added gpu implementation of constant space belief propagation stereo matching.

some refactoring of StereoBeliefPropagation.
pull/13383/head
Vladislav Vinogradov 15 years ago
parent 53057afcb8
commit ee104c27d8
  1. 92
      modules/gpu/include/opencv2/gpu/gpu.hpp
  2. 175
      modules/gpu/src/beliefpropagation_gpu.cpp
  3. 272
      modules/gpu/src/constantspacebp_gpu.cpp
  4. 55
      modules/gpu/src/cuda/beliefpropagation.cu
  5. 814
      modules/gpu/src/cuda/constantspacebp.cu

@ -375,34 +375,28 @@ namespace cv
GpuMat minSSD, leBuf, riBuf;
};
//////////////////////// StereoBeliefPropagation_GPU /////////////////////////
////////////////////////// StereoBeliefPropagation ///////////////////////////
class CV_EXPORTS StereoBeliefPropagation_GPU
class CV_EXPORTS StereoBeliefPropagation
{
public:
enum { MSG_TYPE_AUTO,
MSG_TYPE_FLOAT,
MSG_TYPE_SHORT_SCALE_AUTO,
MSG_TYPE_SHORT_SCALE_MANUAL };
enum { DEFAULT_NDISP = 64 };
enum { DEFAULT_ITERS = 5 };
enum { DEFAULT_LEVELS = 5 };
//! the default constructor
explicit StereoBeliefPropagation_GPU(int ndisp = DEFAULT_NDISP,
int iters = DEFAULT_ITERS,
int levels = DEFAULT_LEVELS,
int msg_type = MSG_TYPE_AUTO,
float msg_scale = 1.0f);
explicit StereoBeliefPropagation(int ndisp = DEFAULT_NDISP,
int iters = DEFAULT_ITERS,
int levels = DEFAULT_LEVELS,
int msg_type = CV_32F);
//! the full constructor taking the number of disparities, number of BP iterations on each level,
//! number of levels, truncation of data cost, data weight,
//! truncation of discontinuity cost and discontinuity single jump
StereoBeliefPropagation_GPU(int ndisp, int iters, int levels,
float max_data_term, float data_weight,
float max_disc_term, float disc_single_jump,
int msg_type = MSG_TYPE_AUTO,
float msg_scale = 1.0f);
StereoBeliefPropagation(int ndisp, int iters, int levels,
float max_data_term, float data_weight,
float max_disc_term, float disc_single_jump,
int msg_type = CV_32F);
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
//! if disparity is empty output type will be CV_16S else output type will be disparity.type().
@ -410,11 +404,6 @@ namespace cv
//! Acync version
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, const Stream& stream);
//! Some heuristics that tries to estmate
//! if current GPU will be faster then CPU in this algorithm.
//! It queries current active device.
static bool checkIfGpuCallReasonable();
int ndisp;
@ -427,12 +416,67 @@ namespace cv
float disc_single_jump;
int msg_type;
float msg_scale;
private:
GpuMat u, d, l, r, u2, d2, l2, r2;
std::vector<GpuMat> datas;
GpuMat out;
};
};
/////////////////////////// StereoConstantSpaceBP ///////////////////////////
class CV_EXPORTS StereoConstantSpaceBP
{
public:
enum { DEFAULT_NDISP = 64 };
enum { DEFAULT_ITERS = 5 };
enum { DEFAULT_LEVELS = 5 };
enum { DEFAULT_NR_PLANE = 2 };
//! the default constructor
explicit StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP,
int iters = DEFAULT_ITERS,
int levels = DEFAULT_LEVELS,
int nr_plane = DEFAULT_NR_PLANE,
int msg_type = CV_32F);
//! the full constructor taking the number of disparities, number of BP iterations on each level,
//! number of levels, number of active disparity on the first level, truncation of data cost, data weight,
//! truncation of discontinuity cost and discontinuity single jump
StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane,
float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
int msg_type = CV_32F);
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
//! if disparity is empty output type will be CV_16S else output type will be disparity.type().
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity);
//! Acync version
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, const Stream& stream);
int ndisp;
int iters;
int levels;
int nr_plane;
float max_data_term;
float data_weight;
float max_disc_term;
float disc_single_jump;
int msg_type;
private:
GpuMat u[2], d[2], l[2], r[2];
GpuMat disp_selected_pyr[2];
GpuMat data_cost;
GpuMat data_cost_selected;
GpuMat temp1, temp2;
GpuMat out;
};
}
//! Speckle filtering - filters small connected components on diparity image.

@ -28,7 +28,7 @@
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
@ -48,22 +48,16 @@ using namespace std;
#if !defined (HAVE_CUDA)
cv::gpu::StereoBeliefPropagation_GPU::StereoBeliefPropagation_GPU(int, int, int, int, float) { throw_nogpu(); }
cv::gpu::StereoBeliefPropagation_GPU::StereoBeliefPropagation_GPU(int, int, int, float, float, float, float, int, float) { throw_nogpu(); }
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, int) { throw_nogpu(); }
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, float, float, float, float, int) { throw_nogpu(); }
void cv::gpu::StereoBeliefPropagation_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::StereoBeliefPropagation_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&, const Stream&) { throw_nogpu(); }
bool cv::gpu::StereoBeliefPropagation_GPU::checkIfGpuCallReasonable() { throw_nogpu(); return false; }
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, const GpuMat&, GpuMat&, const Stream&) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
const float DEFAULT_MAX_DATA_TERM = 10.0f;
const float DEFAULT_DATA_WEIGHT = 0.07f;
const float DEFAULT_MAX_DISC_TERM = 1.7f;
const float DEFAULT_DISC_SINGLE_JUMP = 1.0f;
namespace cv { namespace gpu { namespace impl {
namespace cv { namespace gpu { namespace bp
{
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump);
void comp_data(int msg_type, const DevMem2D& l, const DevMem2D& r, int channels, DevMem2D mdata, const cudaStream_t& stream);
void data_step_down(int dst_cols, int dst_rows, int src_rows, int msg_type, const DevMem2D& src, DevMem2D dst, const cudaStream_t& stream);
@ -72,48 +66,49 @@ namespace cv { namespace gpu { namespace impl {
void output(int msg_type, const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, DevMem2D disp, const cudaStream_t& stream);
}}}
cv::gpu::StereoBeliefPropagation_GPU::StereoBeliefPropagation_GPU(int ndisp_, int iters_, int levels_, int msg_type_, float msg_scale_)
namespace
{
const float DEFAULT_MAX_DATA_TERM = 10.0f;
const float DEFAULT_DATA_WEIGHT = 0.07f;
const float DEFAULT_MAX_DISC_TERM = 1.7f;
const float DEFAULT_DISC_SINGLE_JUMP = 1.0f;
}
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, int msg_type_)
: ndisp(ndisp_), iters(iters_), levels(levels_),
max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT),
max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP),
msg_type(msg_type_), msg_scale(msg_scale_), datas(levels_)
msg_type(msg_type_), datas(levels_)
{
CV_Assert(0 < ndisp && 0 < iters && 0 < levels);
}
cv::gpu::StereoBeliefPropagation_GPU::StereoBeliefPropagation_GPU(int ndisp_, int iters_, int levels_, float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_, int msg_type_, float msg_scale_)
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_, int msg_type_)
: ndisp(ndisp_), iters(iters_), levels(levels_),
