mirror of https://github.com/opencv/opencv.git
some refactoring of StereoBeliefPropagation.pull/13383/head
parent
53057afcb8
commit
ee104c27d8
5 changed files with 1226 additions and 182 deletions
@ -0,0 +1,272 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other GpuMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
using namespace std; |
||||
|
||||
#if !defined (HAVE_CUDA) |
||||
|
||||
cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int, int, int, int, int) { throw_nogpu(); } |
||||
cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int, int, int, int, float, float, float, float, int) { throw_nogpu(); } |
||||
|
||||
void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } |
||||
void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat&, const GpuMat&, GpuMat&, const Stream&) { throw_nogpu(); } |
||||
|
||||
#else /* !defined (HAVE_CUDA) */ |
||||
|
||||
namespace cv { namespace gpu { namespace csbp
|
||||
{
|
||||
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
|
||||
const DevMem2D& left, const DevMem2D& right, const DevMem2D& temp1, const DevMem2D& temp2); |
||||
|
||||
void init_data_cost(int rows, int cols, const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost_selected, |
||||
size_t msg_step, int msg_type, int h, int w, int level, int nr_plane, int ndisp, int channels,
|
||||
const cudaStream_t& stream); |
||||
|
||||
void compute_data_cost(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost, size_t msg_step1, size_t msg_step2, int msg_type, |
||||
int h, int w, int h2, int level, int nr_plane, int channels, const cudaStream_t& stream); |
||||
|
||||
void init_message(const DevMem2D& u_new, const DevMem2D& d_new, const DevMem2D& l_new, const DevMem2D& r_new,
|
||||
const DevMem2D& u_cur, const DevMem2D& d_cur, const DevMem2D& l_cur, const DevMem2D& r_cur,
|
||||
const DevMem2D& selected_disp_pyr_new, const DevMem2D& selected_disp_pyr_cur,
|
||||
const DevMem2D& data_cost_selected, const DevMem2D& data_cost, size_t msg_step1, size_t msg_step2, int msg_type,
|
||||
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, const cudaStream_t& stream); |
||||
|
||||
void calc_all_iterations(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
|
||||
const DevMem2D& selected_disp_pyr_cur, size_t msg_step, int msg_type, int h, int w, int nr_plane, int iters,
|
||||
const cudaStream_t& stream); |
||||
|
||||
void compute_disp(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
|
||||
const DevMem2D& disp_selected, size_t msg_step, int msg_type, const DevMem2D& disp, int nr_plane,
|
||||
const cudaStream_t& stream); |
||||
|
||||
}}} |
||||
|
||||
namespace |
||||
{ |
||||
const float DEFAULT_MAX_DATA_TERM = 10.0f; |
||||
const float DEFAULT_DATA_WEIGHT = 0.07f; |
||||
const float DEFAULT_MAX_DISC_TERM = 1.7f; |
||||
const float DEFAULT_DISC_SINGLE_JUMP = 1.0f; |
||||
} |
||||
|
||||
cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp_, int iters_, int levels_, int nr_plane_, |
||||
int msg_type_) |
||||
: ndisp(ndisp_), iters(iters_), levels(levels_), nr_plane(nr_plane_),
|
||||
max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT),
|
||||
max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP), |
||||
msg_type(msg_type_) |
||||
{
|
||||
} |
||||
|
||||
cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp_, int iters_, int levels_, int nr_plane_, |
||||
float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_, |
||||
int msg_type_) |
||||
: ndisp(ndisp_), iters(iters_), levels(levels_), nr_plane(nr_plane_),
|
||||
max_data_term(max_data_term_), data_weight(data_weight_),
|
||||
max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_), |
||||
msg_type(msg_type_) |
||||
{
|
||||
} |
||||
|
||||
static void stereo_csbp_gpu_operator(int& ndisp, int& iters, int& levels, int& nr_plane,
|
||||
float& max_data_term, float& data_weight, float& max_disc_term, float& disc_single_jump, |
||||
int& msg_type, |
||||
GpuMat u[2], GpuMat d[2], GpuMat l[2], GpuMat r[2], |
||||
GpuMat disp_selected_pyr[2], GpuMat& data_cost, GpuMat& data_cost_selected, |
||||
GpuMat& temp1, GpuMat& temp2, GpuMat& out, |
||||
const GpuMat& left, const GpuMat& right, GpuMat& disp, |
||||
const cudaStream_t& stream) |
||||
{ |
||||
CV_DbgAssert(0 < ndisp && 0 < iters && 0 < levels && 0 < nr_plane |
||||
&& (msg_type == CV_32F || msg_type == CV_16S) |
||||
&& left.rows == right.rows && left.cols == right.cols && left.type() == right.type()); |
||||
|
||||
CV_Assert(levels <= 8 && (left.type() == CV_8UC1 || left.type() == CV_8UC3));
|
||||
|
||||
const Scalar zero = Scalar::all(0); |
||||
|
||||
const float scale = ((msg_type == CV_32F) ? 1.0f : 10.0f); |
||||
|
||||
const size_t type_size = ((msg_type == CV_32F) ? sizeof(float) : sizeof(short)); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Init
|
||||
|
||||
int rows = left.rows; |
||||
int cols = left.cols; |
||||
|
||||
levels = min(levels, int(log((double)ndisp) / log(2.0))); |
||||
|
||||
AutoBuffer<int> buf(levels * 4); |
