Improve and refactor softmax layer (#24466)

* improve and refactor softmax layer

* fix building error

* compatible region layer

* fix axisStep when disable SIMD

* fix dynamic array

* try to fix error

* use nlanes from VTraits

* move axisBias to srcOffset

* fix bug caused by axisBias

* remove macro

* replace #ifdef with #if for CV_SIMD
pull/24501/head^2
Wanli 1 year ago committed by GitHub
parent e95c0055af
commit ed52f7feea
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 51
      modules/dnn/perf/perf_layer.cpp
  2. 157
      modules/dnn/src/layers/cpu_kernels/softmax.cpp
  3. 28
      modules/dnn/src/layers/cpu_kernels/softmax.hpp
  4. 7
      modules/dnn/src/layers/region_layer.cpp
  5. 83
      modules/dnn/src/layers/softmax_layer.cpp
  6. 7
      modules/dnn/src/onnx/onnx_importer.cpp

@ -758,4 +758,55 @@ INSTANTIATE_TEST_CASE_P(/**/, Layer_FullyConnected, Combine(
dnnBackendsAndTargets()
));
typedef TestBaseWithParam<tuple<std::vector<int>, int, tuple<Backend, Target> > > Layer_Softmax;
PERF_TEST_P_(Layer_Softmax, softmax_3d) {
std::vector<int> shape = get<0>(GetParam());
int axis = get<1>(GetParam());
int backendId = get<0>(get<2>(GetParam()));
int targetId = get<1>(get<2>(GetParam()));
Mat data(shape, CV_32FC1);
Scalar mean = 0.f;
Scalar std = 1.f;
randn(data, mean, std);
Net net;
LayerParams lp;
lp.type = "Softmax";
lp.name = "testLayer";
lp.set("axis", axis);
net.addLayerToPrev(lp.name, lp.type, lp);
// warmup
{
net.setInput(data);
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
Mat out = net.forward();
}
TEST_CYCLE() {
Mat res = net.forward();
}
SANITY_CHECK_NOTHING();
}
INSTANTIATE_TEST_CASE_P(/**/, Layer_Softmax, Combine(
Values( // input size
std::vector<int>({16, 50, 50}),
std::vector<int>({16, 197, 197}),
std::vector<int>({16, 1024, 1024})
),
Values(0, 1, 2), // axis
dnnBackendsAndTargets(/* withInferenceEngine= */ false,
/* withHalide= */ false,
/* withCpuOCV= */ true,
/* withVkCom= */ false,
/* withCUDA= */ false,
/* withNgraph= */ false,
/* withWebnn= */ false,
/* withCann= */ false) // only test on CPU
));
} // namespace