max_data_term(max_data_term_), data_weight(data_weight_),
max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_),
msg_type(msg_type_), msg_scale(msg_scale_), datas(levels_)
msg_type(msg_type_), datas(levels_)
{
CV_Assert(0 < ndisp && 0 < iters && 0 < levels);
}
static bool checkMsgOverflow(int levels, float max_data_term, float data_weight, float max_disc_term, float msg_scale)
{
float maxV = ceil(max_disc_term * msg_scale);
float maxD = ceil(max_data_term * data_weight * msg_scale);
float maxMsg = maxV + (maxD * pow(4.0f, (float)levels));
maxMsg = maxV + (maxD * pow(4.0f, (float)levels)) + 3 * maxMsg;
return (maxMsg > numeric_limits<short>::max());
}
static void stereo_bp_gpu_operator(int ndisp, int iters, int levels,
float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
int msg_type, float& msg_scale,
static void stereo_bp_gpu_operator(int& ndisp, int& iters, int& levels,
float& max_data_term, float& data_weight, float& max_disc_term, float& disc_single_jump,
int& msg_type,
GpuMat& u, GpuMat& d, GpuMat& l, GpuMat& r,
GpuMat& u2, GpuMat& d2, GpuMat& l2, GpuMat& r2,
vector<GpuMat>& datas, GpuMat& out,
const GpuMat& left, const GpuMat& right, GpuMat& disp,
const cudaStream_t& stream)
{
CV_DbgAssert(left.cols == right.cols && left.rows == right.rows && left.type() == right.type() && left.type() == CV_8U);
CV_DbgAssert(0 < ndisp && 0 < iters && 0 < levels
&& (msg_type == CV_32F || msg_type == CV_16S)
&& left.rows == right.rows && left.cols == right.cols && left.type() == right.type());
CV_Assert((left.type() == CV_8UC1 || left.type() == CV_8UC3));
const Scalar zero = Scalar::all(0);
const float scale = ((msg_type == CV_32F) ? 1.0f : 10.0f);
int rows = left.rows;
int cols = left.cols;
@ -121,65 +116,7 @@ static void stereo_bp_gpu_operator(int ndisp, int iters, int levels,
int lowest_cols = cols / divisor;
int lowest_rows = rows / divisor;
const int min_image_dim_size = 2;
CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size);
switch (msg_type)
{
case StereoBeliefPropagation_GPU::MSG_TYPE_AUTO:
if (!checkMsgOverflow(levels, max_data_term, data_weight, max_disc_term, 100.0f))
{
msg_type = CV_16S;
msg_scale = 100.0f;
}
else if (!checkMsgOverflow(levels, max_data_term, data_weight, max_disc_term, 64.0f))
{
msg_type = CV_16S;
msg_scale = 64.0f;
}
else if (!checkMsgOverflow(levels, max_data_term, data_weight, max_disc_term, 32.0f))
{
msg_type = CV_16S;
msg_scale = 32.0f;
}
else if (!checkMsgOverflow(levels, max_data_term, data_weight, max_disc_term, 16.0f))
{
msg_type = CV_16S;
msg_scale = 16.0f;
}
else if (!checkMsgOverflow(levels, max_data_term, data_weight, max_disc_term, 10.0f))
{
msg_type = CV_16S;
msg_scale = 10.0f;
}
else
{
msg_type = CV_32F;
msg_scale = 1.0f;
}
break;
case StereoBeliefPropagation_GPU::MSG_TYPE_FLOAT:
msg_type = CV_32F;
msg_scale = 1.0f;
break;
case StereoBeliefPropagation_GPU::MSG_TYPE_SHORT_SCALE_AUTO:
msg_type = CV_16S;
if (!checkMsgOverflow(levels, max_data_term, data_weight, max_disc_term, 100.0f))
msg_scale = 100.0f;
else if (!checkMsgOverflow(levels, max_data_term, data_weight, max_disc_term, 64.0f))
msg_scale = 64.0f;
else if (!checkMsgOverflow(levels, max_data_term, data_weight, max_disc_term, 32.0f))
msg_scale = 32.0f;
else if (!checkMsgOverflow(levels, max_data_term, data_weight, max_disc_term, 16.0f))
msg_scale = 16.0f;
else
msg_scale = 10.0f;
break;
case StereoBeliefPropagation_GPU::MSG_TYPE_SHORT_SCALE_MANUAL:
msg_type = CV_16S;
break;
default:
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
}
CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size);
u.create(rows * ndisp, cols, msg_type);
d.create(rows * ndisp, cols, msg_type);
@ -214,7 +151,7 @@ static void stereo_bp_gpu_operator(int ndisp, int iters, int levels,
}
}
impl::load_constants(ndisp, max_data_term, msg_scale * data_weight, msg_scale * max_disc_term, msg_scale * disc_single_jump);
bp::load_constants(ndisp, max_data_term, scale * data_weight, scale * max_disc_term, scale * disc_single_jump);
datas.resize(levels);
@ -228,7 +165,7 @@ static void stereo_bp_gpu_operator(int ndisp, int iters, int levels,
datas[0].create(rows * ndisp, cols, msg_type);
impl::comp_data(msg_type, left, right, left.channels(), datas.front(), stream);
bp::comp_data(msg_type, left, right, left.channels(), datas.front(), stream);
for (int i = 1; i < levels; i++)
{
@ -237,7 +174,7 @@ static void stereo_bp_gpu_operator(int ndisp, int iters, int levels,
datas[i].create(rows_all[i] * ndisp, cols_all[i], msg_type);
impl::data_step_down(cols_all[i], rows_all[i], rows_all[i-1], msg_type, datas[i-1], datas[i], stream);
bp::data_step_down(cols_all[i], rows_all[i], rows_all[i-1], msg_type, datas[i-1], datas[i], stream);
}
DevMem2D mus[] = {u, u2};
@ -251,9 +188,9 @@ static void stereo_bp_gpu_operator(int ndisp, int iters, int levels,
{
// for lower level we have already computed messages by setting to zero
if (i != levels - 1)
impl::level_up_messages(mem_idx, cols_all[i], rows_all[i], rows_all[i+1], msg_type, mus, mds, mls, mrs, stream);
bp::level_up_messages(mem_idx, cols_all[i], rows_all[i], rows_all[i+1], msg_type, mus, mds, mls, mrs, stream);
impl::calc_all_iterations(cols_all[i], rows_all[i], iters, msg_type, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i], stream);
bp::calc_all_iterations(cols_all[i], rows_all[i], iters, msg_type, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i], stream);
mem_idx = (mem_idx + 1) & 1;
}
@ -261,47 +198,23 @@ static void stereo_bp_gpu_operator(int ndisp, int iters, int levels,
if (disp.empty())
disp.create(rows, cols, CV_16S);
if (disp.type() == CV_16S)
{
disp = zero;
impl::output(msg_type, u, d, l, r, datas.front(), disp, stream);
}
else
{
out.create(rows, cols, CV_16S);
out = zero;
impl::output(msg_type, u, d, l, r, datas.front(), out, stream);
out = ((disp.type() == CV_16S) ? disp : GpuMat(rows, cols, CV_16S));
out = zero;
bp::output(msg_type, u, d, l, r, datas.front(), disp, stream);
if (disp.type() != CV_16S)
out.convertTo(disp, disp.type());
}
}
void cv::gpu::StereoBeliefPropagation_GPU::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp)
{
::stereo_bp_gpu_operator(ndisp, iters, levels, max_data_term, data_weight, max_disc_term, disc_single_jump, msg_type, msg_scale, u, d, l, r, u2, d2, l2, r2, datas, out, left, right, disp, 0);
}
void cv::gpu::StereoBeliefPropagation_GPU::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, const Stream& stream)
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp)
{
::stereo_bp_gpu_operator(ndisp, iters, levels, max_data_term, data_weight, max_disc_term, disc_single_jump, msg_type, msg_scale, u, d, l, r, u2, d2, l2, r2, datas, out, left, right, disp, StreamAccessor::getStream(stream));
::stereo_bp_gpu_operator(ndisp, iters, levels, max_data_term, data_weight, max_disc_term, disc_single_jump, msg_type, u, d, l, r, u2, d2, l2, r2, datas, out, left, right, disp, 0);
}
bool cv::gpu::StereoBeliefPropagation_GPU::checkIfGpuCallReasonable()