||||
|
||||
int* cols_pyr = buf; |
||||
int* rows_pyr = cols_pyr + levels; |
||||
int* nr_plane_pyr = rows_pyr + levels; |
||||
int* step_pyr = nr_plane_pyr + levels; |
||||
|
||||
cols_pyr[0] = cols; |
||||
rows_pyr[0] = rows; |
||||
nr_plane_pyr[0] = nr_plane; |
||||
|
||||
const int n = 64; |
||||
step_pyr[0] = alignSize(cols * type_size, n) / type_size; |
||||
for (int i = 1; i < levels; i++) |
||||
{ |
||||
cols_pyr[i] = (cols_pyr[i-1] + 1) / 2; |
||||
rows_pyr[i] = (rows_pyr[i-1] + 1) / 2; |
||||
|
||||
nr_plane_pyr[i] = nr_plane_pyr[i-1] * 2; |
||||
|
||||
step_pyr[i] = alignSize(cols_pyr[i] * type_size, n) / type_size; |
||||
} |
||||
|
||||
Size msg_size(step_pyr[0], rows * nr_plane_pyr[0]); |
||||
Size data_cost_size(step_pyr[0], rows * nr_plane_pyr[0] * 2); |
||||
|
||||
u[0].create(msg_size, msg_type); |
||||
d[0].create(msg_size, msg_type); |
||||
l[0].create(msg_size, msg_type); |
||||
r[0].create(msg_size, msg_type); |
||||
|
||||
u[1].create(msg_size, msg_type); |
||||
d[1].create(msg_size, msg_type); |
||||
l[1].create(msg_size, msg_type); |
||||
r[1].create(msg_size, msg_type); |
||||
|
||||
disp_selected_pyr[0].create(msg_size, msg_type);
|
||||
disp_selected_pyr[1].create(msg_size, msg_type); |
||||
|
||||
data_cost.create(data_cost_size, msg_type); |
||||
data_cost_selected.create(msg_size, msg_type); |
||||
|
||||
step_pyr[0] = data_cost.step / type_size; |
||||
|
||||
Size temp_size = data_cost_size; |
||||
if (data_cost.step * data_cost_size.height < static_cast<size_t>(step_pyr[levels - 1]) * rows_pyr[levels - 1] * ndisp) |
||||
{ |
||||
temp_size = Size(step_pyr[levels - 1], rows_pyr[levels - 1] * nr_plane); |
||||
} |
||||
|
||||
temp1.create(temp_size, msg_type); |
||||
temp2.create(temp_size, msg_type); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Compute
|
||||
|
||||
csbp::load_constants(ndisp, max_data_term, scale * data_weight, scale * max_disc_term, scale * disc_single_jump,
|
||||
left, right, temp1, temp2); |
||||
|
||||
l[0] = zero; |
||||
d[0] = zero; |
||||
r[0] = zero; |
||||
u[0] = zero; |
||||
|
||||
l[1] = zero; |
||||
d[1] = zero; |
||||
r[1] = zero; |
||||
u[1] = zero; |
||||
|
||||
data_cost = zero; |
||||
data_cost_selected = zero; |
||||
|
||||
int cur_idx = 0; |
||||
|
||||
for (int i = levels - 1; i >= 0; i--) |
||||
{ |
||||
if (i == levels - 1) |
||||
{ |
||||
csbp::init_data_cost(left.rows, left.cols, disp_selected_pyr[cur_idx], data_cost_selected,
|
||||
step_pyr[i], msg_type, rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], ndisp, left.channels(), stream); |
||||
} |
||||
else |
||||
{ |
||||
csbp::compute_data_cost(disp_selected_pyr[cur_idx], data_cost, step_pyr[i], step_pyr[i+1], msg_type,
|
||||
rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), stream); |
||||
|
||||
int new_idx = (cur_idx + 1) & 1; |
||||
|
||||
csbp::init_message(u[new_idx], d[new_idx], l[new_idx], r[new_idx], |
||||
u[cur_idx], d[cur_idx], l[cur_idx], r[cur_idx], |
||||
disp_selected_pyr[new_idx], disp_selected_pyr[cur_idx], |
||||
data_cost_selected, data_cost, step_pyr[i], step_pyr[i+1], msg_type,
|
||||
rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], |
||||
rows_pyr[i+1], cols_pyr[i+1], nr_plane_pyr[i+1], stream); |
||||
|
||||
cur_idx = new_idx; |
||||
} |
||||
|
||||
csbp::calc_all_iterations(u[cur_idx], d[cur_idx], l[cur_idx], r[cur_idx],
|
||||
data_cost_selected, disp_selected_pyr[cur_idx], step_pyr[i], msg_type,
|
||||
rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], iters, stream); |
||||
} |
||||
|
||||
if (disp.empty()) |
||||
disp.create(rows, cols, CV_16S); |
||||
|
||||
out = ((disp.type() == CV_16S) ? disp : GpuMat(rows, cols, CV_16S)); |
||||
out = zero; |
||||
|
||||
csbp::compute_disp(u[cur_idx], d[cur_idx], l[cur_idx], r[cur_idx],
|
||||
data_cost_selected, disp_selected_pyr[cur_idx], step_pyr[0], msg_type, out, nr_plane_pyr[0], stream); |
||||
|
||||
if (disp.type() != CV_16S) |
||||
out.convertTo(disp, disp.type()); |
||||
} |
||||
|
||||
void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp) |
||||
{ |
||||
::stereo_csbp_gpu_operator(ndisp, iters, levels, nr_plane, max_data_term, data_weight, max_disc_term, disc_single_jump, msg_type, |
||||
u, d, l, r, disp_selected_pyr, data_cost, data_cost_selected, temp1, temp2, out, left, right, disp, 0); |
||||
} |
||||
|
||||
void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, const Stream& stream) |
||||
{ |
||||
::stereo_csbp_gpu_operator(ndisp, iters, levels, nr_plane, max_data_term, data_weight, max_disc_term, disc_single_jump, msg_type, |
||||
u, d, l, r, disp_selected_pyr, data_cost, data_cost_selected, temp1, temp2, out, left, right, disp,
|
||||
StreamAccessor::getStream(stream)); |
||||
} |
||||
|
||||
#endif /* !defined (HAVE_CUDA) */ |
@ -0,0 +1,814 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors "as is" and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#include "opencv2/gpu/devmem2d.hpp" |
||||
#include "saturate_cast.hpp" |
||||
