refactored GPU LBP cascade. Added support for big images. Fixed bug in connected components function

pull/2/head
Marina Kolpakova 13 years ago
parent 469ec7c522
commit ed1b293d34
  1. 76
      modules/gpu/src/cascadeclassifier.cpp
  2. 225
      modules/gpu/src/cuda/lbp.cu
  3. 3
      modules/gpu/src/opencv2/gpu/device/lbp.hpp

@ -315,7 +315,24 @@ namespace cv { namespace gpu { namespace device
DevMem2D_<int4> objects,
unsigned int* classified);
int connectedConmonents(DevMem2D_<int4> candidates, DevMem2D_<int4> objects,int groupThreshold, float grouping_eps, unsigned int* nclasses);
void classifyStumpFixed(const DevMem2Db& mstages,
const int nstages,
const DevMem2Di& mnodes,
const DevMem2Df& mleaves,
const DevMem2Di& msubsets,
const DevMem2Db& mfeatures,
const int workWidth,
const int workHeight,
const int clWidth,
const int clHeight,
float scale,
int step,
int subsetSize,
DevMem2D_<int4> objects,
unsigned int* classified,
const int maxX);
int connectedConmonents(DevMem2D_<int4> candidates, int ncandidates, DevMem2D_<int4> objects,int groupThreshold, float grouping_eps, unsigned int* nclasses);
void bindIntegral(DevMem2Di integral);
void unbindIntegral();
}
@ -337,8 +354,8 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp
GpuMat candidates(1 , image.cols >> 1, CV_32SC4);
// GpuMat candidates(1 , defaultObjSearchNum, CV_32SC4);
// used for debug
// candidates.setTo(cv::Scalar::all(0));
// objects.setTo(cv::Scalar::all(0));
candidates.setTo(cv::Scalar::all(0));
objects.setTo(cv::Scalar::all(0));
if (maxObjectSize == cv::Size())
maxObjectSize = image.size();
@ -349,16 +366,50 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp
unsigned int* dclassified;
cudaMalloc(&dclassified, sizeof(int));
cudaMemcpy(dclassified, classified, sizeof(int), cudaMemcpyHostToDevice);
int step;
int step = 2;
cv::gpu::device::lbp::bindIntegral(integral);
for( double factor = 1; ; factor *= scaleFactor )
cv::Size scaledImageSize(image.cols, image.rows);
cv::Size processingRectSize( scaledImageSize.width - NxM.width + 1, scaledImageSize.height - NxM.height + 1 );
cv::Size windowSize(NxM.width, NxM.height);
double factor = 1;
for (; processingRectSize.width / step >= 256;)
{
// std::cout << "IN FIXED: factor " << factor << " size " << processingRectSize.width << " " << processingRectSize.height << std::endl;
// if (factor > 2.0) break;
cv::Size windowSize(cvRound(NxM.width * factor), cvRound(NxM.height * factor));
cv::Size scaledImageSize(cvRound( image.cols / factor ), cvRound( image.rows / factor ));
cv::Size processingRectSize( scaledImageSize.width - NxM.width + 1, scaledImageSize.height - NxM.height + 1 );
if (processingRectSize.width <= 0 || processingRectSize.height <= 0 )
break;
if( windowSize.width > maxObjectSize.width || windowSize.height > maxObjectSize.height )
break;
// if( windowSize.width < minObjectSize.width || windowSize.height < minObjectSize.height )
// continue;
GpuMat scaledImg(resuzeBuffer, cv::Rect(0, 0, scaledImageSize.width, scaledImageSize.height));
GpuMat scaledIntegral(integral, cv::Rect(0, 0, scaledImageSize.width + 1, scaledImageSize.height + 1));
GpuMat currBuff = integralBuffer;
cv::gpu::resize(image, scaledImg, scaledImageSize, 0, 0, CV_INTER_LINEAR);
cv::gpu::integralBuffered(scaledImg, scaledIntegral, currBuff);
step = (factor <= 2.) + 1;
cv::gpu::device::lbp::classifyStumpFixed(stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat, leaves_mat, subsets_mat, features_mat,
