mirror of https://github.com/opencv/opencv.git
OpenCL StereoBeliefPropagation, ported from GPU implementation.pull/744/head
parent
656594ad4f
commit
ecea583afd
4 changed files with 1015 additions and 6 deletions
@ -0,0 +1,380 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. |
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// @Authors |
||||
// Jia Haipeng, jiahaipeng95@gmail.com |
||||
// Peng Xiao, pengxiao@outlook.com |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other GpuMaterials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors as is and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#if defined (DOUBLE_SUPPORT) |
||||
|
||||
#ifdef cl_khr_fp64 |
||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable |
||||
#elif defined (cl_amd_fp64) |
||||
#pragma OPENCL EXTENSION cl_amd_fp64:enable |
||||
#endif |
||||
|
||||
#endif |
||||
|
||||
#ifdef T_FLOAT |
||||
#define T float |
||||
#else |
||||
#define T short |
||||
#endif |
||||
|
||||
/////////////////////////////////////////////////////////////// |
||||
/////////////////common/////////////////////////////////////// |
||||
///////////////////////////////////////////////////////////// |
||||
T saturate_cast(float v){ |
||||
#ifdef T_SHORT |
||||
return convert_short_sat_rte(v); |
||||
#else |
||||
return v; |
||||
#endif |
||||
} |
||||
|
||||
#define FLOAT_MAX 3.402823466e+38f |
||||
typedef struct |
||||
{ |
||||
int cndisp; |
||||
float cmax_data_term; |
||||
float cdata_weight; |
||||
float cmax_disc_term; |
||||
float cdisc_single_jump; |
||||
}con_srtuct_t; |
||||
/////////////////////////////////////////////////////////////// |
||||
////////////////////////// comp data ////////////////////////// |
||||
/////////////////////////////////////////////////////////////// |
||||
|
||||
float pix_diff_1(__global const uchar *ls, __global const uchar *rs) |
||||
{ |
||||
return abs((int)(*ls) - *rs); |
||||
} |
||||
|
||||
float pix_diff_3(__global const uchar *ls, __global const uchar *rs) |
||||
{ |
||||
const float tr = 0.299f; |
||||
const float tg = 0.587f; |
||||
const float tb = 0.114f; |
||||
|
||||
float val; |
||||
|
||||
val = tb * abs((int)ls[0] - rs[0]); |
||||
val += tg * abs((int)ls[1] - rs[1]); |
||||
val += tr * abs((int)ls[2] - rs[2]); |
||||
|
||||
return val; |
||||
} |
||||
float pix_diff_4(__global const uchar *ls, __global const uchar *rs) |
||||
{ |
||||
uchar4 l, r; |
||||
l = *((__global uchar4 *)ls); |
||||
r = *((__global uchar4 *)rs); |
||||
|
||||
const float tr = 0.299f; |
||||
const float tg = 0.587f; |
||||
const float tb = 0.114f; |
||||
|
||||
float val; |
||||
|
||||
val = tb * abs((int)l.x - r.x); |
||||
val += tg * abs((int)l.y - r.y); |
||||
val += tr * abs((int)l.z - r.z); |
||||
|
||||
return val; |
||||
} |
||||
|
||||
|
||||
#ifndef CN |
||||
#define CN 4 |
||||
#endif |
||||
|
||||
#define CAT(X,Y) X##Y |
||||
#define CAT2(X,Y) CAT(X,Y) |
||||
|
||||
#define PIX_DIFF CAT2(pix_diff_, CN) |
||||
|
||||
__kernel void comp_data(__global uchar *left, int left_rows, int left_cols, int left_step, |
||||
__global uchar *right, int right_step, |
||||
__global T *data, int data_step, |
||||
__constant con_srtuct_t *con_st) |
||||
{ |
||||
int x = get_global_id(0); |
||||
int y = get_global_id(1); |
||||
|
||||
if (y > 0 && y < (left_rows - 1) && x > 0 && x < (left_cols - 1)) |
||||
{ |
||||
data_step /= sizeof(T); |
||||
const __global uchar* ls = left + y * left_step + x * CN; |
||||
const __global uchar* rs = right + y * right_step + x * CN; |
||||
|
||||
__global T *ds = data + y * data_step + x; |
||||