#include "safe_call.hpp" |
||||
|
||||
using namespace cv::gpu; |
||||
using namespace cv::gpu::impl; |
||||
|
||||
#ifndef FLT_MAX |
||||
#define FLT_MAX 3.402823466e+38F |
||||
#endif |
||||
|
||||
#ifndef SHRT_MAX |
||||
#define SHRT_MAX 32767 |
||||
#endif |
||||
|
||||
template <typename T> |
||||
struct TypeLimits {}; |
||||
|
||||
template <> |
||||
struct TypeLimits<short> |
||||
{ |
||||
static __device__ short max() {return SHRT_MAX;} |
||||
}; |
||||
|
||||
template <> |
||||
struct TypeLimits<float> |
||||
{ |
||||
static __device__ float max() {return FLT_MAX;} |
||||
}; |
||||
|
||||
/////////////////////////////////////////////////////////////// |
||||
/////////////////////// load constants //////////////////////// |
||||
/////////////////////////////////////////////////////////////// |
||||
|
||||
namespace csbp_kernels |
||||
{ |
||||
__constant__ int cndisp; |
||||
|
||||
__constant__ float cmax_data_term; |
||||
__constant__ float cdata_weight; |
||||
__constant__ float cmax_disc_term; |
||||
__constant__ float cdisc_single_jump; |
||||
|
||||
__constant__ size_t cimg_step; |
||||
__constant__ size_t cmsg_step1; |
||||
__constant__ size_t cmsg_step2; |
||||
__constant__ size_t cdisp_step1; |
||||
__constant__ size_t cdisp_step2; |
||||
|
||||
__constant__ uchar* cleft; |
||||
__constant__ uchar* cright; |
||||
__constant__ uchar* ctemp1; |
||||
__constant__ uchar* ctemp2; |
||||
} |
||||
|
||||
namespace cv { namespace gpu { namespace csbp |
||||
{ |
||||
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, |
||||
const DevMem2D& left, const DevMem2D& right, const DevMem2D& temp1, const DevMem2D& temp2) |
||||
{ |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cndisp, &ndisp, sizeof(int)) ); |
||||
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmax_data_term, &max_data_term, sizeof(float)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdata_weight, &data_weight, sizeof(float)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmax_disc_term, &max_disc_term, sizeof(float)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisc_single_jump, &disc_single_jump, sizeof(float)) ); |
||||
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cimg_step, &left.step, sizeof(size_t)) ); |
||||
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cleft, &left.ptr, sizeof(left.ptr)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cright, &right.ptr, sizeof(right.ptr)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::ctemp1, &temp1.ptr, sizeof(temp1.ptr)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::ctemp2, &temp2.ptr, sizeof(temp2.ptr)) ); |
||||
} |
||||
}}} |
||||
|
||||
/////////////////////////////////////////////////////////////// |
||||
/////////////////////// init data cost //////////////////////// |
||||
/////////////////////////////////////////////////////////////// |
||||
|
||||
namespace csbp_kernels |
||||
{ |
||||
template <int channels> |
||||
struct DataCostPerPixel |
||||
{ |
||||
static __device__ float compute(const uchar* left, const uchar* right) |
||||
{ |
||||
float tb = 0.114f * abs((int)left[0] - right[0]); |
||||
float tg = 0.587f * abs((int)left[1] - right[1]); |
||||
float tr = 0.299f * abs((int)left[2] - right[2]); |
||||
|
||||
return fmin(cdata_weight * (tr + tg + tb), cdata_weight * cmax_data_term); |
||||
} |
||||
}; |
||||
|
||||
template <> |
||||
struct DataCostPerPixel<1> |
||||
{ |
||||
static __device__ float compute(const uchar* left, const uchar* right) |
||||
{ |
||||
return fmin(cdata_weight * abs((int)*left - *right), cdata_weight * cmax_data_term); |
||||
} |
||||
}; |
||||
|
||||
template <typename T> |
||||
__global__ void get_first_k_initial_local(T* data_cost_selected_, T* selected_disp_pyr, int h, int w, int nr_plane) |
||||
{ |
||||
int x = blockIdx.x * blockDim.x + threadIdx.x; |
||||
int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if (y < h && x < w) |
||||
{ |
||||
T* selected_disparity = selected_disp_pyr + y * cmsg_step1 + x; |
||||
T* data_cost_selected = data_cost_selected_ + y * cmsg_step1 + x; |
||||
T* data_cost = (T*)ctemp1 + y * cmsg_step1 + x; |
||||
|
||||
int nr_local_minimum = 0; |
||||
|
||||
T prev = data_cost[0 * cdisp_step1]; |
||||
T cur = data_cost[1 * cdisp_step1]; |
||||
T next = data_cost[2 * cdisp_step1]; |
||||
|
||||
for (int d = 1; d < cndisp - 1 && nr_local_minimum < nr_plane; d++) |
||||
{ |
||||
if (cur < prev && cur < next) |
||||
{ |
||||
data_cost_selected[nr_local_minimum * cdisp_step1] = cur; |
||||
selected_disparity[nr_local_minimum * cdisp_step1] = d; |
||||
|
||||
data_cost[d * cdisp_step1] = TypeLimits<T>::max(); |
||||
|
||||
nr_local_minimum++; |
||||
} |
||||
prev = cur; |
||||
cur = next; |
||||
next = data_cost[(d + 1) * cdisp_step1]; |
||||
} |
||||
|
||||
for (int i = nr_local_minimum; i < nr_plane; i++) |
||||
{ |
||||
T minimum = TypeLimits<T>::max(); |
||||
int id = 0; |
||||
|
||||
for (int d = 0; d < cndisp; d++) |
||||
{ |
||||
cur = data_cost[d * cdisp_step1]; |
||||