@ -0,0 +1,157 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// This file is modified from the ficus (https://github.com/vpisarev/ficus/blob/master/lib/NN/OpNN.fx).
// Here is the original license:
/*
This file is a part of ficus language project.
See ficus/LICENSE for the licensing terms
*/
#include "../../precomp.hpp"
#include "softmax.hpp"
namespace cv { namespace dnn {
void softmax(Mat &dst, const Mat &src, int axis, int axisBias, int axisStep){
CV_Assert(src.type() == CV_32F);
CV_Assert(src.isContinuous() && dst.isContinuous());
CV_Assert(src.size == dst.size);
axis = normalize_axis(axis, src.dims);
size_t outerSize = src.total(0, axis),
innerSize = src.total(axis + 1);
const float *srcPtr = src.ptr<float>();
float *dstPtr = dst.ptr<float>();
size_t outerStep = src.total(axis);
size_t cnStep = src.total(axis + 1);
// multi-threads
size_t totalTasks = outerSize * innerSize;
double nstripes = (double) totalTasks / 1024.0;
// make the channel axis to be multiple of 8
size_t channelAxis = (axisStep + 7) & -8;
#if CV_SIMD
const int nlanes = VTraits<v_float32>::vlanes();
// the number of redundant dimension
size_t redundantDim = nlanes - axisStep % nlanes;
#endif
parallel_for_(Range(0, (int) totalTasks), [&](const Range &range) {
AutoBuffer<float> axisBuf_(channelAxis);
float *axisBuf = axisBuf_.data();
for (size_t i = range.start; i < range.end; i++) {
size_t outerDim = i / innerSize;
size_t innerDim = i % innerSize;
size_t srcOffset = outerDim * outerStep + innerDim;
// copy data from src to buf along axis, since the data may not be continuous
for (size_t cnDim = 0; cnDim < axisStep; cnDim++)
axisBuf[cnDim] = srcPtr[srcOffset + (cnDim + axisBias) * cnStep];
float s = 0.f;
#if CV_SIMD
// make the value of the redundant dimension to be -FLT_MAX
if (redundantDim != nlanes) {
for (size_t j = axisStep; j < axisStep + redundantDim; j++)
axisBuf[j] = -FLT_MAX;
}
// calculate the max value along the axis
v_float32 vmax = vx_load(axisBuf);
for (size_t cnDim = nlanes; cnDim < axisStep; cnDim += nlanes) {
v_float32 val = vx_load(axisBuf + cnDim);
vmax = v_max(vmax, val);
}
float maxVal = v_reduce_max(vmax);
// calculate the exp value along the axis
v_float32 vs = vx_setzero_f32();
vmax = vx_setall_f32(maxVal);
// initialize vexp constant
v_float32 _vexp_lo = vx_setall_f32(-88.3762626647949f);
v_float32 _vexp_hi = vx_setall_f32(88.3762626647949f);
v_float32 _vexp_half = vx_setall_f32(0.5f);
v_float32 _vexp_one = vx_setall_f32(1.f);
v_float32 _vexp_LOG2EF = vx_setall_f32(1.44269504088896341f);
v_float32 _vexp_C1 = vx_setall_f32(-0.693359375f);
v_float32 _vexp_C2 = vx_setall_f32(2.12194440e-4f);
v_float32 _vexp_p0 = vx_setall_f32(1.9875691500E-4f);
v_float32 _vexp_p1 = vx_setall_f32(1.3981999507E-3f);
v_float32 _vexp_p2 = vx_setall_f32(8.3334519073E-3f);
v_float32 _vexp_p3 = vx_setall_f32(4.1665795894E-2f);
v_float32 _vexp_p4 = vx_setall_f32(1.6666665459E-1f);
v_float32 _vexp_p5 = vx_setall_f32(5.0000001201E-1f);
// initialize temp vectors for vexp
v_float32 val, _vexp_, _vexp_x, _vexp_y, _vexp_z;
v_int32 _vexp_mm;
// calculate and sum all data along axis
for (size_t cnDim = 0; cnDim < axisStep; cnDim += nlanes) {
val = vx_load(axisBuf + cnDim);
val = v_sub(val, vmax);
// compute vexp of val
_vexp_x = v_min(val, _vexp_hi);
_vexp_x = v_max(_vexp_x, _vexp_lo);
_vexp_ = v_fma(_vexp_x, _vexp_LOG2EF, _vexp_half);
_vexp_mm = v_floor(_vexp_);
_vexp_ = v_cvt_f32(_vexp_mm);
_vexp_mm = v_add(_vexp_mm, vx_setall_s32(0x7f));
_vexp_mm = v_shl(_vexp_mm, 23);
_vexp_x = v_fma(_vexp_, _vexp_C1, _vexp_x);
_vexp_x = v_fma(_vexp_, _vexp_C2, _vexp_x);
_vexp_z = v_mul(_vexp_x, _vexp_x);
_vexp_y = v_fma(_vexp_x, _vexp_p0, _vexp_p1);
_vexp_y = v_fma(_vexp_y, _vexp_x, _vexp_p2);
_vexp_y = v_fma(_vexp_y, _vexp_x, _vexp_p3);
_vexp_y = v_fma(_vexp_y, _vexp_x, _vexp_p4);
_vexp_y = v_fma(_vexp_y, _vexp_x, _vexp_p5);
_vexp_y = v_fma(_vexp_y, _vexp_z, _vexp_x);
_vexp_y = v_add(_vexp_y, _vexp_one);
val = v_mul(_vexp_y, v_reinterpret_as_f32(_vexp_mm));
vs = v_add(vs, val);
v_store(axisBuf + cnDim, val);
}
s = v_reduce_sum(vs);
// subtract the value of the redundant dimension
if (redundantDim != nlanes) {
float* _val = new float[nlanes];
v_store(_val, val);
for (size_t j = nlanes - redundantDim; j < nlanes; j++)
s -= _val[j];
}
#else
float maxVal = axisBuf[0];
for (size_t cnDim = 1; cnDim < axisStep; cnDim++) {
maxVal = std::max(maxVal, axisBuf[cnDim]);
}
for (size_t j = 0; j < axisStep; j++) {
axisBuf[j] = expf(axisBuf[j] - maxVal);
s += axisBuf[j];
}
#endif
s = 1.f / s;
// copy back the result to src
for (size_t cnDim = 0; cnDim < axisStep; cnDim++)
dstPtr[srcOffset + (cnDim + axisBias) * cnStep] = axisBuf[cnDim] * s;
}
}, nstripes);
}
void softmax(Mat &dst, const Mat &src, int axis) {
softmax(dst, src, axis, 0, src.size[axis]);
}
void logSoftmax(Mat &dst, const Mat &src, int axis) {
softmax(dst, src, axis);
log(dst, dst);
}
}} // cv::dnn

@ -0,0 +1,28 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// This file is modified from the ficus (https://github.com/vpisarev/ficus/blob/master/lib/NN/OpNN.fx).
// Here is the original license:
/*
This file is a part of ficus language project.
See ficus/LICENSE for the licensing terms
*/
#ifndef OPENCV_DNN_SOFTMAX_HPP
#define OPENCV_DNN_SOFTMAX_HPP
#include "opencv2/core/hal/intrin.hpp"
#include <opencv2/dnn/shape_utils.hpp>
namespace cv { namespace dnn {
void softmax(Mat &dst, const Mat &src, int axis, int axisBias, int axisStep);
void softmax(Mat &dst, const Mat &src, int axis);
void logSoftmax(Mat &dst, const Mat &src, int axis);
}} // cv::dnn
#endif // OPENCV_DNN_SOFTMAX_HPP