|
||||
const unsigned int disp_step = data_step * left_rows; |
||||
|
||||
for (int disp = 0; disp < con_st -> cndisp; disp++) |
||||
{ |
||||
if (x - disp >= 1) |
||||
{ |
||||
float val = 0; |
||||
val = PIX_DIFF(ls, rs - disp * CN); |
||||
ds[disp * disp_step] = saturate_cast(fmin(con_st -> cdata_weight * val, |
||||
con_st -> cdata_weight * con_st -> cmax_data_term)); |
||||
} |
||||
else |
||||
{ |
||||
ds[disp * disp_step] = saturate_cast(con_st -> cdata_weight * con_st -> cmax_data_term); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
/////////////////////////////////////////////////////////////// |
||||
//////////////////////// data step down /////////////////////// |
||||
/////////////////////////////////////////////////////////////// |
||||
__kernel void data_step_down(__global T *src, int src_rows, |
||||
__global T *dst, int dst_rows, int dst_cols, |
||||
int src_step, int dst_step, |
||||
int cndisp) |
||||
{ |
||||
const int x = get_global_id(0); |
||||
const int y = get_global_id(1); |
||||
|
||||
if (x < dst_cols && y < dst_rows) |
||||
{ |
||||
src_step /= sizeof(T); |
||||
dst_step /= sizeof(T); |
||||
for (int d = 0; d < cndisp; ++d) |
||||
{ |
||||
float dst_reg; |
||||
dst_reg = src[(d * src_rows + (2*y+0)) * src_step + 2*x+0]; |
||||
dst_reg += src[(d * src_rows + (2*y+1)) * src_step + 2*x+0]; |
||||
dst_reg += src[(d * src_rows + (2*y+0)) * src_step + 2*x+1]; |
||||
dst_reg += src[(d * src_rows + (2*y+1)) * src_step + 2*x+1]; |
||||
|
||||
dst[(d * dst_rows + y) * dst_step + x] = saturate_cast(dst_reg); |
||||
} |
||||
} |
||||
} |
||||
|
||||
/////////////////////////////////////////////////////////////// |
||||
/////////////////// level up messages //////////////////////// |
||||
/////////////////////////////////////////////////////////////// |
||||
__kernel void level_up_message(__global T *src, int src_rows, int src_step, |
||||
__global T *dst, int dst_rows, int dst_cols, int dst_step, |
||||
int cndisp) |
||||
{ |
||||
const int x = get_global_id(0); |
||||
const int y = get_global_id(1); |
||||
|
||||
if (x < dst_cols && y < dst_rows) |
||||
{ |
||||
src_step /= sizeof(T); |
||||
dst_step /= sizeof(T); |
||||
|
||||
const int dst_disp_step = dst_step * dst_rows; |
||||
const int src_disp_step = src_step * src_rows; |
||||
|
||||
__global T *dstr = dst + y * dst_step + x; |
||||
__global const T *srcr = src + (y / 2 * src_step) + (x / 2); |
||||
|
||||
for (int d = 0; d < cndisp; ++d) |
||||
dstr[d * dst_disp_step] = srcr[d * src_disp_step]; |
||||
} |
||||
} |
||||
|
||||
/////////////////////////////////////////////////////////////// |
||||
//////////////////// calc all iterations ///////////////////// |
||||
/////////////////////////////////////////////////////////////// |
||||
void calc_min_linear_penalty(__global T * dst, int disp_step, |
||||
int cndisp, float cdisc_single_jump) |
||||
{ |
||||
float prev = dst[0]; |
||||
float cur; |
||||
|
||||
for (int disp = 1; disp < cndisp; ++disp) |
||||
{ |
||||
prev += cdisc_single_jump; |
||||
cur = dst[disp_step * disp]; |
||||
|
||||
if (prev < cur) |
||||
{ |
||||
cur = prev; |
||||
dst[disp_step * disp] = saturate_cast(prev); |
||||
} |
||||
|
||||
prev = cur; |
||||
} |
||||
|
||||
prev = dst[(cndisp - 1) * disp_step]; |
||||
for (int disp = cndisp - 2; disp >= 0; disp--) |
||||
{ |
||||
prev += cdisc_single_jump; |
||||
cur = dst[disp_step * disp]; |
||||
|
||||
if (prev < cur) |
||||
{ |
||||
cur = prev; |
||||
dst[disp_step * disp] = saturate_cast(prev); |
||||
} |
||||
prev = cur; |
||||
} |
||||
} |
||||