if (cur < minimum) |
||||
{ |
||||
minimum = cur; |
||||
id = d; |
||||
} |
||||
} |
||||
data_cost_selected[i * cdisp_step1] = minimum; |
||||
selected_disparity[i * cdisp_step1] = id; |
||||
|
||||
data_cost[id * cdisp_step1] = TypeLimits<T>::max(); |
||||
} |
||||
} |
||||
} |
||||
|
||||
template <typename T, int winsz, int channels> |
||||
__global__ void data_init(int level, int rows, int cols, int h) |
||||
{ |
||||
int x_out = blockIdx.x; |
||||
int y_out = blockIdx.y % h; |
||||
int d = (blockIdx.y / h) * blockDim.z + threadIdx.z; |
||||
|
||||
int tid = threadIdx.x; |
||||
|
||||
if (d < cndisp) |
||||
{ |
||||
int x0 = x_out << level; |
||||
int y0 = y_out << level; |
||||
|
||||
int len = min(y0 + winsz, rows) - y0; |
||||
|
||||
float val = 0.0f; |
||||
if (x0 + tid < cols) |
||||
{ |
||||
if (x0 + tid - d < 0) |
||||
val = cdata_weight * cmax_data_term * len; |
||||
else |
||||
{ |
||||
const uchar* lle = cleft + y0 * cimg_step + channels * (x0 + tid ); |
||||
const uchar* lri = cright + y0 * cimg_step + channels * (x0 + tid - d); |
||||
|
||||
for(int y = 0; y < len; ++y) |
||||
{ |
||||
val += DataCostPerPixel<channels>::compute(lle, lri); |
||||
|
||||
lle += cimg_step; |
||||
lri += cimg_step; |
||||
} |
||||
} |
||||
} |
||||
|
||||
extern __shared__ float smem[]; |
||||
float* dline = smem + winsz * threadIdx.z; |
||||
|
||||
dline[tid] = val; |
||||
|
||||
__syncthreads(); |
||||
|
||||
if (winsz >= 256) { if (tid < 128) { dline[tid] += dline[tid + 128]; } __syncthreads(); } |
||||
if (winsz >= 128) { if (tid < 64) { dline[tid] += dline[tid + 64]; } __syncthreads(); } |
||||
|
||||
if (winsz >= 64) if (tid < 32) dline[tid] += dline[tid + 32]; |
||||
if (winsz >= 32) if (tid < 16) dline[tid] += dline[tid + 16]; |
||||
if (winsz >= 16) if (tid < 8) dline[tid] += dline[tid + 8]; |
||||
if (winsz >= 8) if (tid < 4) dline[tid] += dline[tid + 4]; |
||||
if (winsz >= 4) if (tid < 2) dline[tid] += dline[tid + 2]; |
||||
if (winsz >= 2) if (tid < 1) dline[tid] += dline[tid + 1]; |
||||
|
||||
T* data_cost = (T*)ctemp1 + y_out * cmsg_step1 + x_out; |
||||
|
||||
if (tid == 0) |
||||
data_cost[cdisp_step1 * d] = saturate_cast<T>(dline[0]); |
||||
} |
||||
} |
||||
} |
||||
|
||||
namespace cv { namespace gpu { namespace csbp |
||||
{ |
||||
template <typename T, int winsz> |
||||
void data_init_caller(int rows, int cols, int h, int w, int level, int ndisp, int channels, const cudaStream_t& stream) |
||||
{ |
||||
const int threadsNum = 256; |
||||
const size_t smem_size = threadsNum * sizeof(float); |
||||
|
||||
dim3 threads(winsz, 1, threadsNum/winsz); |
||||
dim3 grid(w, h, 1); |
||||
grid.y *= divUp(ndisp, threads.z); |
||||
|
||||
switch (channels) |
||||
{ |
||||
case 1: csbp_kernels::data_init<T, winsz, 1><<<grid, threads, smem_size, stream>>>(level, rows, cols, h); break; |
||||
case 3: csbp_kernels::data_init<T, winsz, 3><<<grid, threads, smem_size, stream>>>(level, rows, cols, h); break; |
||||
default: cv::gpu::error("Unsupported channels count", __FILE__, __LINE__); |
||||
} |
||||
} |
||||
|
||||
typedef void (*DataInitCaller)(int cols, int rows, int w, int h, int level, int ndisp, int channels, const cudaStream_t& stream); |
||||
|
||||
template <typename T> |
||||
void get_first_k_initial_local_caller(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost_selected, int h, int w, int nr_plane, const cudaStream_t& stream) |
||||
{ |
||||
dim3 threads(32, 8, 1); |
||||
dim3 grid(1, 1, 1); |
||||
|
||||
grid.x = divUp(w, threads.x); |
||||
grid.y = divUp(h, threads.y); |
||||
|
||||
csbp_kernels::get_first_k_initial_local<T><<<grid, threads, 0, stream>>>((T*)data_cost_selected.ptr, (T*)disp_selected_pyr.ptr, h, w, nr_plane); |
||||
} |
||||
|
||||
typedef void (*GetFirstKInitialLocalCaller)(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost_selected, int h, int w, int nr_plane, const cudaStream_t& stream); |
||||
|
||||
void init_data_cost(int rows, int cols, const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost_selected, |
||||
size_t msg_step, int msg_type, int h, int w, int level, int nr_plane, int ndisp, int channels, const cudaStream_t& stream) |
||||
{ |
||||
|
||||
static const DataInitCaller data_init_callers[8][9] = |
||||
{ |
||||
{0, 0, 0, 0, 0, 0, 0, 0, 0}, |
||||
{0, 0, 0, 0, 0, 0, 0, 0, 0}, |
||||
{0, 0, 0, 0, 0, 0, 0, 0, 0}, |
||||
{data_init_caller<short, 1>, data_init_caller<short, 2>, data_init_caller<short, 4>, data_init_caller<short, 8>, |
||||
data_init_caller<short, 16>, data_init_caller<short, 32>, data_init_caller<short, 64>, data_init_caller<short, 128>, |
||||
data_init_caller<short, 256>}, |
||||
{0, 0, 0, 0, 0, 0, 0, 0, 0}, |
||||
{data_init_caller<float, 1>, data_init_caller<float, 2>, data_init_caller<float, 4>, data_init_caller<float, 8>, |
||||
data_init_caller<float, 16>, data_init_caller<float, 32>, data_init_caller<float, 64>, data_init_caller<float, 128>, |
||||
data_init_caller<float, 256>}, |
||||
{0, 0, 0, 0, 0, 0, 0, 0, 0}, |
||||