processingRectSize.width, processingRectSize.height, windowSize.width, windowSize.height, factor, step, subsetSize, candidates, dclassified, processingRectSize.width);
factor *= scaleFactor;
windowSize = cv::Size(cvRound(NxM.width * factor), cvRound(NxM.height * factor));
scaledImageSize = cv::Size(cvRound( image.cols / factor ), cvRound( image.rows / factor ));
processingRectSize = cv::Size(scaledImageSize.width - NxM.width + 1, scaledImageSize.height - NxM.height + 1 );
}
for (; /*processingRectSize.width / step >= 128*/;)
{
// std::cout << "In FLOATING: factor " << factor << " size " << processingRectSize.width << " " << processingRectSize.height << std::endl;
// if (factor > 2.0) break;
if (processingRectSize.width <= 0 || processingRectSize.height <= 0 )
break;
@ -379,12 +430,19 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp
cv::gpu::device::lbp::classifyStump(stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat, leaves_mat, subsets_mat, features_mat,
processingRectSize.width, processingRectSize.height, windowSize.width, windowSize.height, factor, step, subsetSize, candidates, dclassified);
factor *= scaleFactor;
windowSize = cv::Size(cvRound(NxM.width * factor), cvRound(NxM.height * factor));
scaledImageSize = cv::Size(cvRound( image.cols / factor ), cvRound( image.rows / factor ));
processingRectSize = cv::Size(scaledImageSize.width - NxM.width + 1, scaledImageSize.height - NxM.height + 1 );
}
cv::gpu::device::lbp::unbindIntegral();
if (groupThreshold <= 0 || objects.empty())
return 0;
cv::gpu::device::lbp::connectedConmonents(candidates, objects, groupThreshold, grouping_eps, dclassified);
cudaMemcpy(classified, dclassified, sizeof(int), cudaMemcpyDeviceToHost);
// std::cout << "!!! CLASSIFIED " << *classified << std::endl;
cv::gpu::device::lbp::connectedConmonents(candidates, *classified, objects, groupThreshold, grouping_eps, dclassified);
cudaMemcpy(classified, dclassified, sizeof(int), cudaMemcpyDeviceToHost);
cudaSafeCall( cudaDeviceSynchronize() );
step = *classified;

@ -53,28 +53,27 @@ namespace cv { namespace gpu { namespace device
struct LBP
{
__device__ __forceinline__ LBP(const LBP& other) {(void)other;}
__device__ __forceinline__ LBP() {}
__host__ __device__ __forceinline__ LBP(const LBP& other) {(void)other;}
__host__ __device__ __forceinline__ LBP() {}
//feature as uchar x, y - left top, z,w - right bottom
__device__ __forceinline__ int operator() (int ty, int tx, int fh, int featurez, int& shift) const
__device__ __forceinline__ int operator() (int ty, int tx, int fh, int fw, int& shift) const
{
int anchors[9];
anchors[0] = tex2D(tintegral, tx, ty);
anchors[1] = tex2D(tintegral, tx + featurez, ty);
anchors[1] = tex2D(tintegral, tx + fw, ty);
anchors[0] -= anchors[1];
anchors[2] = tex2D(tintegral, tx + featurez * 2, ty);
anchors[2] = tex2D(tintegral, tx + fw * 2, ty);
anchors[1] -= anchors[2];
anchors[2] -= tex2D(tintegral, tx + featurez * 3, ty);
anchors[2] -= tex2D(tintegral, tx + fw * 3, ty);
ty += fh;
anchors[3] = tex2D(tintegral, tx, ty);
anchors[4] = tex2D(tintegral, tx + featurez, ty);
anchors[4] = tex2D(tintegral, tx + fw, ty);
anchors[3] -= anchors[4];
anchors[5] = tex2D(tintegral, tx + featurez * 2, ty);
anchors[5] = tex2D(tintegral, tx + fw * 2, ty);
anchors[4] -= anchors[5];
anchors[5] -= tex2D(tintegral, tx + featurez * 3, ty);
anchors[5] -= tex2D(tintegral, tx + fw * 3, ty);
anchors[0] -= anchors[3];
anchors[1] -= anchors[4];
@ -83,11 +82,11 @@ namespace cv { namespace gpu { namespace device
ty += fh;
anchors[6] = tex2D(tintegral, tx, ty);
anchors[7] = tex2D(tintegral, tx + featurez, ty);