void message(const __global T *msg1, const __global T *msg2, |
||||
const __global T *msg3, const __global T *data, __global T *dst, |
||||
int msg_disp_step, int data_disp_step, int cndisp, float cmax_disc_term, float cdisc_single_jump) |
||||
{ |
||||
float minimum = FLOAT_MAX; |
||||
|
||||
for(int i = 0; i < cndisp; ++i) |
||||
{ |
||||
float dst_reg; |
||||
dst_reg = msg1[msg_disp_step * i]; |
||||
dst_reg += msg2[msg_disp_step * i]; |
||||
dst_reg += msg3[msg_disp_step * i]; |
||||
dst_reg += data[data_disp_step * i]; |
||||
|
||||
if (dst_reg < minimum) |
||||
minimum = dst_reg; |
||||
|
||||
dst[msg_disp_step * i] = saturate_cast(dst_reg); |
||||
} |
||||
|
||||
calc_min_linear_penalty(dst, msg_disp_step, cndisp, cdisc_single_jump); |
||||
|
||||
minimum += cmax_disc_term; |
||||
|
||||
float sum = 0; |
||||
for(int i = 0; i < cndisp; ++i) |
||||
{ |
||||
float dst_reg = dst[msg_disp_step * i]; |
||||
if (dst_reg > minimum) |
||||
{ |
||||
dst_reg = minimum; |
||||
dst[msg_disp_step * i] = saturate_cast(minimum); |
||||
} |
||||
sum += dst_reg; |
||||
} |
||||
sum /= cndisp; |
||||
|
||||
for(int i = 0; i < cndisp; ++i) |
||||
dst[msg_disp_step * i] -= sum; |
||||
} |
||||
__kernel void one_iteration(__global T *u, int u_step, |
||||
__global T *data, int data_step, |
||||
__global T *d, __global T *l, __global T *r, |
||||
int t, int cols, int rows, |
||||
int cndisp, float cmax_disc_term, float cdisc_single_jump) |
||||
{ |
||||
const int y = get_global_id(1); |
||||
const int x = ((get_global_id(0)) << 1) + ((y + t) & 1); |
||||
|
||||
if ((y > 0) && (y < rows - 1) && (x > 0) && (x < cols - 1)) |
||||
{ |
||||
u_step /= sizeof(T); |
||||
data_step /= sizeof(T); |
||||
|
||||
__global T *us = u + y * u_step + x; |
||||
__global T *ds = d + y * u_step + x; |
||||
__global T *ls = l + y * u_step + x; |
||||
__global T *rs = r + y * u_step + x; |
||||
const __global T *dt = data + y * data_step + x; |
||||
|
||||
int msg_disp_step = u_step * rows; |
||||
int data_disp_step = data_step * rows; |
||||
|
||||
message(us + u_step, ls + 1, rs - 1, dt, us, msg_disp_step, data_disp_step, cndisp, |
||||
cmax_disc_term, cdisc_single_jump); |
||||
message(ds - u_step, ls + 1, rs - 1, dt, ds, msg_disp_step, data_disp_step, cndisp, |
||||
cmax_disc_term, cdisc_single_jump); |
||||
|
||||
message(us + u_step, ds - u_step, rs - 1, dt, rs, msg_disp_step, data_disp_step, cndisp, |
||||
cmax_disc_term, cdisc_single_jump); |
||||
message(us + u_step, ds - u_step, ls + 1, dt, ls, msg_disp_step, data_disp_step, cndisp, |
||||
cmax_disc_term, cdisc_single_jump); |
||||
} |
||||
} |
||||
|
||||
/////////////////////////////////////////////////////////////// |
||||
/////////////////////////// output //////////////////////////// |
||||
/////////////////////////////////////////////////////////////// |
||||
__kernel void output(const __global T *u, int u_step, |
||||
const __global T *d, const __global T *l, |
||||
const __global T *r, const __global T *data, |
||||
__global T *disp, int disp_rows, int disp_cols, int disp_step, |
||||
int cndisp) |
||||
{ |
||||
const int x = get_global_id(0); |
||||
const int y = get_global_id(1); |
||||
|
||||
if (y > 0 && y < disp_rows - 1 && x > 0 && x < disp_cols - 1) |
||||
{ |
||||
u_step /= sizeof(T); |
||||
disp_step /= sizeof(T); |
||||
const __global T *us = u + (y + 1) * u_step + x; |
||||
const __global T *ds = d + (y - 1) * u_step + x; |
||||
const __global T *ls = l + y * u_step + (x + 1); |
||||
const __global T *rs = r + y * u_step + (x - 1); |
||||
const __global T *dt = data + y * u_step + x; |
||||
|