{0, 0, 0, 0, 0, 0, 0, 0, 0} |
||||
}; |
||||
|
||||
static const GetFirstKInitialLocalCaller get_first_k_initial_local_callers[8] = |
||||
{ |
||||
0, 0, 0, |
||||
get_first_k_initial_local_caller<short>, |
||||
0, |
||||
get_first_k_initial_local_caller<float>, |
||||
0, 0 |
||||
}; |
||||
|
||||
DataInitCaller data_init_caller = data_init_callers[msg_type][level]; |
||||
GetFirstKInitialLocalCaller get_first_k_initial_local_caller = get_first_k_initial_local_callers[msg_type]; |
||||
if (!data_init_caller || !get_first_k_initial_local_caller) |
||||
cv::gpu::error("Unsupported message type or levels count", __FILE__, __LINE__); |
||||
|
||||
size_t disp_step = msg_step * h; |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step, sizeof(size_t)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step, sizeof(size_t)) ); |
||||
|
||||
data_init_caller(rows, cols, h, w, level, ndisp, channels, stream); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall( cudaThreadSynchronize() ); |
||||
|
||||
get_first_k_initial_local_caller(disp_selected_pyr, data_cost_selected, h, w, nr_plane, stream); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall( cudaThreadSynchronize() ); |
||||
} |
||||
}}} |
||||
|
||||
/////////////////////////////////////////////////////////////// |
||||
////////////////////// compute data cost ////////////////////// |
||||
/////////////////////////////////////////////////////////////// |
||||
|
||||
namespace csbp_kernels |
||||
{ |
||||
template <typename T, int channels> |
||||
__global__ void compute_data_cost(T* selected_disp_pyr, T* data_cost_, int h, int w, int level, int nr_plane) |
||||
{ |
||||
int x = blockIdx.x * blockDim.x + threadIdx.x; |
||||
int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if (y < h && x < w) |
||||
{ |
||||
int y0 = y << level; |
||||
int yt = (y + 1) << level; |
||||
|
||||
int x0 = x << level; |
||||
int xt = (x + 1) << level; |
||||
|
||||
T* selected_disparity = selected_disp_pyr + y/2 * cmsg_step2 + x/2; |
||||
T* data_cost = data_cost_ + y * cmsg_step1 + x; |
||||
|
||||
for(int d = 0; d < nr_plane; d++) |
||||
{ |
||||
float val = 0.0f; |
||||
for(int yi = y0; yi < yt; yi++) |
||||
{ |
||||
for(int xi = x0; xi < xt; xi++) |
||||
{ |
||||
int sel_disp = selected_disparity[d * cdisp_step2]; |
||||
int xr = xi - sel_disp; |
||||
|
||||
if (xr < 0) |
||||
val += cdata_weight * cmax_data_term; |
||||
else |
||||
{ |
||||
const uchar* left_x = cleft + yi * cimg_step + xi * channels; |
||||
const uchar* right_x = cright + yi * cimg_step + xr * channels; |
||||
|
||||
val += DataCostPerPixel<channels>::compute(left_x, right_x); |
||||
} |
||||
} |
||||
} |
||||
data_cost[cdisp_step1 * d] = saturate_cast<T>(val); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
namespace cv { namespace gpu { namespace csbp |
||||
{ |
||||
template <typename T> |
||||
void compute_data_cost_caller(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost, |
||||
int h, int w, int level, int nr_plane, int channels, const cudaStream_t& stream) |
||||
{ |
||||
dim3 threads(32, 8, 1); |
||||
dim3 grid(1, 1, 1); |
||||
|
||||
grid.x = divUp(w, threads.x); |
||||
grid.y = divUp(h, threads.y); |
||||
|
||||
switch(channels) |
||||
{ |
||||
case 1: csbp_kernels::compute_data_cost<T, 1><<<grid, threads, 0, stream>>>((T*)disp_selected_pyr.ptr, (T*)data_cost.ptr, h, w, level, nr_plane); break; |
||||
case 3: csbp_kernels::compute_data_cost<T, 3><<<grid, threads, 0, stream>>>((T*)disp_selected_pyr.ptr, (T*)data_cost.ptr, h, w, level, nr_plane); break; |
||||
default: cv::gpu::error("Unsupported channels count", __FILE__, __LINE__); |
||||
} |
||||
} |
||||
|
||||
typedef void (*ComputeDataCostCaller)(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost, |
||||
int h, int w, int level, int nr_plane, int channels, const cudaStream_t& stream); |
||||
|
||||
void compute_data_cost(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost, size_t msg_step1, size_t msg_step2, int msg_type, |
||||
int h, int w, int h2, int level, int nr_plane, int channels, const cudaStream_t& stream) |
||||
{ |
||||
static const ComputeDataCostCaller callers[8] = |
||||
{ |
||||
0, 0, 0, |
||||
compute_data_cost_caller<short>, |
||||
0, |
||||
compute_data_cost_caller<float>, |
||||
0, 0 |
||||
}; |
||||
|
||||
size_t disp_step1 = msg_step1 * h; |
||||
size_t disp_step2 = msg_step2 * h2; |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step1, sizeof(size_t)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step2, &disp_step2, sizeof(size_t)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step1, sizeof(size_t)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step2, &msg_step2, sizeof(size_t)) ); |
||||
|
||||
ComputeDataCostCaller caller = callers[msg_type]; |
||||
if (!caller) |
||||
cv::gpu::error("Unsopported message type", __FILE__, __LINE__); |
||||
|
||||
caller(disp_selected_pyr, data_cost, h, w, level, nr_plane, channels, stream); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall( cudaThreadSynchronize() ); |