anchors[7] = tex2D(tintegral, tx + fw, ty);
anchors[6] -= anchors[7];
anchors[8] = tex2D(tintegral, tx + featurez * 2, ty);
anchors[8] = tex2D(tintegral, tx + fw * 2, ty);
anchors[7] -= anchors[8];
anchors[8] -= tex2D(tintegral, tx + featurez * 3, ty);
anchors[8] -= tex2D(tintegral, tx + fw * 3, ty);
anchors[3] -= anchors[6];
anchors[4] -= anchors[7];
@ -109,11 +108,11 @@ namespace cv { namespace gpu { namespace device
ty += fh;
anchors[0] = tex2D(tintegral, tx, ty);
anchors[1] = tex2D(tintegral, tx + featurez, ty);
anchors[1] = tex2D(tintegral, tx + fw, ty);
anchors[0] -= anchors[1];
anchors[2] = tex2D(tintegral, tx + featurez * 2, ty);
anchors[2] = tex2D(tintegral, tx + fw * 2, ty);
anchors[1] -= anchors[2];
anchors[2] -= tex2D(tintegral, tx + featurez * 3, ty);
anchors[2] -= tex2D(tintegral, tx + fw * 3, ty);
anchors[6] -= anchors[0];
anchors[7] -= anchors[1];
@ -142,54 +141,90 @@ namespace cv { namespace gpu { namespace device
cudaSafeCall( cudaUnbindTexture(&tintegral));
}
__global__ void lbp_classify_stump(const Stage* stages, const int nstages, const ClNode* nodes, const float* leaves, const int* subsets, const uchar4* features,
/* const int* integral,const int istep, const int workWidth,const int workHeight,*/ const int clWidth, const int clHeight, const float scale, const int step,
const int subsetSize, DevMem2D_<int4> objects, unsigned int* n)
struct Classifier
{
int x = threadIdx.x * step;
int y = blockIdx.x * step;
__host__ __device__ __forceinline__ Classifier(const Stage* _stages, const ClNode* _nodes, const float* _leaves, const int* _subsets, const uchar4* _features,
const int _nstages, const int _clWidth, const int _clHeight, const float _scale, const int _step, const int _subsetSize)
: stages(_stages), nodes(_nodes), leaves(_leaves), subsets(_subsets), features(_features), nstages(_nstages), clWidth(_clWidth), clHeight(_clHeight),
scale(_scale), step(_step), subsetSize(_subsetSize){}
int current_node = 0;
int current_leave = 0;
LBP evaluator;
for (int s = 0; s < nstages; s++ )
__device__ __forceinline__ void operator() (int y, int x, DevMem2D_<int4> objects, const unsigned int maxN, unsigned int* n) const
{
float sum = 0;
Stage stage = stages[s];
for (int t = 0; t < stage.ntrees; t++)
int current_node = 0;
int current_leave = 0;
for (int s = 0; s < nstages; ++s)
{
ClNode node = nodes[current_node];
uchar4 feature = features[node.featureIdx];
int shift;
int c = evaluator(y + feature.y, x + feature.x, feature.w, feature.z, shift);
int idx = (subsets[ current_node * subsetSize + c] & ( 1 << shift)) ? current_leave : current_leave + 1;
sum += leaves[idx];
current_node += 1;
current_leave += 2;
float sum = 0;
Stage stage = stages[s];
for (int t = 0; t < stage.ntrees; t++)
{
ClNode node = nodes[current_node];
uchar4 feature = features[node.featureIdx];
int shift;
int c = evaluator(y + feature.y, x + feature.x, feature.w, feature.z, shift);
int idx = (subsets[ current_node * subsetSize + c] & ( 1 << shift)) ? current_leave : current_leave + 1;
sum += leaves[idx];
current_node += 1;
current_leave += 2;
}
if (sum < stage.threshold)
return;
}
if (sum < stage.threshold)
return;
}
int4 rect;
rect.x = roundf(x * scale);
rect.y = roundf(y * scale);
rect.z = clWidth;
rect.w = clHeight;
int4 rect;
rect.x = roundf(x * scale);
rect.y = roundf(y * scale);
rect.z = clWidth;
rect.w = clHeight;
#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ < 120)
int res = __atomicInc(n, 100U);
int res = __atomicInc(n, maxN);
#else
int res = atomicInc(n, 100U);
int res = atomicInc(n, maxN);
#endif