||||
int disp_steps = disp_rows * u_step; |
||||
|
||||
int best = 0; |
||||
float best_val = FLOAT_MAX; |
||||
for (int d = 0; d < cndisp; ++d) |
||||
{ |
||||
float val; |
||||
val = us[d * disp_steps]; |
||||
val += ds[d * disp_steps]; |
||||
val += ls[d * disp_steps]; |
||||
val += rs[d * disp_steps]; |
||||
val += dt[d * disp_steps]; |
||||
|
||||
if (val < best_val) |
||||
{ |
||||
best_val = val; |
||||
best = d; |
||||
} |
||||
} |
||||
|
||||
(disp + y * disp_step)[x] = convert_short_sat(best); |
||||
} |
||||
} |
@ -0,0 +1,519 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jia Haipeng, jiahaipeng95@gmail.com
|
||||
// Peng Xiao, pengxiao@outlook.com
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
#include <vector> |
||||
#include <cstdio> |
||||
|
||||
using namespace cv; |
||||
using namespace cv::ocl; |
||||
using namespace std; |
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
///////////////// stereoBP /////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace cv |
||||
{ |
||||
namespace ocl |
||||
{ |
||||
|
||||
///////////////////////////OpenCL kernel strings///////////////////////////
|
||||
extern const char *stereobp; |
||||
} |
||||
|
||||
} |
||||
namespace cv |
||||
{ |
||||
namespace ocl |
||||
{ |
||||
namespace stereoBP |
||||
{ |
||||
//////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////common////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
typedef struct
|
||||
{ |
||||
int cndisp; |
||||
float cmax_data_term; |
||||
float cdata_weight; |
||||
float cmax_disc_term; |
||||
float cdisc_single_jump; |
||||
} con_struct_t; |
||||
|
||||
cl_mem cl_con_struct = NULL; |
||||
static void load_constants(Context *clCxt, int ndisp, float max_data_term, float data_weight, |
||||
float max_disc_term, float disc_single_jump) |
||||
{ |
||||
con_struct_t *con_struct = new con_struct_t; |
||||
con_struct -> cndisp = ndisp; |
||||
con_struct -> cmax_data_term = max_data_term; |
||||
con_struct -> cdata_weight = data_weight; |
||||
con_struct -> cmax_disc_term = max_disc_term; |
||||
con_struct -> cdisc_single_jump = disc_single_jump; |
||||
|
||||
cl_con_struct = load_constant(clCxt->impl->clContext, clCxt->impl->clCmdQueue, (void *)con_struct, |
||||
sizeof(con_struct_t)); |
||||
|
||||
delete con_struct; |
||||
} |
||||
static void release_constants() |
||||
{ |
||||
openCLFree(cl_con_struct); |
||||
} |
||||
static inline int divUp(int total, int grain) |
||||
{ |
||||
return (total + grain - 1) / grain; |
||||
} |
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
///////////////////////////comp data////////////////////////////////////////
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
static void comp_data_call(const oclMat &left, const oclMat &right, oclMat &data, int /*disp*/, |
||||
float /*cmax_data_term*/, float /*cdata_weight*/) |
||||
{ |
||||
Context *clCxt = left.clCxt; |
||||
int channels = left.oclchannels(); |
||||
int data_type = data.type(); |
||||
|
||||
string kernelName = "comp_data"; |
||||
|
||||
vector<pair<size_t , const void *> > args; |
||||
|
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&left.data)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&left.rows)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&left.cols)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&left.step)); |
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&right.data)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&right.step)); |
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&data.data)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&data.step)); |