||||
} |
||||
}}} |
||||
|
||||
/////////////////////////////////////////////////////////////// |
||||
//////////////////////// init message ///////////////////////// |
||||
/////////////////////////////////////////////////////////////// |
||||
|
||||
namespace csbp_kernels |
||||
{ |
||||
template <typename T> |
||||
__device__ void get_first_k_element_increase(T* u_new, T* d_new, T* l_new, T* r_new, |
||||
const T* u_cur, const T* d_cur, const T* l_cur, const T* r_cur, |
||||
T* data_cost_selected, T* disparity_selected_new, T* data_cost_new, |
||||
const T* data_cost_cur, const T* disparity_selected_cur, |
||||
int nr_plane, int nr_plane2) |
||||
{ |
||||
for(int i = 0; i < nr_plane; i++) |
||||
{ |
||||
T minimum = TypeLimits<T>::max(); |
||||
int id = 0; |
||||
for(int j = 0; j < nr_plane2; j++) |
||||
{ |
||||
T cur = data_cost_new[j * cdisp_step1]; |
||||
if(cur < minimum) |
||||
{ |
||||
minimum = cur; |
||||
id = j; |
||||
} |
||||
} |
||||
|
||||
data_cost_selected[i * cdisp_step1] = data_cost_cur[id * cdisp_step1]; |
||||
disparity_selected_new[i * cdisp_step1] = disparity_selected_cur[id * cdisp_step1]; |
||||
|
||||
u_new[i * cdisp_step1] = u_cur[id * cdisp_step2]; |
||||
d_new[i * cdisp_step1] = d_cur[id * cdisp_step2]; |
||||
l_new[i * cdisp_step1] = l_cur[id * cdisp_step2]; |
||||
r_new[i * cdisp_step1] = r_cur[id * cdisp_step2]; |
||||
|
||||
data_cost_new[id * cdisp_step1] = TypeLimits<T>::max(); |
||||
} |
||||
} |
||||
|
||||
template <typename T> |
||||
__global__ void init_message(T* u_new_, T* d_new_, T* l_new_, T* r_new_, |
||||
const T* u_cur_, const T* d_cur_, const T* l_cur_, const T* r_cur_, |
||||
T* selected_disp_pyr_new, const T* selected_disp_pyr_cur, |
||||
T* data_cost_selected_, T* data_cost_, |
||||
int h, int w, int nr_plane, int h2, int w2, int nr_plane2) |
||||
{ |
||||
int x = blockIdx.x * blockDim.x + threadIdx.x; |
||||
int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if (y < h && x < w) |
||||
{ |
||||
const T* u_cur = u_cur_ + min(h2-1, y/2 + 1) * cmsg_step2 + x/2; |
||||
const T* d_cur = d_cur_ + max(0, y/2 - 1) * cmsg_step2 + x/2; |
||||
const T* l_cur = l_cur_ + y/2 * cmsg_step2 + min(w2-1, x/2 + 1); |
||||
const T* r_cur = r_cur_ + y/2 * cmsg_step2 + max(0, x/2 - 1); |
||||
|
||||
T* disparity_selected_cur_backup = (T*)ctemp2 + y * cmsg_step1 + x; |
||||
T* data_cost_new = (T*)ctemp1 + y * cmsg_step1 + x; |
||||
|
||||
const T* disparity_selected_cur = selected_disp_pyr_cur + y/2 * cmsg_step2 + x/2; |
||||
T* data_cost = data_cost_ + y * cmsg_step1 + x; |
||||
|
||||
for(int d = 0; d < nr_plane2; d++) |
||||
{ |
||||
int idx2 = d * cdisp_step2; |
||||
|
||||
disparity_selected_cur_backup[d * cdisp_step1] = disparity_selected_cur[idx2]; |
||||
T val = data_cost[d * cdisp_step1] + u_cur[idx2] + d_cur[idx2] + l_cur[idx2] + r_cur[idx2]; |
||||
data_cost_new[d * cdisp_step1] = val; |
||||
} |
||||
|
||||
T* data_cost_selected = data_cost_selected_ + y * cmsg_step1 + x; |
||||
T* disparity_selected_new = selected_disp_pyr_new + y * cmsg_step1 + x; |
||||
|
||||
T* u_new = u_new_ + y * cmsg_step1 + x; |
||||
T* d_new = d_new_ + y * cmsg_step1 + x; |
||||
T* l_new = l_new_ + y * cmsg_step1 + x; |
||||
T* r_new = r_new_ + y * cmsg_step1 + x; |
||||
|
||||
u_cur = u_cur_ + y/2 * cmsg_step2 + x/2; |
||||
d_cur = d_cur_ + y/2 * cmsg_step2 + x/2; |
||||
l_cur = l_cur_ + y/2 * cmsg_step2 + x/2; |
||||
r_cur = r_cur_ + y/2 * cmsg_step2 + x/2; |
||||
|
||||
get_first_k_element_increase(u_new, d_new, l_new, r_new, u_cur, d_cur, l_cur, r_cur, |
||||
data_cost_selected, disparity_selected_new, data_cost_new, |
||||
data_cost, disparity_selected_cur_backup, nr_plane, nr_plane2); |
||||
} |
||||
} |
||||
} |
||||
|
||||
namespace cv { namespace gpu { namespace csbp |
||||
{ |
||||
template <typename T> |
||||
void init_message_caller(const DevMem2D& u_new, const DevMem2D& d_new, const DevMem2D& l_new, const DevMem2D& r_new, |
||||
const DevMem2D& u_cur, const DevMem2D& d_cur, const DevMem2D& l_cur, const DevMem2D& r_cur, |
||||
const DevMem2D& selected_disp_pyr_new, const DevMem2D& selected_disp_pyr_cur, |
||||
const DevMem2D& data_cost_selected, const DevMem2D& data_cost, |
||||
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, const cudaStream_t& stream) |
||||
{ |
||||
dim3 threads(32, 8, 1); |
||||
dim3 grid(1, 1, 1); |
||||
|
||||
grid.x = divUp(w, threads.x); |
||||
grid.y = divUp(h, threads.y); |
||||
|
||||
csbp_kernels::init_message<T><<<grid, threads, 0, stream>>>((T*)u_new.ptr, (T*)d_new.ptr, (T*)l_new.ptr, (T*)r_new.ptr, |
||||
(const T*)u_cur.ptr, (const T*)d_cur.ptr, (const T*)l_cur.ptr, (const T*)r_cur.ptr, |
||||
(T*)selected_disp_pyr_new.ptr, (const T*)selected_disp_pyr_cur.ptr, |
||||
(T*)data_cost_selected.ptr, (T*)data_cost.ptr, |
||||
h, w, nr_plane, h2, w2, nr_plane2); |
||||
} |
||||
|
||||
typedef void (*InitMessageCaller)(const DevMem2D& u_new, const DevMem2D& d_new, const DevMem2D& l_new, const DevMem2D& r_new, |