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, const Stream& stream)
{
if (0 == getCudaEnabledDeviceCount())
return false;
int device = getDevice();
int minor, major;
getComputeCapability(device, &major, &minor);
int numSM = getNumberOfSMs(device);
if (major > 1 || numSM > 16)
return true;
return false;
::stereo_bp_gpu_operator(ndisp, iters, levels, max_data_term, data_weight, max_disc_term, disc_single_jump, msg_type, u, d, l, r, u2, d2, l2, r2, datas, out, left, right, disp, StreamAccessor::getStream(stream));
}
#endif /* !defined (HAVE_CUDA) */

@ -0,0 +1,272 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
using namespace std;
#if !defined (HAVE_CUDA)
cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int, int, int, int, int) { throw_nogpu(); }
cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int, int, int, int, float, float, float, float, int) { throw_nogpu(); }
void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat&, const GpuMat&, GpuMat&, const Stream&) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
namespace cv { namespace gpu { namespace csbp
{
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
const DevMem2D& left, const DevMem2D& right, const DevMem2D& temp1, const DevMem2D& temp2);
void init_data_cost(int rows, int cols, const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost_selected,
size_t msg_step, int msg_type, int h, int w, int level, int nr_plane, int ndisp, int channels,
const cudaStream_t& stream);
void compute_data_cost(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost, size_t msg_step1, size_t msg_step2, int msg_type,
int h, int w, int h2, int level, int nr_plane, int channels, const cudaStream_t& stream);
void init_message(const DevMem2D& u_new, const DevMem2D& d_new, const DevMem2D& l_new, const DevMem2D& r_new,
const DevMem2D& u_cur, const DevMem2D& d_cur, const DevMem2D& l_cur, const DevMem2D& r_cur,
const DevMem2D& selected_disp_pyr_new, const DevMem2D& selected_disp_pyr_cur,
const DevMem2D& data_cost_selected, const DevMem2D& data_cost, size_t msg_step1, size_t msg_step2, int msg_type,
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, const cudaStream_t& stream);
void calc_all_iterations(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& selected_disp_pyr_cur, size_t msg_step, int msg_type, int h, int w, int nr_plane, int iters,
const cudaStream_t& stream);
void compute_disp(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& disp_selected, size_t msg_step, int msg_type, const DevMem2D& disp, int nr_plane,
const cudaStream_t& stream);
}}}
namespace
{
const float DEFAULT_MAX_DATA_TERM = 10.0f;
const float DEFAULT_DATA_WEIGHT = 0.07f;
const float DEFAULT_MAX_DISC_TERM = 1.7f;
const float DEFAULT_DISC_SINGLE_JUMP = 1.0f;
}
cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp_, int iters_, int levels_, int nr_plane_,
int msg_type_)
: ndisp(ndisp_), iters(iters_), levels(levels_), nr_plane(nr_plane_),
max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT),
max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP),
msg_type(msg_type_)
{
}
cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp_, int iters_, int levels_, int nr_plane_,
float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_,
int msg_type_)
: ndisp(ndisp_), iters(iters_), levels(levels_), nr_plane(nr_plane_),
max_data_term(max_data_term_), data_weight(data_weight_),
max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_),
msg_type(msg_type_)
{
}
static void stereo_csbp_gpu_operator(int& ndisp, int& iters, int& levels, int& nr_plane,
float& max_data_term, float& data_weight, float& max_disc_term, float& disc_single_jump,
int& msg_type,
GpuMat u[2], GpuMat d[2], GpuMat l[2], GpuMat r[2],
GpuMat disp_selected_pyr[2], GpuMat& data_cost, GpuMat& data_cost_selected,
GpuMat& temp1, GpuMat& temp2, GpuMat& out,
const GpuMat& left, const GpuMat& right, GpuMat& disp,
const cudaStream_t& stream)
{
CV_DbgAssert(0 < ndisp && 0 < iters && 0 < levels && 0 < nr_plane
&& (msg_type == CV_32F || msg_type == CV_16S)
&& left.rows == right.rows && left.cols == right.cols && left.type() == right.type());
CV_Assert(levels <= 8 && (left.type() == CV_8UC1 || left.type() == CV_8UC3));
const Scalar zero = Scalar::all(0);
const float scale = ((msg_type == CV_32F) ? 1.0f : 10.0f);
const size_t type_size = ((msg_type == CV_32F) ? sizeof(float) : sizeof(short));
////////////////////////////////////////////////////////////////////////////////////////////
// Init
int rows = left.rows;
int cols = left.cols;
levels = min(levels, int(log((double)ndisp) / log(2.0)));
AutoBuffer<int> buf(levels * 4);
int* cols_pyr = buf;
int* rows_pyr = cols_pyr + levels;
int* nr_plane_pyr = rows_pyr + levels;
int* step_pyr = nr_plane_pyr + levels;
cols_pyr[0] = cols;
rows_pyr[0] = rows;
nr_plane_pyr[0] = nr_plane;
const int n = 64;
step_pyr[0] = alignSize(cols * type_size, n) / type_size;
for (int i = 1; i < levels; i++)
{
cols_pyr[i] = (cols_pyr[i-1] + 1) / 2;
rows_pyr[i] = (rows_pyr[i-1] + 1) / 2;
nr_plane_pyr[i] = nr_plane_pyr[i-1] * 2;
step_pyr[i] = alignSize(cols_pyr[i] * type_size, n) / type_size;
}
Size msg_size(step_pyr[0], rows * nr_plane_pyr[0]);
Size data_cost_size(step_pyr[0], rows * nr_plane_pyr[0] * 2);
u[0].create(msg_size, msg_type);
d[0].create(msg_size, msg_type);
l[0].create(msg_size, msg_type);
r[0].create(msg_size, msg_type);
u[1].create(msg_size, msg_type);
d[1].create(msg_size, msg_type);
l[1].create(msg_size, msg_type);
r[1].create(msg_size, msg_type);
disp_selected_pyr[0].create(msg_size, msg_type);
disp_selected_pyr[1].create(msg_size, msg_type);
data_cost.create(data_cost_size, msg_type);
data_cost_selected.create(msg_size, msg_type);
step_pyr[0] = data_cost.step / type_size;
Size temp_size = data_cost_size;
if (data_cost.step * data_cost_size.height < static_cast<size_t>(step_pyr[levels - 1]) * rows_pyr[levels - 1] * ndisp)
{
temp_size = Size(step_pyr[levels - 1], rows_pyr[levels - 1] * nr_plane);
}
temp1.create(temp_size, msg_type);
temp2.create(temp_size, msg_type);
////////////////////////////////////////////////////////////////////////////
// Compute
csbp::load_constants(ndisp, max_data_term, scale * data_weight, scale * max_disc_term, scale * disc_single_jump,
left, right, temp1, temp2);
l[0] = zero;
d[0] = zero;
r[0] = zero;
u[0] = zero;
l[1] = zero;
d[1] = zero;
r[1] = zero;
u[1] = zero;
data_cost = zero;
data_cost_selected = zero;
int cur_idx = 0;
for (int i = levels - 1; i >= 0; i--)
{
if (i == levels - 1)
{
csbp::init_data_cost(left.rows, left.cols, disp_selected_pyr[cur_idx], data_cost_selected,
step_pyr[i], msg_type, rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], ndisp, left.channels(), stream);
}
else
{
csbp::compute_data_cost(disp_selected_pyr[cur_idx], data_cost, step_pyr[i], step_pyr[i+1], msg_type,
rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), stream);
int new_idx = (cur_idx + 1) & 1;
csbp::init_message(u[new_idx], d[new_idx], l[new_idx], r[new_idx],
u[cur_idx], d[cur_idx], l[cur_idx], r[cur_idx],