@ -45,6 +45,7 @@
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/dnn/all_layers.hpp>
#include "../nms.inl.hpp"
#include "cpu_kernels/softmax.hpp"
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
@ -280,10 +281,8 @@ public:
}
if (useSoftmax) { // Yolo v2
for (int i = 0; i < batch_size*rows*cols*anchors; ++i) {
int index = cell_size*i;
softmax_activate(srcData + index + 5, classes, 1, dstData + index + 5);
}
Mat _inpBlob = inpBlob.reshape(0, outBlob.dims, outBlob.size);
softmax(outBlob, _inpBlob, -1, 5, classes);
}
else if (useLogistic) { // Yolo v3
for (int i = 0; i < batch_size*rows*cols*anchors; ++i){

@ -52,6 +52,7 @@
#include <algorithm>
#include <stdlib.h>
#include <opencv2/core/utils/logger.hpp>
#include "cpu_kernels/softmax.hpp"
using std::max;
#ifdef HAVE_OPENCL
@ -225,89 +226,15 @@ public:
std::vector<Mat> inputs, outputs, internals;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
internals_arr.getMatVector(internals);
const Mat &src = inputs[0];
Mat &dst = outputs[0];
int axis = normalize_axis(axisRaw, src.dims);
size_t outerSize = src.total(0, axis), channels = src.size[axis],
innerSize = src.total(axis + 1);
CV_Assert(src.type() == CV_32F);
CV_Assert(src.isContinuous() && dst.isContinuous());
const float *srcPtr = src.ptr<float>();
float *dstPtr = dst.ptr<float>();
float *bufPtr = internals[0].ptr<float>();
size_t outerStep = src.total(axis);
size_t cnStep = src.total(axis + 1);
//compute max along axis
for (size_t outerDim = 0; outerDim < outerSize; outerDim++)
{
size_t srcOffset = outerDim * outerStep;
size_t bufOffset = outerDim * cnStep;
memcpy(bufPtr + bufOffset, srcPtr + srcOffset, innerSize * sizeof(float));
for (size_t cnDim = 1; cnDim < channels; cnDim++)
{
for (size_t i = 0; i < innerSize; i++)
bufPtr[bufOffset + i] = std::max(bufPtr[bufOffset + i], srcPtr[srcOffset + cnDim * cnStep + i]);
}
}
//subtract max
for (size_t outerDim = 0; outerDim < outerSize; outerDim++)
{
size_t srcOffset = outerDim * outerStep;
size_t bufOffset = outerDim * cnStep;
for (size_t cnDim = 0; cnDim < channels; cnDim++)
{
const int offset = srcOffset + cnDim * cnStep;
for (size_t i = 0; i < innerSize; i++)
dstPtr[offset + i] = srcPtr[offset + i] - bufPtr[bufOffset + i];
}
}
cv::exp(dst, dst);
for (size_t outerDim = 0; outerDim < outerSize; outerDim++)
{
size_t srcOffset = outerDim * outerStep;
size_t bufOffset = outerDim * cnStep;
//sum exp along axis
for (size_t i = 0; i < innerSize; i++)
bufPtr[bufOffset + i] = 0.f;
for (size_t cnDim = 0; cnDim < channels; cnDim++)
{
const int offset = srcOffset + cnDim * cnStep;
for (size_t i = 0; i < innerSize; i++)
bufPtr[bufOffset + i] += dstPtr[offset + i];
}
//divide by computed sum
for (size_t cnDim = 0; cnDim < channels; cnDim++)
{
const int offset = srcOffset + cnDim * cnStep;
for (size_t i = 0; i < innerSize; i++)
dstPtr[offset + i] /= bufPtr[bufOffset + i];
}
if (logSoftMax)
{
for (size_t cnDim = 0; cnDim < channels; cnDim++)
{
const int offset = srcOffset + cnDim * cnStep;
for (size_t i = 0; i < innerSize; i++)
dstPtr[offset + i] = log(dstPtr[offset + i]);
}
}
}
if(logSoftMax)
logSoftmax(dst, src, axis);
else
softmax(dst, src, axis);
}
#ifdef HAVE_CUDA

@ -2788,6 +2788,13 @@ void ONNXImporter::parseUpsample(LayerParams& layerParams, const opencv_onnx::No
void ONNXImporter::parseSoftMax(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
const std::string& layer_type = node_proto.op_type();
int axis;
if (layerParams.has("opset") && layerParams.get<int>("opset") > 11) {
axis = layerParams.get<int>("axis", -1);
} else {
axis = layerParams.get<int>("axis", 1);
}
layerParams.set<int>("axis", axis);
layerParams.type = "Softmax";
layerParams.set("log_softmax", layer_type == "LogSoftmax");
addLayer(layerParams, node_proto);

Loading…
Cancel
Save