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&cl_con_struct)); |
||||
|
||||
size_t gt[3] = {left.cols, left.rows, 1}, lt[3] = {16, 16, 1}; |
||||
|
||||
const int OPT_SIZE = 50; |
||||
char cn_opt [OPT_SIZE] = ""; |
||||
sprintf( cn_opt, "%s -D CN=%d",
|
||||
(data_type == CV_16S ? "-D T_SHORT":"-D T_FLOAT"), |
||||
channels |
||||
); |
||||
openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, cn_opt); |
||||
} |
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
/////////////////////////data set down////////////////////////////////////////////
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
static void data_step_down_call(int dst_cols, int dst_rows, int src_rows, |
||||
const oclMat &src, oclMat &dst, int disp) |
||||
{ |
||||
Context *clCxt = src.clCxt; |
||||
int data_type = src.type(); |
||||
|
||||
string kernelName = "data_step_down"; |
||||
|
||||
vector<pair<size_t , const void *> > args; |
||||
|
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&src_rows)); |
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_rows)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_cols)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.step)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&disp)); |
||||
|
||||
size_t gt[3] = {dst_cols, dst_rows, 1}, lt[3] = {16, 16, 1}; |
||||
char* t_opt = data_type == CV_16S ? "-D T_SHORT":"-D T_FLOAT"; |
||||
openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, t_opt); |
||||
} |
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
///////////////////////////live up message////////////////////////////////////////
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
static void level_up_message_call(int dst_cols, int dst_rows, int src_rows, |
||||
oclMat &src, oclMat &dst, int ndisp) |
||||
{ |
||||
Context *clCxt = src.clCxt; |
||||
int data_type = src.type(); |
||||
|
||||
string kernelName = "level_up_message"; |
||||
vector<pair<size_t , const void *> > args; |
||||
|
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&src_rows)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step)); |
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_rows)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_cols)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.step)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&ndisp)); |
||||
|
||||
size_t gt[3] = {dst_cols, dst_rows, 1}, lt[3] = {16, 16, 1}; |
||||
char* t_opt = data_type == CV_16S ? "-D T_SHORT":"-D T_FLOAT"; |
||||
openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, t_opt); |
||||
} |
||||
static void level_up_messages_calls(int dst_idx, int dst_cols, int dst_rows, int src_rows, |
||||
oclMat *mus, oclMat *mds, oclMat *mls, oclMat *mrs, |
||||
int ndisp) |
||||
{ |
||||
int src_idx = (dst_idx + 1) & 1; |
||||
|
||||
level_up_message_call(dst_cols, dst_rows, src_rows, |
||||
mus[src_idx], mus[dst_idx], ndisp); |
||||
|
||||
level_up_message_call(dst_cols, dst_rows, src_rows, |
||||
mds[src_idx], mds[dst_idx], ndisp); |
||||
|
||||
level_up_message_call(dst_cols, dst_rows, src_rows, |
||||
mls[src_idx], mls[dst_idx], ndisp); |
||||
|
||||
level_up_message_call(dst_cols, dst_rows, src_rows, |
||||
mrs[src_idx], mrs[dst_idx], ndisp); |
||||
} |
||||
//////////////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////cals_all_iterations_call///////////////////////////
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
static void calc_all_iterations_call(int cols, int rows, oclMat &u, oclMat &d, |
||||
oclMat &l, oclMat &r, oclMat &data, |