disp_selected_pyr[new_idx], disp_selected_pyr[cur_idx],
data_cost_selected, data_cost, step_pyr[i], step_pyr[i+1], msg_type,
rows_pyr[i], cols_pyr[i], nr_plane_pyr[i],
rows_pyr[i+1], cols_pyr[i+1], nr_plane_pyr[i+1], stream);
cur_idx = new_idx;
}
csbp::calc_all_iterations(u[cur_idx], d[cur_idx], l[cur_idx], r[cur_idx],
data_cost_selected, disp_selected_pyr[cur_idx], step_pyr[i], msg_type,
rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], iters, stream);
}
if (disp.empty())
disp.create(rows, cols, CV_16S);
out = ((disp.type() == CV_16S) ? disp : GpuMat(rows, cols, CV_16S));
out = zero;
csbp::compute_disp(u[cur_idx], d[cur_idx], l[cur_idx], r[cur_idx],
data_cost_selected, disp_selected_pyr[cur_idx], step_pyr[0], msg_type, out, nr_plane_pyr[0], stream);
if (disp.type() != CV_16S)
out.convertTo(disp, disp.type());
}
void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp)
{
::stereo_csbp_gpu_operator(ndisp, iters, levels, nr_plane, max_data_term, data_weight, max_disc_term, disc_single_jump, msg_type,
u, d, l, r, disp_selected_pyr, data_cost, data_cost_selected, temp1, temp2, out, left, right, disp, 0);
}
void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, const Stream& stream)
{
::stereo_csbp_gpu_operator(ndisp, iters, levels, nr_plane, max_data_term, data_weight, max_disc_term, disc_single_jump, msg_type,
u, d, l, r, disp_selected_pyr, data_cost, data_cost_selected, temp1, temp2, out, left, right, disp,
StreamAccessor::getStream(stream));
}
#endif /* !defined (HAVE_CUDA) */

@ -28,7 +28,7 @@
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
@ -45,6 +45,7 @@
#include "safe_call.hpp"
using namespace cv::gpu;
using namespace cv::gpu::impl;
#ifndef FLT_MAX
#define FLT_MAX 3.402823466e+38F
@ -54,7 +55,7 @@ using namespace cv::gpu;
/////////////////////// load constants ////////////////////////
///////////////////////////////////////////////////////////////
namespace beliefpropagation_gpu
namespace bp_kernels
{
__constant__ int cndisp;
__constant__ float cmax_data_term;
@ -63,14 +64,14 @@ namespace beliefpropagation_gpu
__constant__ float cdisc_single_jump;
};
namespace cv { namespace gpu { namespace impl {
namespace cv { namespace gpu { namespace bp {
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump)
{
cudaSafeCall( cudaMemcpyToSymbol(beliefpropagation_gpu::cndisp, &ndisp, sizeof(int )) );
cudaSafeCall( cudaMemcpyToSymbol(beliefpropagation_gpu::cmax_data_term, &max_data_term, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(beliefpropagation_gpu::cdata_weight, &data_weight, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(beliefpropagation_gpu::cmax_disc_term, &max_disc_term, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(beliefpropagation_gpu::cdisc_single_jump, &disc_single_jump, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(bp_kernels::cndisp, &ndisp, sizeof(int )) );
cudaSafeCall( cudaMemcpyToSymbol(bp_kernels::cmax_data_term, &max_data_term, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(bp_kernels::cdata_weight, &data_weight, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(bp_kernels::cmax_disc_term, &max_disc_term, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(bp_kernels::cdisc_single_jump, &disc_single_jump, sizeof(float)) );
}
}}}
@ -78,7 +79,7 @@ namespace cv { namespace gpu { namespace impl {
////////////////////////// comp data //////////////////////////
///////////////////////////////////////////////////////////////
namespace beliefpropagation_gpu
namespace bp_kernels
{
template <typename T>
__global__ void comp_data_gray(const uchar* l, const uchar* r, size_t step, T* data, size_t data_step, int cols, int rows)
@ -147,7 +148,7 @@ namespace beliefpropagation_gpu
}
}
namespace cv { namespace gpu { namespace impl {
namespace cv { namespace gpu { namespace bp {
typedef void (*CompDataFunc)(const DevMem2D& l, const DevMem2D& r, int channels, DevMem2D mdata, const cudaStream_t& stream);
template<typename T>
@ -160,9 +161,9 @@ namespace cv { namespace gpu { namespace impl {
grid.y = divUp(l.rows, threads.y);
if (channels == 1)
beliefpropagation_gpu::comp_data_gray<T><<<grid, threads, 0, stream>>>(l.ptr, r.ptr, l.step, (T*)mdata.ptr, mdata.step/sizeof(T), l.cols, l.rows);
bp_kernels::comp_data_gray<T><<<grid, threads, 0, stream>>>(l.ptr, r.ptr, l.step, (T*)mdata.ptr, mdata.step/sizeof(T), l.cols, l.rows);
else
beliefpropagation_gpu::comp_data_bgr<T><<<grid, threads, 0, stream>>>(l.ptr, r.ptr, l.step, (T*)mdata.ptr, mdata.step/sizeof(T), l.cols, l.rows);
bp_kernels::comp_data_bgr<T><<<grid, threads, 0, stream>>>(l.ptr, r.ptr, l.step, (T*)mdata.ptr, mdata.step/sizeof(T), l.cols, l.rows);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
@ -193,7 +194,7 @@ namespace cv { namespace gpu { namespace impl {
//////////////////////// data step down ///////////////////////
///////////////////////////////////////////////////////////////
namespace beliefpropagation_gpu
namespace bp_kernels
{
template <typename T>
__global__ void data_step_down(int dst_cols, int dst_rows, int src_rows, const T* src, size_t src_step, T* dst, size_t dst_step)
@ -219,7 +220,7 @@ namespace beliefpropagation_gpu
}
}
namespace cv { namespace gpu { namespace impl {
namespace cv { namespace gpu { namespace bp {
typedef void (*DataStepDownFunc)(int dst_cols, int dst_rows, int src_rows, const DevMem2D& src, DevMem2D dst, const cudaStream_t& stream);
template<typename T>
@ -231,7 +232,7 @@ namespace cv { namespace gpu { namespace impl {
grid.x = divUp(dst_cols, threads.x);
grid.y = divUp(dst_rows, threads.y);
beliefpropagation_gpu::data_step_down<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (const T*)src.ptr, src.step/sizeof(T), (T*)dst.ptr, dst.step/sizeof(T));
bp_kernels::data_step_down<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (const T*)src.ptr, src.step/sizeof(T), (T*)dst.ptr, dst.step/sizeof(T));
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
@ -262,7 +263,7 @@ namespace cv { namespace gpu { namespace impl {
/////////////////// level up messages ////////////////////////
///////////////////////////////////////////////////////////////
namespace beliefpropagation_gpu
namespace bp_kernels
{
template <typename T>
__global__ void level_up_message(int dst_cols, int dst_rows, int src_rows, const T* src, size_t src_step, T* dst, size_t dst_step)
@ -284,7 +285,7 @@ namespace beliefpropagation_gpu
}
}
namespace cv { namespace gpu { namespace impl {
namespace cv { namespace gpu { namespace bp {
typedef void (*LevelUpMessagesFunc)(int dst_idx, int dst_cols, int dst_rows, int src_rows, DevMem2D* mus, DevMem2D* mds, DevMem2D* mls, DevMem2D* mrs, const cudaStream_t& stream);
template<typename T>
@ -298,10 +299,10 @@ namespace cv { namespace gpu { namespace impl {
int src_idx = (dst_idx + 1) & 1;
beliefpropagation_gpu::level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (const T*)mus[src_idx].ptr, mus[src_idx].step/sizeof(T), (T*)mus[dst_idx].ptr, mus[dst_idx].step/sizeof(T));