||||
const DevMem2D& u_cur, const DevMem2D& d_cur, const DevMem2D& l_cur, const DevMem2D& r_cur, |
||||
const DevMem2D& selected_disp_pyr_new, const DevMem2D& selected_disp_pyr_cur, |
||||
const DevMem2D& data_cost_selected, const DevMem2D& data_cost, |
||||
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, const cudaStream_t& stream); |
||||
|
||||
void init_message(const DevMem2D& u_new, const DevMem2D& d_new, const DevMem2D& l_new, const DevMem2D& r_new, |
||||
const DevMem2D& u_cur, const DevMem2D& d_cur, const DevMem2D& l_cur, const DevMem2D& r_cur, |
||||
const DevMem2D& selected_disp_pyr_new, const DevMem2D& selected_disp_pyr_cur, |
||||
const DevMem2D& data_cost_selected, const DevMem2D& data_cost, size_t msg_step1, size_t msg_step2, int msg_type, |
||||
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, const cudaStream_t& stream) |
||||
{ |
||||
static const InitMessageCaller callers[8] = |
||||
{ |
||||
0, 0, 0, |
||||
init_message_caller<short>, |
||||
0, |
||||
init_message_caller<float>, |
||||
0, 0 |
||||
}; |
||||
|
||||
size_t disp_step1 = msg_step1 * h; |
||||
size_t disp_step2 = msg_step2 * h2; |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step1, sizeof(size_t)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step2, &disp_step2, sizeof(size_t)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step1, sizeof(size_t)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step2, &msg_step2, sizeof(size_t)) ); |
||||
|
||||
InitMessageCaller caller = callers[msg_type]; |
||||
if (!caller) |
||||
cv::gpu::error("Unsupported message type", __FILE__, __LINE__); |
||||
|
||||
caller(u_new, d_new, l_new, r_new, u_cur, d_cur, l_cur, r_cur, |
||||
selected_disp_pyr_new, selected_disp_pyr_cur, data_cost_selected, data_cost, |
||||
h, w, nr_plane, h2, w2, nr_plane2, stream); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall( cudaThreadSynchronize() ); |
||||
} |
||||
}}} |
||||
|
||||
/////////////////////////////////////////////////////////////// |
||||
//////////////////// calc all iterations ///////////////////// |
||||
/////////////////////////////////////////////////////////////// |
||||
|
||||
namespace csbp_kernels |
||||
{ |
||||
template <typename T> |
||||
__device__ void message_per_pixel(const T* data, T* msg_dst, const T* msg1, const T* msg2, const T* msg3, |
||||
const T* dst_disp, const T* src_disp, int nr_plane, T* temp) |
||||
{ |
||||
T minimum = TypeLimits<T>::max(); |
||||
|
||||
for(int d = 0; d < nr_plane; d++) |
||||
{ |
||||
int idx = d * cdisp_step1; |
||||
T val = data[idx] + msg1[idx] + msg2[idx] + msg3[idx]; |
||||
|
||||
if(val < minimum) |
||||
minimum = val; |
||||
|
||||
msg_dst[idx] = val; |
||||
} |
||||
|
||||
float sum = 0; |
||||
for(int d = 0; d < nr_plane; d++) |
||||
{ |
||||
float cost_min = minimum + cmax_disc_term; |
||||
T src_disp_reg = src_disp[d * cdisp_step1]; |
||||
|
||||
for(int d2 = 0; d2 < nr_plane; d2++) |
||||
cost_min = fmin(cost_min, msg_dst[d2 * cdisp_step1] + cdisc_single_jump * abs(dst_disp[d2 * cdisp_step1] - src_disp_reg)); |
||||
|
||||
temp[d * cdisp_step1] = saturate_cast<T>(cost_min); |
||||
sum += cost_min; |
||||
} |
||||
sum /= nr_plane; |
||||
|
||||
for(int d = 0; d < nr_plane; d++) |
||||
msg_dst[d * cdisp_step1] = saturate_cast<T>(temp[d * cdisp_step1] - sum); |
||||
} |
||||
|
||||
template <typename T> |
||||
__global__ void compute_message(T* u_, T* d_, T* l_, T* r_, const T* data_cost_selected, const T* selected_disp_pyr_cur, |
||||
int h, int w, int nr_plane, int i) |
||||
{ |
||||
int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||
int x = ((blockIdx.x * blockDim.x + threadIdx.x) << 1) + ((y + i) & 1); |
||||
|
||||
if (y > 0 && y < h - 1 && x > 0 && x < w - 1) |
||||
{ |
||||
const T* data = data_cost_selected + y * cmsg_step1 + x; |
||||
|
||||
T* u = u_ + y * cmsg_step1 + x; |
||||
T* d = d_ + y * cmsg_step1 + x; |
||||
T* l = l_ + y * cmsg_step1 + x; |
||||
T* r = r_ + y * cmsg_step1 + x; |
||||
|
||||
const T* disp = selected_disp_pyr_cur + y * cmsg_step1 + x; |
||||
|
||||
T* temp = (T*)ctemp1 + y * cmsg_step1 + x; |
||||
|
||||
message_per_pixel(data, u, r - 1, u + cmsg_step1, l + 1, disp, disp - cmsg_step1, nr_plane, temp); |
||||
message_per_pixel(data, d, d - cmsg_step1, r - 1, l + 1, disp, disp + cmsg_step1, nr_plane, temp); |
||||
message_per_pixel(data, l, u + cmsg_step1, d - cmsg_step1, l + 1, disp, disp - 1, nr_plane, temp); |
||||
message_per_pixel(data, r, u + cmsg_step1, d - cmsg_step1, r - 1, disp, disp + 1, nr_plane, temp); |
||||
} |
||||
} |
||||
} |
||||
|
||||
namespace cv { namespace gpu { namespace csbp |
||||
{ |
||||
template <typename T> |
||||
void compute_message_caller(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected, |
||||
const DevMem2D& selected_disp_pyr_cur, int h, int w, int nr_plane, int t, const cudaStream_t& stream) |
||||
{ |
||||
dim3 threads(32, 8, 1); |
||||
dim3 grid(1, 1, 1); |
||||
|
||||
grid.x = divUp(w, threads.x << 1); |
||||