||||
int t, int cndisp, float cmax_disc_term, |
||||
float cdisc_single_jump) |
||||
{ |
||||
Context *clCxt = l.clCxt; |
||||
int data_type = u.type(); |
||||
|
||||
string kernelName = "one_iteration"; |
||||
|
||||
vector<pair<size_t , const void *> > args; |
||||
|
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&u.data)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&u.step)); |
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&data.data)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&data.step)); |
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&d.data)); |
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&l.data)); |
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&r.data)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&t)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&cols)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&rows)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&cndisp)); |
||||
args.push_back( make_pair( sizeof(cl_float) , (void *)&cmax_disc_term)); |
||||
args.push_back( make_pair( sizeof(cl_float) , (void *)&cdisc_single_jump)); |
||||
|
||||
size_t gt[3] = {cols, rows, 1}, lt[3] = {16, 16, 1}; |
||||
char* t_opt = data_type == CV_16S ? "-D T_SHORT":"-D T_FLOAT"; |
||||
openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, t_opt); |
||||
} |
||||
|
||||
static void calc_all_iterations_calls(int cols, int rows, int iters, oclMat &u, |
||||
oclMat &d, oclMat &l, oclMat &r, |
||||
oclMat &data, int cndisp, float cmax_disc_term, |
||||
float cdisc_single_jump) |
||||
{ |
||||
for(int t = 0; t < iters; ++t) |
||||
calc_all_iterations_call(cols, rows, u, d, l, r, data, t, cndisp, |
||||
cmax_disc_term, cdisc_single_jump); |
||||
} |
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
///////////////////////output///////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
static void output_call(const oclMat &u, const oclMat &d, const oclMat l, const oclMat &r, |
||||
const oclMat &data, oclMat &disp, int ndisp) |
||||
{ |
||||
Context *clCxt = u.clCxt; |
||||
int data_type = u.type(); |
||||
|
||||
string kernelName = "output"; |
||||
|
||||
vector<pair<size_t , const void *> > args; |
||||
|
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&u.data)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&u.step)); |
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&d.data)); |
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&l.data)); |
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&r.data)); |
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&data.data)); |
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&disp.data)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&disp.rows)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&disp.cols)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&disp.step)); |
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&ndisp)); |
||||
|
||||
size_t gt[3] = {disp.cols, disp.rows, 1}, lt[3] = {16, 16, 1}; |
||||
char* t_opt = data_type == CV_16S ? "-D T_SHORT":"-D T_FLOAT"; |
||||
openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, t_opt); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
namespace |
||||
{ |
||||
const float DEFAULT_MAX_DATA_TERM = 10.0f; |
||||
const float DEFAULT_DATA_WEIGHT = 0.07f; |
||||
const float DEFAULT_MAX_DISC_TERM = 1.7f; |
||||
const float DEFAULT_DISC_SINGLE_JUMP = 1.0f; |
||||
} |
||||
|
||||
void cv::ocl::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int &ndisp, int &iters, int &levels) |
||||
{ |
||||
ndisp = width / 4; |