beliefpropagation_gpu::level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (const T*)mds[src_idx].ptr, mds[src_idx].step/sizeof(T), (T*)mds[dst_idx].ptr, mds[dst_idx].step/sizeof(T));
beliefpropagation_gpu::level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (const T*)mls[src_idx].ptr, mls[src_idx].step/sizeof(T), (T*)mls[dst_idx].ptr, mls[dst_idx].step/sizeof(T));
beliefpropagation_gpu::level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (const T*)mrs[src_idx].ptr, mrs[src_idx].step/sizeof(T), (T*)mrs[dst_idx].ptr, mrs[dst_idx].step/sizeof(T));
bp_kernels::level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (const T*)mus[src_idx].ptr, mus[src_idx].step/sizeof(T), (T*)mus[dst_idx].ptr, mus[dst_idx].step/sizeof(T));
bp_kernels::level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (const T*)mds[src_idx].ptr, mds[src_idx].step/sizeof(T), (T*)mds[dst_idx].ptr, mds[dst_idx].step/sizeof(T));
bp_kernels::level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (const T*)mls[src_idx].ptr, mls[src_idx].step/sizeof(T), (T*)mls[dst_idx].ptr, mls[dst_idx].step/sizeof(T));
bp_kernels::level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (const T*)mrs[src_idx].ptr, mrs[src_idx].step/sizeof(T), (T*)mrs[dst_idx].ptr, mrs[dst_idx].step/sizeof(T));
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
@ -332,7 +333,7 @@ namespace cv { namespace gpu { namespace impl {
//////////////////// calc all iterations /////////////////////
///////////////////////////////////////////////////////////////
namespace beliefpropagation_gpu
namespace bp_kernels
{
template <typename T>
__device__ void calc_min_linear_penalty(T* dst, size_t step)
@ -429,7 +430,7 @@ namespace beliefpropagation_gpu
}
}
namespace cv { namespace gpu { namespace impl {
namespace cv { namespace gpu { namespace bp {
typedef void (*CalcAllIterationFunc)(int cols, int rows, int iters, DevMem2D& u, DevMem2D& d, DevMem2D& l, DevMem2D& r, const DevMem2D& data, const cudaStream_t& stream);
template<typename T>
@ -443,7 +444,7 @@ namespace cv { namespace gpu { namespace impl {
for(int t = 0; t < iters; ++t)
{
beliefpropagation_gpu::one_iteration<T><<<grid, threads, 0, stream>>>(t, (T*)u.ptr, (T*)d.ptr, (T*)l.ptr, (T*)r.ptr, u.step/sizeof(T), (const T*)data.ptr, data.step/sizeof(T), cols, rows);
bp_kernels::one_iteration<T><<<grid, threads, 0, stream>>>(t, (T*)u.ptr, (T*)d.ptr, (T*)l.ptr, (T*)r.ptr, u.step/sizeof(T), (const T*)data.ptr, data.step/sizeof(T), cols, rows);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
@ -475,7 +476,7 @@ namespace cv { namespace gpu { namespace impl {
/////////////////////////// output ////////////////////////////
///////////////////////////////////////////////////////////////
namespace beliefpropagation_gpu
namespace bp_kernels
{
template <typename T>
__global__ void output(int cols, int rows, const T* u, const T* d, const T* l, const T* r, const T* data, size_t step, short* disp, size_t res_step)
@ -515,7 +516,7 @@ namespace beliefpropagation_gpu
}
}
namespace cv { namespace gpu { namespace impl {
namespace cv { namespace gpu { namespace bp {
typedef void (*OutputFunc)(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, DevMem2D disp, const cudaStream_t& stream);
template<typename T>
@ -527,7 +528,7 @@ namespace cv { namespace gpu { namespace impl {
grid.x = divUp(disp.cols, threads.x);
grid.y = divUp(disp.rows, threads.y);
beliefpropagation_gpu::output<T><<<grid, threads, 0, stream>>>(disp.cols, disp.rows, (const T*)u.ptr, (const T*)d.ptr, (const T*)l.ptr, (const T*)r.ptr, (const T*)data.ptr, u.step/sizeof(T), (short*)disp.ptr, disp.step/sizeof(short));
bp_kernels::output<T><<<grid, threads, 0, stream>>>(disp.cols, disp.rows, (const T*)u.ptr, (const T*)d.ptr, (const T*)l.ptr, (const T*)r.ptr, (const T*)data.ptr, u.step/sizeof(T), (short*)disp.ptr, disp.step/sizeof(short));
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );

@ -0,0 +1,814 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/gpu/devmem2d.hpp"
#include "saturate_cast.hpp"
#include "safe_call.hpp"
using namespace cv::gpu;
using namespace cv::gpu::impl;
#ifndef FLT_MAX
#define FLT_MAX 3.402823466e+38F
#endif
#ifndef SHRT_MAX
#define SHRT_MAX 32767
#endif
template <typename T>
struct TypeLimits {};
template <>
struct TypeLimits<short>
{
static __device__ short max() {return SHRT_MAX;}
};
template <>
struct TypeLimits<float>
{
static __device__ float max() {return FLT_MAX;}
};
///////////////////////////////////////////////////////////////
/////////////////////// load constants ////////////////////////
///////////////////////////////////////////////////////////////
namespace csbp_kernels
{
__constant__ int cndisp;
__constant__ float cmax_data_term;
__constant__ float cdata_weight;
__constant__ float cmax_disc_term;
__constant__ float cdisc_single_jump;
__constant__ size_t cimg_step;
__constant__ size_t cmsg_step1;
__constant__ size_t cmsg_step2;
__constant__ size_t cdisp_step1;
__constant__ size_t cdisp_step2;
__constant__ uchar* cleft;
__constant__ uchar* cright;
__constant__ uchar* ctemp1;
__constant__ uchar* ctemp2;
}
namespace cv { namespace gpu { namespace csbp
{
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
const DevMem2D& left, const DevMem2D& right, const DevMem2D& temp1, const DevMem2D& temp2)
{
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cndisp, &ndisp, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmax_data_term, &max_data_term, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdata_weight, &data_weight, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmax_disc_term, &max_disc_term, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisc_single_jump, &disc_single_jump, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cimg_step, &left.step, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cleft, &left.ptr, sizeof(left.ptr)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cright, &right.ptr, sizeof(right.ptr)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::ctemp1, &temp1.ptr, sizeof(temp1.ptr)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::ctemp2, &temp2.ptr, sizeof(temp2.ptr)) );
}
}}}
///////////////////////////////////////////////////////////////
/////////////////////// init data cost ////////////////////////
///////////////////////////////////////////////////////////////
namespace csbp_kernels
{
template <int channels>
struct DataCostPerPixel
{
static __device__ float compute(const uchar* left, const uchar* right)
{
float tb = 0.114f * abs((int)left[0] - right[0]);
float tg = 0.587f * abs((int)left[1] - right[1]);
float tr = 0.299f * abs((int)left[2] - right[2]);
return fmin(cdata_weight * (tr + tg + tb), cdata_weight * cmax_data_term);
}
};
template <>
struct DataCostPerPixel<1>
{
static __device__ float compute(const uchar* left, const uchar* right)
{
return fmin(cdata_weight * abs((int)*left - *right), cdata_weight * cmax_data_term);
}
};
template <typename T>