grid.y = divUp(h, threads.y); |
||||
|
||||
csbp_kernels::compute_message<T><<<grid, threads, 0, stream>>>((T*)u.ptr, (T*)d.ptr, (T*)l.ptr, (T*)r.ptr, |
||||
(const T*)data_cost_selected.ptr, (const T*)selected_disp_pyr_cur.ptr, |
||||
h, w, nr_plane, t & 1); |
||||
} |
||||
|
||||
typedef void (*ComputeMessageCaller)(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected, |
||||
const DevMem2D& selected_disp_pyr_cur, int h, int w, int nr_plane, int t, const cudaStream_t& stream); |
||||
|
||||
void calc_all_iterations(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected, |
||||
const DevMem2D& selected_disp_pyr_cur, size_t msg_step, int msg_type, int h, int w, int nr_plane, int iters, const cudaStream_t& stream) |
||||
{ |
||||
static const ComputeMessageCaller callers[8] = |
||||
{ |
||||
0, 0, 0, |
||||
compute_message_caller<short>, |
||||
0, |
||||
compute_message_caller<float>, |
||||
0, 0 |
||||
}; |
||||
|
||||
size_t disp_step = msg_step * h; |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step, sizeof(size_t)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step, sizeof(size_t)) ); |
||||
|
||||
ComputeMessageCaller caller = callers[msg_type]; |
||||
if (!caller) |
||||
cv::gpu::error("Unsupported message type", __FILE__, __LINE__); |
||||
|
||||
for(int t = 0; t < iters; ++t) |
||||
{ |
||||
caller(u, d, l, r, data_cost_selected, selected_disp_pyr_cur, h, w, nr_plane, t, stream); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall( cudaThreadSynchronize() ); |
||||
} |
||||
} |
||||
}}} |
||||
|
||||
/////////////////////////////////////////////////////////////// |
||||
/////////////////////////// output //////////////////////////// |
||||
/////////////////////////////////////////////////////////////// |
||||
|
||||
namespace csbp_kernels |
||||
{ |
||||
template <typename T> |
||||
__global__ void compute_disp(const T* u_, const T* d_, const T* l_, const T* r_, |
||||
const T* data_cost_selected, const T* disp_selected_pyr, |
||||
short* disp, size_t res_step, int cols, int rows, int nr_plane) |
||||
{ |
||||
int x = blockIdx.x * blockDim.x + threadIdx.x; |
||||
int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if (y > 0 && y < rows - 1 && x > 0 && x < cols - 1) |
||||
{ |
||||
const T* data = data_cost_selected + y * cmsg_step1 + x; |
||||
const T* disp_selected = disp_selected_pyr + y * cmsg_step1 + x; |
||||
|
||||
const T* u = u_ + (y+1) * cmsg_step1 + (x+0); |
||||
const T* d = d_ + (y-1) * cmsg_step1 + (x+0); |
||||
const T* l = l_ + (y+0) * cmsg_step1 + (x+1); |
||||
const T* r = r_ + (y+0) * cmsg_step1 + (x-1); |
||||
|
||||
int best = 0; |
||||
T best_val = TypeLimits<T>::max(); |
||||
for (int i = 0; i < nr_plane; ++i) |
||||
{ |
||||
int idx = i * cdisp_step1; |
||||
T val = data[idx]+ u[idx] + d[idx] + l[idx] + r[idx]; |
||||
|
||||
if (val < best_val) |
||||
{ |
||||
best_val = val; |
||||
best = saturate_cast<short>(disp_selected[idx]); |
||||
} |
||||
} |
||||
|
||||
disp[res_step * y + x] = best; |
||||
} |
||||
} |
||||
} |
||||
|
||||
namespace cv { namespace gpu { namespace csbp |
||||
{ |
||||
template <typename T> |
||||
void compute_disp_caller(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected, |
||||
const DevMem2D& disp_selected, const DevMem2D& disp, int nr_plane, const cudaStream_t& stream) |
||||
{ |
||||
dim3 threads(32, 8, 1); |
||||
dim3 grid(1, 1, 1); |
||||
|
||||
grid.x = divUp(disp.cols, threads.x); |
||||
grid.y = divUp(disp.rows, threads.y); |
||||
|
||||
csbp_kernels::compute_disp<T><<<grid, threads, 0, stream>>>((const T*)u.ptr, (const T*)d.ptr, (const T*)l.ptr, (const T*)r.ptr, |
||||
(const T*)data_cost_selected.ptr, (const T*)disp_selected.ptr, |
||||
(short*)disp.ptr, disp.step / sizeof(short), disp.cols, disp.rows, nr_plane); |
||||
} |
||||
|
||||
typedef void (*ComputeDispCaller)(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected, |
||||
const DevMem2D& disp_selected, const DevMem2D& disp, int nr_plane, const cudaStream_t& stream); |
||||
|
||||
void compute_disp(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected, |
||||
const DevMem2D& disp_selected, size_t msg_step, int msg_type, const DevMem2D& disp, int nr_plane, const cudaStream_t& stream) |
||||
{ |
||||
static const ComputeDispCaller callers[8] = |
||||
{ |
||||
0, 0, 0, |
||||
compute_disp_caller<short>, |
||||
0, |
||||
compute_disp_caller<float>, |
||||
0, 0 |
||||
}; |
||||
|
||||
size_t disp_step = disp.rows * msg_step; |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step, sizeof(size_t)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step, sizeof(size_t)) ); |
||||
|
||||
ComputeDispCaller caller = callers[msg_type]; |
||||
if (!caller) |
||||
cv::gpu::error("Unsupported message type", __FILE__, __LINE__); |
||||
|
||||
caller(u, d, l, r, data_cost_selected, disp_selected, disp, nr_plane, stream); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall( cudaThreadSynchronize() ); |
||||
} |
||||
}}} |
Loading…
Reference in new issue