||||
if ((ndisp & 1) != 0) |
||||
ndisp++; |
||||
|
||||
int mm = ::max(width, height); |
||||
iters = mm / 100 + 2; |
||||
|
||||
levels = (int)(::log(static_cast<double>(mm)) + 1) * 4 / 5; |
||||
if (levels == 0) levels++; |
||||
} |
||||
|
||||
cv::ocl::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, int msg_type_) |
||||
: ndisp(ndisp_), iters(iters_), levels(levels_), |
||||
max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT), |
||||
max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP), |
||||
msg_type(msg_type_), datas(levels_) |
||||
{ |
||||
} |
||||
|
||||
cv::ocl::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_, int msg_type_) |
||||
: ndisp(ndisp_), iters(iters_), levels(levels_), |
||||
max_data_term(max_data_term_), data_weight(data_weight_), |
||||
max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_), |
||||
msg_type(msg_type_), datas(levels_) |
||||
{ |
||||
} |
||||
|
||||
namespace |
||||
{ |
||||
class StereoBeliefPropagationImpl |
||||
{ |
||||
public: |
||||
StereoBeliefPropagationImpl(StereoBeliefPropagation &rthis_, |
||||
oclMat &u_, oclMat &d_, oclMat &l_, oclMat &r_, |
||||
oclMat &u2_, oclMat &d2_, oclMat &l2_, oclMat &r2_, |
||||
vector<oclMat> &datas_, oclMat &out_) |
||||
: rthis(rthis_), u(u_), d(d_), l(l_), r(r_), u2(u2_), d2(d2_), l2(l2_), r2(r2_), datas(datas_), out(out_), |
||||
zero(Scalar::all(0)), scale(rthis_.msg_type == CV_32F ? 1.0f : 10.0f) |
||||
{ |
||||
CV_Assert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels); |
||||
CV_Assert(rthis.msg_type == CV_32F || rthis.msg_type == CV_16S); |
||||
CV_Assert(rthis.msg_type == CV_32F || (1 << (rthis.levels - 1)) * scale * rthis.max_data_term < numeric_limits<short>::max()); |
||||
} |
||||
|
||||
void operator()(const oclMat &left, const oclMat &right, oclMat &disp) |
||||
{ |
||||
CV_Assert(left.size() == right.size() && left.type() == right.type()); |
||||
CV_Assert(left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4); |
||||
|
||||
rows = left.rows; |
||||
cols = left.cols; |
||||
|
||||
int divisor = (int)pow(2.f, rthis.levels - 1.0f); |
||||
int lowest_cols = cols / divisor; |
||||
int lowest_rows = rows / divisor; |
||||
const int min_image_dim_size = 2; |
||||
CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size); |
||||
|
||||
init(); |
||||
|
||||
datas[0].create(rows * rthis.ndisp, cols, rthis.msg_type); |
||||
datas[0].setTo(Scalar_<short>::all(0)); |
||||
|
||||
cv::ocl::stereoBP::comp_data_call(left, right, datas[0], rthis.ndisp, rthis.max_data_term, scale * rthis.data_weight); |
||||
calcBP(disp); |
||||
} |
||||
|
||||
void operator()(const oclMat &data, oclMat &disp) |
||||
{ |
||||
CV_Assert((data.type() == rthis.msg_type) && (data.rows % rthis.ndisp == 0)); |
||||
|
||||
rows = data.rows / rthis.ndisp; |
||||
cols = data.cols; |
||||
|
||||
int divisor = (int)pow(2.f, rthis.levels - 1.0f); |
||||
int lowest_cols = cols / divisor; |
||||
int lowest_rows = rows / divisor; |
||||
const int min_image_dim_size = 2; |
||||
CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size); |
||||
|
||||
init(); |
||||
|
||||
datas[0] = data; |
||||
|
||||
calcBP(disp); |
||||
} |
||||
private: |
||||
void init() |
||||
{ |
||||
u.create(rows * rthis.ndisp, cols, rthis.msg_type); |
||||
d.create(rows * rthis.ndisp, cols, rthis.msg_type); |
||||
l.create(rows * rthis.ndisp, cols, rthis.msg_type); |
||||
r.create(rows * rthis.ndisp, cols, rthis.msg_type); |
||||
|
||||
if (rthis.levels & 1) |
||||
{ |
||||
//can clear less area
|
||||
u = zero; |
||||
d = zero; |
||||
l = zero; |