objects(0, res) = rect;
objects(0, res) = rect;
}
const Stage* stages;
const ClNode* nodes;
const float* leaves;
const int* subsets;
const uchar4* features;
const int nstages;
const int clWidth;
const int clHeight;
const float scale;
const int step;
const int subsetSize;
const LBP evaluator;
};
__global__ void lbp_classify_stump(const Classifier classifier, DevMem2D_<int4> objects, const unsigned int maxN, unsigned int* n)
{
int x = threadIdx.x * classifier.step;
int y = blockIdx.x * classifier.step;
classifier(y, x, objects, maxN, n);
}
__global__ void lbp_classify_stump(const Classifier classifier, DevMem2D_<int4> objects, const unsigned int maxN, unsigned int* n, int lines, int maxX)
{
int x = threadIdx.x * lines * classifier.step;
if (x >= maxX) return;
int y = blockIdx.x * classifier.step / lines;
classifier(y, x, objects, maxN, n);
}
template<typename Pr>
__global__ void disjoin(int4* candidates, int4* objects, unsigned int n, int groupThreshold, float grouping_eps, unsigned int* nclasses)
{
using cv::gpu::device::VecTraits;
unsigned int tid = threadIdx.x;
extern __shared__ int sbuff[];
@ -207,23 +242,26 @@ namespace cv { namespace gpu { namespace device
int cls = labels[tid];
#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ < 120)
__atomicAdd((int*)(rrects + cls * 4 + 0), candidates[tid].x);
__atomicAdd((int*)(rrects + cls * 4 + 1), candidates[tid].y);
__atomicAdd((int*)(rrects + cls * 4 + 2), candidates[tid].z);
__atomicAdd((int*)(rrects + cls * 4 + 3), candidates[tid].w);
__atomicAdd((rrects + cls * 4 + 0), candidates[tid].x);
__atomicAdd((rrects + cls * 4 + 1), candidates[tid].y);
__atomicAdd((rrects + cls * 4 + 2), candidates[tid].z);
__atomicAdd((rrects + cls * 4 + 3), candidates[tid].w);
#else
atomicAdd((int*)(rrects + cls * 4 + 0), candidates[tid].x);
atomicAdd((int*)(rrects + cls * 4 + 1), candidates[tid].y);
atomicAdd((int*)(rrects + cls * 4 + 2), candidates[tid].z);
atomicAdd((int*)(rrects + cls * 4 + 3), candidates[tid].w);
atomicAdd((rrects + cls * 4 + 0), candidates[tid].x);
atomicAdd((rrects + cls * 4 + 1), candidates[tid].y);
atomicAdd((rrects + cls * 4 + 2), candidates[tid].z);
atomicAdd((rrects + cls * 4 + 3), candidates[tid].w);
#endif
__syncthreads();
labels[tid] = 0;
__syncthreads();
#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ < 120)
__atomicInc((unsigned int*)labels + cls, n);
#else
atomicInc((unsigned int*)labels + cls, n);
#endif
__syncthreads();
*nclasses = 0;
int active = labels[tid];
@ -235,61 +273,54 @@ namespace cv { namespace gpu { namespace device
r1[1] = saturate_cast<int>(r1[1] * s);
r1[2] = saturate_cast<int>(r1[2] * s);
r1[3] = saturate_cast<int>(r1[3] * s);
}
__syncthreads();
int n1 = active;
__syncthreads();
unsigned int j = 0;
if( active > groupThreshold )
{
for (j = 0; j < n; j++)
{
int n2 = labels[j];
if(!n2 || j == tid || n2 <= groupThreshold )
continue;
int* r2 = rrects + j * 4;
int dx = saturate_cast<int>( r2[2] * grouping_eps );
int dy = saturate_cast<int>( r2[3] * grouping_eps );
if( tid != j && r1[0] >= r2[0] - dx && r1[1] >= r2[1] - dy &&
r1[0] + r1[2] <= r2[0] + r2[2] + dx && r1[1] + r1[3] <= r2[1] + r2[3] + dy &&
(n2 > max(3, n1) || n1 < 3) )
break;
}
if( j == n)
{
if (active && active >= groupThreshold)
{
int* r1 = rrects + tid * 4;
int4 r_out;
r_out.x = r1[0];
r_out.y = r1[1];
r_out.z = r1[2];
r_out.w = r1[3];
#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ < 120)
objects[__atomicInc(nclasses, n)] = VecTraits<int4>::make(r1[0], r1[1], r1[2], r1[3]);
objects[__atomicInc(nclasses, n)] = r_out;
#else