__global__ void get_first_k_initial_local(T* data_cost_selected_, T* selected_disp_pyr, int h, int w, int nr_plane)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y < h && x < w)
{
T* selected_disparity = selected_disp_pyr + y * cmsg_step1 + x;
T* data_cost_selected = data_cost_selected_ + y * cmsg_step1 + x;
T* data_cost = (T*)ctemp1 + y * cmsg_step1 + x;
int nr_local_minimum = 0;
T prev = data_cost[0 * cdisp_step1];
T cur = data_cost[1 * cdisp_step1];
T next = data_cost[2 * cdisp_step1];
for (int d = 1; d < cndisp - 1 && nr_local_minimum < nr_plane; d++)
{
if (cur < prev && cur < next)
{
data_cost_selected[nr_local_minimum * cdisp_step1] = cur;
selected_disparity[nr_local_minimum * cdisp_step1] = d;
data_cost[d * cdisp_step1] = TypeLimits<T>::max();
nr_local_minimum++;
}
prev = cur;
cur = next;
next = data_cost[(d + 1) * cdisp_step1];
}
for (int i = nr_local_minimum; i < nr_plane; i++)
{
T minimum = TypeLimits<T>::max();
int id = 0;
for (int d = 0; d < cndisp; d++)
{
cur = data_cost[d * cdisp_step1];
if (cur < minimum)
{
minimum = cur;
id = d;
}
}
data_cost_selected[i * cdisp_step1] = minimum;
selected_disparity[i * cdisp_step1] = id;
data_cost[id * cdisp_step1] = TypeLimits<T>::max();
}
}
}
template <typename T, int winsz, int channels>
__global__ void data_init(int level, int rows, int cols, int h)
{
int x_out = blockIdx.x;
int y_out = blockIdx.y % h;
int d = (blockIdx.y / h) * blockDim.z + threadIdx.z;
int tid = threadIdx.x;
if (d < cndisp)
{
int x0 = x_out << level;
int y0 = y_out << level;
int len = min(y0 + winsz, rows) - y0;
float val = 0.0f;
if (x0 + tid < cols)
{
if (x0 + tid - d < 0)
val = cdata_weight * cmax_data_term * len;
else
{
const uchar* lle = cleft + y0 * cimg_step + channels * (x0 + tid );
const uchar* lri = cright + y0 * cimg_step + channels * (x0 + tid - d);
for(int y = 0; y < len; ++y)
{
val += DataCostPerPixel<channels>::compute(lle, lri);
lle += cimg_step;
lri += cimg_step;
}
}
}
extern __shared__ float smem[];
float* dline = smem + winsz * threadIdx.z;
dline[tid] = val;
__syncthreads();
if (winsz >= 256) { if (tid < 128) { dline[tid] += dline[tid + 128]; } __syncthreads(); }
if (winsz >= 128) { if (tid < 64) { dline[tid] += dline[tid + 64]; } __syncthreads(); }
if (winsz >= 64) if (tid < 32) dline[tid] += dline[tid + 32];
if (winsz >= 32) if (tid < 16) dline[tid] += dline[tid + 16];
if (winsz >= 16) if (tid < 8) dline[tid] += dline[tid + 8];
if (winsz >= 8) if (tid < 4) dline[tid] += dline[tid + 4];
if (winsz >= 4) if (tid < 2) dline[tid] += dline[tid + 2];
if (winsz >= 2) if (tid < 1) dline[tid] += dline[tid + 1];
T* data_cost = (T*)ctemp1 + y_out * cmsg_step1 + x_out;
if (tid == 0)
data_cost[cdisp_step1 * d] = saturate_cast<T>(dline[0]);
}
}
}
namespace cv { namespace gpu { namespace csbp
{
template <typename T, int winsz>
void data_init_caller(int rows, int cols, int h, int w, int level, int ndisp, int channels, const cudaStream_t& stream)
{
const int threadsNum = 256;
const size_t smem_size = threadsNum * sizeof(float);
dim3 threads(winsz, 1, threadsNum/winsz);
dim3 grid(w, h, 1);
grid.y *= divUp(ndisp, threads.z);
switch (channels)
{
case 1: csbp_kernels::data_init<T, winsz, 1><<<grid, threads, smem_size, stream>>>(level, rows, cols, h); break;
case 3: csbp_kernels::data_init<T, winsz, 3><<<grid, threads, smem_size, stream>>>(level, rows, cols, h); break;
default: cv::gpu::error("Unsupported channels count", __FILE__, __LINE__);
}
}
typedef void (*DataInitCaller)(int cols, int rows, int w, int h, int level, int ndisp, int channels, const cudaStream_t& stream);
template <typename T>
void get_first_k_initial_local_caller(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost_selected, int h, int w, int nr_plane, const cudaStream_t& stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(w, threads.x);
grid.y = divUp(h, threads.y);
csbp_kernels::get_first_k_initial_local<T><<<grid, threads, 0, stream>>>((T*)data_cost_selected.ptr, (T*)disp_selected_pyr.ptr, h, w, nr_plane);
}
typedef void (*GetFirstKInitialLocalCaller)(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost_selected, int h, int w, int nr_plane, const cudaStream_t& stream);
void init_data_cost(int rows, int cols, const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost_selected,
size_t msg_step, int msg_type, int h, int w, int level, int nr_plane, int ndisp, int channels, const cudaStream_t& stream)
{
static const DataInitCaller data_init_callers[8][9] =
{
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{data_init_caller<short, 1>, data_init_caller<short, 2>, data_init_caller<short, 4>, data_init_caller<short, 8>,
data_init_caller<short, 16>, data_init_caller<short, 32>, data_init_caller<short, 64>, data_init_caller<short, 128>,
data_init_caller<short, 256>},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{data_init_caller<float, 1>, data_init_caller<float, 2>, data_init_caller<float, 4>, data_init_caller<float, 8>,
data_init_caller<float, 16>, data_init_caller<float, 32>, data_init_caller<float, 64>, data_init_caller<float, 128>,
data_init_caller<float, 256>},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0}
};
static const GetFirstKInitialLocalCaller get_first_k_initial_local_callers[8] =
{
0, 0, 0,
get_first_k_initial_local_caller<short>,
0,
get_first_k_initial_local_caller<float>,
0, 0
};
DataInitCaller data_init_caller = data_init_callers[msg_type][level];
GetFirstKInitialLocalCaller get_first_k_initial_local_caller = get_first_k_initial_local_callers[msg_type];
if (!data_init_caller || !get_first_k_initial_local_caller)
cv::gpu::error("Unsupported message type or levels count", __FILE__, __LINE__);
size_t disp_step = msg_step * h;
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step, sizeof(size_t)) );
data_init_caller(rows, cols, h, w, level, ndisp, channels, stream);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
get_first_k_initial_local_caller(disp_selected_pyr, data_cost_selected, h, w, nr_plane, stream);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
}}}
///////////////////////////////////////////////////////////////
////////////////////// compute data cost //////////////////////
///////////////////////////////////////////////////////////////
namespace csbp_kernels
{
template <typename T, int channels>
__global__ void compute_data_cost(T* selected_disp_pyr, T* data_cost_, int h, int w, int level, int nr_plane)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y < h && x < w)
{
int y0 = y << level;
int yt = (y + 1) << level;
int x0 = x << level;
int xt = (x + 1) << level;
T* selected_disparity = selected_disp_pyr + y/2 * cmsg_step2 + x/2;
T* data_cost = data_cost_ + y * cmsg_step1 + x;
for(int d = 0; d < nr_plane; d++)
{
float val = 0.0f;
for(int yi = y0; yi < yt; yi++)
{
for(int xi = x0; xi < xt; xi++)
{
int sel_disp = selected_disparity[d * cdisp_step2];
int xr = xi - sel_disp;
if (xr < 0)
val += cdata_weight * cmax_data_term;
else
{
const uchar* left_x = cleft + yi * cimg_step + xi * channels;
const uchar* right_x = cright + yi * cimg_step + xr * channels;