||||
r = zero; |
||||
} |
||||
|
||||
if (rthis.levels > 1) |
||||
{ |
||||
int less_rows = (rows + 1) / 2; |
||||
int less_cols = (cols + 1) / 2; |
||||
|
||||
u2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); |
||||
d2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); |
||||
l2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); |
||||
r2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); |
||||
|
||||
if ((rthis.levels & 1) == 0) |
||||
{ |
||||
u2 = zero; |
||||
d2 = zero; |
||||
l2 = zero; |
||||
r2 = zero; |
||||
} |
||||
} |
||||
|
||||
cv::ocl::stereoBP::load_constants(u.clCxt, rthis.ndisp, rthis.max_data_term, scale * rthis.data_weight, |
||||
scale * rthis.max_disc_term, scale * rthis.disc_single_jump); |
||||
|
||||
datas.resize(rthis.levels); |
||||
cols_all.resize(rthis.levels); |
||||
rows_all.resize(rthis.levels); |
||||
|
||||
cols_all[0] = cols; |
||||
rows_all[0] = rows; |
||||
} |
||||
|
||||
void calcBP(oclMat &disp) |
||||
{ |
||||
using namespace cv::ocl::stereoBP; |
||||
|
||||
for (int i = 1; i < rthis.levels; ++i) |
||||
{ |
||||
cols_all[i] = (cols_all[i - 1] + 1) / 2; |
||||
rows_all[i] = (rows_all[i - 1] + 1) / 2; |
||||
|
||||
datas[i].create(rows_all[i] * rthis.ndisp, cols_all[i], rthis.msg_type); |
||||
datas[i].setTo(Scalar_<short>::all(0)); |
||||
|
||||
data_step_down_call(cols_all[i], rows_all[i], rows_all[i - 1], |
||||
datas[i - 1], datas[i], rthis.ndisp); |
||||
} |
||||
|
||||
oclMat mus[] = {u, u2}; |
||||
oclMat mds[] = {d, d2}; |
||||
oclMat mrs[] = {r, r2}; |
||||
oclMat mls[] = {l, l2}; |
||||
|
||||
int mem_idx = (rthis.levels & 1) ? 0 : 1; |
||||
|
||||
for (int i = rthis.levels - 1; i >= 0; --i) |
||||
{ |
||||
// for lower level we have already computed messages by setting to zero
|
||||
if (i != rthis.levels - 1) |
||||
level_up_messages_calls(mem_idx, cols_all[i], rows_all[i], rows_all[i + 1], |
||||
mus, mds, mls, mrs, rthis.ndisp); |
||||
|
||||
calc_all_iterations_calls(cols_all[i], rows_all[i], rthis.iters, mus[mem_idx], |
||||
mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i], |
||||
rthis.ndisp, scale * rthis.max_disc_term, |
||||
scale * rthis.disc_single_jump); |
||||
|
||||
mem_idx = (mem_idx + 1) & 1; |
||||
} |
||||
if (disp.empty()) |
||||
disp.create(rows, cols, CV_16S); |
||||
|
||||
out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out)); |
||||
out = zero; |
||||
|
||||
output_call(u, d, l, r, datas.front(), out, rthis.ndisp); |
||||
|
||||
if (disp.type() != CV_16S) |
||||
out.convertTo(disp, disp.type()); |
||||
|
||||
release_constants(); |
||||
} |
||||
StereoBeliefPropagationImpl& operator=(const StereoBeliefPropagationImpl&); |
||||
|
||||
StereoBeliefPropagation &rthis; |
||||
|
||||
oclMat &u; |
||||
oclMat &d; |
||||
oclMat &l; |
||||
oclMat &r; |
||||
|
||||
oclMat &u2; |
||||
oclMat &d2; |
||||
oclMat &l2; |
||||
oclMat &r2; |
||||
|
||||
vector<oclMat> &datas; |
||||
oclMat &out; |
||||
|
||||
const Scalar zero; |
||||
const float scale; |
||||
|
||||
int rows, cols; |
||||
|
||||
vector<int> cols_all, rows_all; |
||||
}; |
||||
} |
||||
|
||||
void cv::ocl::StereoBeliefPropagation::operator()(const oclMat &left, const oclMat &right, oclMat &disp) |
||||
{ |
||||
::StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out); |
||||
impl(left, right, disp); |
||||
} |
||||
|
||||
void cv::ocl::StereoBeliefPropagation::operator()(const oclMat &data, oclMat &disp) |
||||
{ |
||||
::StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out); |
||||
impl(data, disp); |
||||
} |
||||
|
Loading…
Reference in new issue