objects[atomicInc(nclasses, n)] = VecTraits<int4>::make(r1[0], r1[1], r1[2], r1[3]);
int aidx = atomicInc(nclasses, n);
objects[aidx] = r_out;
#endif
}
}
}
}
void classifyStump(const DevMem2Db& mstages, const int nstages, const DevMem2Di& mnodes, const DevMem2Df& mleaves, const DevMem2Di& msubsets, const DevMem2Db& mfeatures,
/*const DevMem2Di& integral,*/ const int workWidth, const int workHeight, const int clWidth, const int clHeight, float scale, int step, int subsetSize,
DevMem2D_<int4> objects, unsigned int* classified)
const int workWidth, const int workHeight, const int clWidth, const int clHeight, float scale, int step, int subsetSize, DevMem2D_<int4> objects, unsigned int* classified)
{
int blocks = ceilf(workHeight / (float)step);
int threads = ceilf(workWidth / (float)step);
Classifier clr((Stage*)(mstages.ptr()), (ClNode*)(mnodes.ptr()), mleaves.ptr(), msubsets.ptr(), (uchar4*)(mfeatures.ptr()), nstages, clWidth, clHeight, scale, step, subsetSize);
lbp_classify_stump<<<blocks, threads>>>(clr, objects, objects.cols, classified);
}
void classifyStumpFixed(const DevMem2Db& mstages, const int nstages, const DevMem2Di& mnodes, const DevMem2Df& mleaves, const DevMem2Di& msubsets, const DevMem2Db& mfeatures,
const int workWidth, const int workHeight, const int clWidth, const int clHeight, float scale, int step, int subsetSize, DevMem2D_<int4> objects, unsigned int* classified,
int maxX)
{
const int THREADS_BLOCK = 256;
int blocks = ceilf(workHeight / (float)step);
int threads = ceilf(workWidth / (float)step);
Stage* stages = (Stage*)(mstages.ptr());
ClNode* nodes = (ClNode*)(mnodes.ptr());
const float* leaves = mleaves.ptr();
const int* subsets = msubsets.ptr();
const uchar4* features = (uchar4*)(mfeatures.ptr());
lbp_classify_stump<<<blocks, threads>>>(stages, nstages, nodes, leaves, subsets, features, /*integ, istep,
workWidth, workHeight,*/ clWidth, clHeight, scale, step, subsetSize, objects, classified);
Classifier clr((Stage*)(mstages.ptr()), (ClNode*)(mnodes.ptr()), mleaves.ptr(), msubsets.ptr(), (uchar4*)(mfeatures.ptr()), nstages, clWidth, clHeight, scale, step, subsetSize);
int lines = divUp(threads, THREADS_BLOCK);
lbp_classify_stump<<<blocks * lines, THREADS_BLOCK>>>(clr, objects, objects.cols, classified, lines, maxX);
}
int connectedConmonents(DevMem2D_<int4> candidates, DevMem2D_<int4> objects, int groupThreshold, float grouping_eps, unsigned int* nclasses)
int connectedConmonents(DevMem2D_<int4> candidates, int ncandidates, DevMem2D_<int4> objects, int groupThreshold, float grouping_eps, unsigned int* nclasses)
{
int threads = candidates.cols;
int threads = ncandidates;
int smem_amount = threads * sizeof(int) + threads * sizeof(int4);
disjoin<InSameComponint><<<1, threads, smem_amount>>>((int4*)candidates.ptr(), (int4*)objects.ptr(), candidates.cols, groupThreshold, grouping_eps, nclasses);
disjoin<InSameComponint><<<1, threads, smem_amount>>>((int4*)candidates.ptr(), (int4*)objects.ptr(), ncandidates, groupThreshold, grouping_eps, nclasses);
return 0;
}
}

@ -61,6 +61,7 @@ __device__ __forceinline__ T __atomicInc(T* address, T val)
count = tag | (count + 1);
*address = count;
} while (*address != count);
return (count & TAG_MASK) - 1;
}
@ -85,6 +86,7 @@ __device__ __forceinline__ T __atomicMin(T* address, T val)
{
*address = count;
} while (*address > count);
return count;
}
@ -151,7 +153,6 @@ __device__ __forceinline__ T __atomicMin(T* address, T val)
}
}
__syncthreads();
// printf("tid %d label %d\n", tid, labels[tid]);
}
} // lbp

Loading…
Cancel
Save