val += DataCostPerPixel<channels>::compute(left_x, right_x);
}
}
}
data_cost[cdisp_step1 * d] = saturate_cast<T>(val);
}
}
}
}
namespace cv { namespace gpu { namespace csbp
{
template <typename T>
void compute_data_cost_caller(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost,
int h, int w, int level, int nr_plane, int channels, const cudaStream_t& stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(w, threads.x);
grid.y = divUp(h, threads.y);
switch(channels)
{
case 1: csbp_kernels::compute_data_cost<T, 1><<<grid, threads, 0, stream>>>((T*)disp_selected_pyr.ptr, (T*)data_cost.ptr, h, w, level, nr_plane); break;
case 3: csbp_kernels::compute_data_cost<T, 3><<<grid, threads, 0, stream>>>((T*)disp_selected_pyr.ptr, (T*)data_cost.ptr, h, w, level, nr_plane); break;
default: cv::gpu::error("Unsupported channels count", __FILE__, __LINE__);
}
}
typedef void (*ComputeDataCostCaller)(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost,
int h, int w, int level, int nr_plane, int channels, const cudaStream_t& stream);
void compute_data_cost(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost, size_t msg_step1, size_t msg_step2, int msg_type,
int h, int w, int h2, int level, int nr_plane, int channels, const cudaStream_t& stream)
{
static const ComputeDataCostCaller callers[8] =
{
0, 0, 0,
compute_data_cost_caller<short>,
0,
compute_data_cost_caller<float>,
0, 0
};
size_t disp_step1 = msg_step1 * h;
size_t disp_step2 = msg_step2 * h2;
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step1, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step2, &disp_step2, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step1, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step2, &msg_step2, sizeof(size_t)) );
ComputeDataCostCaller caller = callers[msg_type];
if (!caller)
cv::gpu::error("Unsopported message type", __FILE__, __LINE__);
caller(disp_selected_pyr, data_cost, h, w, level, nr_plane, channels, stream);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
}}}
///////////////////////////////////////////////////////////////
//////////////////////// init message /////////////////////////
///////////////////////////////////////////////////////////////
namespace csbp_kernels
{
template <typename T>
__device__ void get_first_k_element_increase(T* u_new, T* d_new, T* l_new, T* r_new,
const T* u_cur, const T* d_cur, const T* l_cur, const T* r_cur,
T* data_cost_selected, T* disparity_selected_new, T* data_cost_new,
const T* data_cost_cur, const T* disparity_selected_cur,
int nr_plane, int nr_plane2)
{
for(int i = 0; i < nr_plane; i++)
{
T minimum = TypeLimits<T>::max();
int id = 0;
for(int j = 0; j < nr_plane2; j++)
{
T cur = data_cost_new[j * cdisp_step1];
if(cur < minimum)
{
minimum = cur;
id = j;
}
}
data_cost_selected[i * cdisp_step1] = data_cost_cur[id * cdisp_step1];
disparity_selected_new[i * cdisp_step1] = disparity_selected_cur[id * cdisp_step1];
u_new[i * cdisp_step1] = u_cur[id * cdisp_step2];
d_new[i * cdisp_step1] = d_cur[id * cdisp_step2];
l_new[i * cdisp_step1] = l_cur[id * cdisp_step2];
r_new[i * cdisp_step1] = r_cur[id * cdisp_step2];
data_cost_new[id * cdisp_step1] = TypeLimits<T>::max();
}
}
template <typename T>
__global__ void init_message(T* u_new_, T* d_new_, T* l_new_, T* r_new_,
const T* u_cur_, const T* d_cur_, const T* l_cur_, const T* r_cur_,
T* selected_disp_pyr_new, const T* selected_disp_pyr_cur,
T* data_cost_selected_, T* data_cost_,
int h, int w, int nr_plane, int h2, int w2, int nr_plane2)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y < h && x < w)
{
const T* u_cur = u_cur_ + min(h2-1, y/2 + 1) * cmsg_step2 + x/2;
const T* d_cur = d_cur_ + max(0, y/2 - 1) * cmsg_step2 + x/2;
const T* l_cur = l_cur_ + y/2 * cmsg_step2 + min(w2-1, x/2 + 1);
const T* r_cur = r_cur_ + y/2 * cmsg_step2 + max(0, x/2 - 1);
T* disparity_selected_cur_backup = (T*)ctemp2 + y * cmsg_step1 + x;
T* data_cost_new = (T*)ctemp1 + y * cmsg_step1 + x;
const T* disparity_selected_cur = selected_disp_pyr_cur + y/2 * cmsg_step2 + x/2;
T* data_cost = data_cost_ + y * cmsg_step1 + x;
for(int d = 0; d < nr_plane2; d++)
{
int idx2 = d * cdisp_step2;
disparity_selected_cur_backup[d * cdisp_step1] = disparity_selected_cur[idx2];
T val = data_cost[d * cdisp_step1] + u_cur[idx2] + d_cur[idx2] + l_cur[idx2] + r_cur[idx2];
data_cost_new[d * cdisp_step1] = val;
}
T* data_cost_selected = data_cost_selected_ + y * cmsg_step1 + x;
T* disparity_selected_new = selected_disp_pyr_new + y * cmsg_step1 + x;
T* u_new = u_new_ + y * cmsg_step1 + x;
T* d_new = d_new_ + y * cmsg_step1 + x;
T* l_new = l_new_ + y * cmsg_step1 + x;
T* r_new = r_new_ + y * cmsg_step1 + x;
u_cur = u_cur_ + y/2 * cmsg_step2 + x/2;
d_cur = d_cur_ + y/2 * cmsg_step2 + x/2;
l_cur = l_cur_ + y/2 * cmsg_step2 + x/2;
r_cur = r_cur_ + y/2 * cmsg_step2 + x/2;
get_first_k_element_increase(u_new, d_new, l_new, r_new, u_cur, d_cur, l_cur, r_cur,
data_cost_selected, disparity_selected_new, data_cost_new,
data_cost, disparity_selected_cur_backup, nr_plane, nr_plane2);
}
}
}
namespace cv { namespace gpu { namespace csbp
{
template <typename T>
void init_message_caller(const DevMem2D& u_new, const DevMem2D& d_new, const DevMem2D& l_new, const DevMem2D& r_new,
const DevMem2D& u_cur, const DevMem2D& d_cur, const DevMem2D& l_cur, const DevMem2D& r_cur,
const DevMem2D& selected_disp_pyr_new, const DevMem2D& selected_disp_pyr_cur,
const DevMem2D& data_cost_selected, const DevMem2D& data_cost,
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, const cudaStream_t& stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(w, threads.x);
grid.y = divUp(h, threads.y);
csbp_kernels::init_message<T><<<grid, threads, 0, stream>>>((T*)u_new.ptr, (T*)d_new.ptr, (T*)l_new.ptr, (T*)r_new.ptr,
(const T*)u_cur.ptr, (const T*)d_cur.ptr, (const T*)l_cur.ptr, (const T*)r_cur.ptr,
(T*)selected_disp_pyr_new.ptr, (const T*)selected_disp_pyr_cur.ptr,
(T*)data_cost_selected.ptr, (T*)data_cost.ptr,
h, w, nr_plane, h2, w2, nr_plane2);
}
typedef void (*InitMessageCaller)(const DevMem2D& u_new, const DevMem2D& d_new, const DevMem2D& l_new, const DevMem2D& r_new,
const DevMem2D& u_cur, const DevMem2D& d_cur, const DevMem2D& l_cur, const DevMem2D& r_cur,
const DevMem2D& selected_disp_pyr_new, const DevMem2D& selected_disp_pyr_cur,
const DevMem2D& data_cost_selected, const DevMem2D& data_cost,
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, const cudaStream_t& stream);
void init_message(const DevMem2D& u_new, const DevMem2D& d_new, const DevMem2D& l_new, const DevMem2D& r_new,
const DevMem2D& u_cur, const DevMem2D& d_cur, const DevMem2D& l_cur, const DevMem2D& r_cur,
const DevMem2D& selected_disp_pyr_new, const DevMem2D& selected_disp_pyr_cur,
const DevMem2D& data_cost_selected, const DevMem2D& data_cost, size_t msg_step1, size_t msg_step2, int msg_type,
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, const cudaStream_t& stream)
{
static const InitMessageCaller callers[8] =
{
0, 0, 0,
init_message_caller<short>,
