InputArray samples, int layout, InputArray responses, |
|
|
|
CV_WRAP static Ptr<cv::ml::TrainData> create(InputArray samples, int layout, InputArray responses, |
|
|
|
InputArray varIdx=noArray(), InputArray sampleIdx=noArray(), |
|
|
|
InputArray varIdx=noArray(), InputArray sampleIdx=noArray(), |
|
|
|
InputArray sampleWeights=noArray(), InputArray varType=noArray()); |
|
|
|
InputArray sampleWeights=noArray(), InputArray varType=noArray()); |
|
|
|
}; |
|
|
|
}; |
|
|
@ -320,7 +320,7 @@ public: |
|
|
|
@param flags optional flags, depending on the model. Some of the models can be updated with the |
|
|
|
@param flags optional flags, depending on the model. Some of the models can be updated with the |
|
|
|
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP). |
|
|
|
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP). |
|
|
|
*/ |
|
|
|
*/ |
|
|
|
CV_WRAP virtual bool train( const Ptr<TrainData>& trainData, int flags=0 ); |
|
|
|
CV_WRAP virtual bool train( const Ptr<cv::ml::TrainData>& trainData, int flags=0 ); |
|
|
|
|
|
|
|
|
|
|
|
/** @brief Trains the statistical model
|
|
|
|
/** @brief Trains the statistical model
|
|
|
|
|
|
|
|
|
|
|
@ -343,7 +343,7 @@ public: |
|
|
|
The method uses StatModel::predict to compute the error. For regression models the error is |
|
|
|
The method uses StatModel::predict to compute the error. For regression models the error is |
|
|
|
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%). |
|
|
|
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%). |
|
|
|
*/ |
|
|
|
*/ |
|
|
|
CV_WRAP virtual float calcError( const Ptr<TrainData>& data, bool test, OutputArray resp ) const; |
|
|
|
CV_WRAP virtual float calcError( const Ptr<cv::ml::TrainData>& data, bool test, OutputArray resp ) const; |
|
|
|
|
|
|
|
|
|
|
|
/** @brief Predicts response(s) for the provided sample(s)
|
|
|
|
/** @brief Predicts response(s) for the provided sample(s)
|
|
|
|
|
|
|
|
|
|
|
@ -357,7 +357,7 @@ public: |
|
|
|
|
|
|
|
|
|
|
|
The class must implement static `create()` method with no parameters or with all default parameter values |
|
|
|
The class must implement static `create()` method with no parameters or with all default parameter values |
|
|
|
*/ |
|
|
|
*/ |
|
|
|
template<typename _Tp> static Ptr<_Tp> train(const Ptr<TrainData>& data, int flags=0) |
|
|
|
template<typename _Tp> static Ptr<_Tp> train(const Ptr<cv::ml::TrainData>& data, int flags=0) |
|
|
|
{ |
|
|
|
{ |
|
|
|
Ptr<_Tp> model = _Tp::create(); |
|
|
|
Ptr<_Tp> model = _Tp::create(); |
|
|
|
return !model.empty() && model->train(data, flags) ? model : Ptr<_Tp>(); |
|
|
|
return !model.empty() && model->train(data, flags) ? model : Ptr<_Tp>(); |
|
|
@ -667,7 +667,7 @@ public: |
|
|
|
regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and |
|
|
|
regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and |
|
|
|
the usual %SVM with parameters specified in params is executed. |
|
|
|
the usual %SVM with parameters specified in params is executed. |
|
|
|
*/ |
|
|
|
*/ |
|
|
|
virtual bool trainAuto( const Ptr<TrainData>& data, int kFold = 10, |
|
|
|
virtual bool trainAuto( const Ptr<cv::ml::TrainData>& data, int kFold = 10, |
|
|
|
ParamGrid Cgrid = SVM::getDefaultGrid(SVM::C), |
|
|
|
ParamGrid Cgrid = SVM::getDefaultGrid(SVM::C), |
|
|
|
ParamGrid gammaGrid = SVM::getDefaultGrid(SVM::GAMMA), |
|
|
|
ParamGrid gammaGrid = SVM::getDefaultGrid(SVM::GAMMA), |
|
|
|
ParamGrid pGrid = SVM::getDefaultGrid(SVM::P), |
|
|
|
ParamGrid pGrid = SVM::getDefaultGrid(SVM::P), |
|
|
|