0,
init_message_caller<float>,
0, 0
};
size_t disp_step1 = msg_step1 * h;
size_t disp_step2 = msg_step2 * h2;
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step1, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step2, &disp_step2, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step1, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step2, &msg_step2, sizeof(size_t)) );
InitMessageCaller caller = callers[msg_type];
if (!caller)
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
caller(u_new, d_new, l_new, r_new, u_cur, d_cur, l_cur, r_cur,
selected_disp_pyr_new, selected_disp_pyr_cur, data_cost_selected, data_cost,
h, w, nr_plane, h2, w2, nr_plane2, stream);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
}}}
///////////////////////////////////////////////////////////////
//////////////////// calc all iterations /////////////////////
///////////////////////////////////////////////////////////////
namespace csbp_kernels
{
template <typename T>
__device__ void message_per_pixel(const T* data, T* msg_dst, const T* msg1, const T* msg2, const T* msg3,
const T* dst_disp, const T* src_disp, int nr_plane, T* temp)
{
T minimum = TypeLimits<T>::max();
for(int d = 0; d < nr_plane; d++)
{
int idx = d * cdisp_step1;
T val = data[idx] + msg1[idx] + msg2[idx] + msg3[idx];
if(val < minimum)
minimum = val;
msg_dst[idx] = val;
}
float sum = 0;
for(int d = 0; d < nr_plane; d++)
{
float cost_min = minimum + cmax_disc_term;
T src_disp_reg = src_disp[d * cdisp_step1];
for(int d2 = 0; d2 < nr_plane; d2++)
cost_min = fmin(cost_min, msg_dst[d2 * cdisp_step1] + cdisc_single_jump * abs(dst_disp[d2 * cdisp_step1] - src_disp_reg));
temp[d * cdisp_step1] = saturate_cast<T>(cost_min);
sum += cost_min;
}
sum /= nr_plane;
for(int d = 0; d < nr_plane; d++)
msg_dst[d * cdisp_step1] = saturate_cast<T>(temp[d * cdisp_step1] - sum);
}
template <typename T>
__global__ void compute_message(T* u_, T* d_, T* l_, T* r_, const T* data_cost_selected, const T* selected_disp_pyr_cur,
int h, int w, int nr_plane, int i)
{
int y = blockIdx.y * blockDim.y + threadIdx.y;
int x = ((blockIdx.x * blockDim.x + threadIdx.x) << 1) + ((y + i) & 1);
if (y > 0 && y < h - 1 && x > 0 && x < w - 1)
{
const T* data = data_cost_selected + y * cmsg_step1 + x;
T* u = u_ + y * cmsg_step1 + x;
T* d = d_ + y * cmsg_step1 + x;
T* l = l_ + y * cmsg_step1 + x;
T* r = r_ + y * cmsg_step1 + x;
const T* disp = selected_disp_pyr_cur + y * cmsg_step1 + x;
T* temp = (T*)ctemp1 + y * cmsg_step1 + x;
message_per_pixel(data, u, r - 1, u + cmsg_step1, l + 1, disp, disp - cmsg_step1, nr_plane, temp);
message_per_pixel(data, d, d - cmsg_step1, r - 1, l + 1, disp, disp + cmsg_step1, nr_plane, temp);
message_per_pixel(data, l, u + cmsg_step1, d - cmsg_step1, l + 1, disp, disp - 1, nr_plane, temp);
message_per_pixel(data, r, u + cmsg_step1, d - cmsg_step1, r - 1, disp, disp + 1, nr_plane, temp);
}
}
}
namespace cv { namespace gpu { namespace csbp
{
template <typename T>
void compute_message_caller(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& selected_disp_pyr_cur, int h, int w, int nr_plane, int t, const cudaStream_t& stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(w, threads.x << 1);
grid.y = divUp(h, threads.y);
csbp_kernels::compute_message<T><<<grid, threads, 0, stream>>>((T*)u.ptr, (T*)d.ptr, (T*)l.ptr, (T*)r.ptr,
(const T*)data_cost_selected.ptr, (const T*)selected_disp_pyr_cur.ptr,
h, w, nr_plane, t & 1);
}
typedef void (*ComputeMessageCaller)(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& selected_disp_pyr_cur, int h, int w, int nr_plane, int t, const cudaStream_t& stream);
void calc_all_iterations(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& selected_disp_pyr_cur, size_t msg_step, int msg_type, int h, int w, int nr_plane, int iters, const cudaStream_t& stream)
{
static const ComputeMessageCaller callers[8] =
{
0, 0, 0,
compute_message_caller<short>,
0,
compute_message_caller<float>,
0, 0
};
size_t disp_step = msg_step * h;
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step, sizeof(size_t)) );
ComputeMessageCaller caller = callers[msg_type];
if (!caller)
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
for(int t = 0; t < iters; ++t)
{
caller(u, d, l, r, data_cost_selected, selected_disp_pyr_cur, h, w, nr_plane, t, stream);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
}
}}}
///////////////////////////////////////////////////////////////
/////////////////////////// output ////////////////////////////
///////////////////////////////////////////////////////////////
namespace csbp_kernels
{
template <typename T>
__global__ void compute_disp(const T* u_, const T* d_, const T* l_, const T* r_,
const T* data_cost_selected, const T* disp_selected_pyr,
short* disp, size_t res_step, int cols, int rows, int nr_plane)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y > 0 && y < rows - 1 && x > 0 && x < cols - 1)
{
const T* data = data_cost_selected + y * cmsg_step1 + x;
const T* disp_selected = disp_selected_pyr + y * cmsg_step1 + x;
const T* u = u_ + (y+1) * cmsg_step1 + (x+0);
const T* d = d_ + (y-1) * cmsg_step1 + (x+0);
const T* l = l_ + (y+0) * cmsg_step1 + (x+1);
const T* r = r_ + (y+0) * cmsg_step1 + (x-1);
int best = 0;
T best_val = TypeLimits<T>::max();
for (int i = 0; i < nr_plane; ++i)
{
int idx = i * cdisp_step1;
T val = data[idx]+ u[idx] + d[idx] + l[idx] + r[idx];
if (val < best_val)
{
best_val = val;
best = saturate_cast<short>(disp_selected[idx]);
}
}
disp[res_step * y + x] = best;
}
}
}
namespace cv { namespace gpu { namespace csbp
{
template <typename T>
void compute_disp_caller(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& disp_selected, const DevMem2D& disp, int nr_plane, const cudaStream_t& stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(disp.cols, threads.x);
grid.y = divUp(disp.rows, threads.y);
csbp_kernels::compute_disp<T><<<grid, threads, 0, stream>>>((const T*)u.ptr, (const T*)d.ptr, (const T*)l.ptr, (const T*)r.ptr,
(const T*)data_cost_selected.ptr, (const T*)disp_selected.ptr,
(short*)disp.ptr, disp.step / sizeof(short), disp.cols, disp.rows, nr_plane);
}
typedef void (*ComputeDispCaller)(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& disp_selected, const DevMem2D& disp, int nr_plane, const cudaStream_t& stream);
void compute_disp(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& disp_selected, size_t msg_step, int msg_type, const DevMem2D& disp, int nr_plane, const cudaStream_t& stream)
{
static const ComputeDispCaller callers[8] =
{
0, 0, 0,
compute_disp_caller<short>,
0,
compute_disp_caller<float>,
0, 0
};
size_t disp_step = disp.rows * msg_step;
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step, sizeof(size_t)) );
ComputeDispCaller caller = callers[msg_type];
if (!caller)
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
caller(u, d, l, r, data_cost_selected, disp_selected, disp, nr_plane, stream);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
}}}
Loading…
Cancel
Save