Fix modules/ typos

Found using `codespell -q 3 -S ./3rdparty -L activ,amin,ang,atleast,childs,dof,endwhile,halfs,hist,iff,nd,od,uint`
pull/15318/head
luz.paz 6 years ago
parent ea667d82b3
commit ec43292e1e
  1. 2
      modules/calib3d/src/calibration.cpp
  2. 2
      modules/calib3d/src/chessboard.cpp
  3. 8
      modules/calib3d/src/chessboard.hpp
  4. 2
      modules/calib3d/src/five-point.cpp
  5. 2
      modules/calib3d/src/ippe.cpp
  6. 6
      modules/calib3d/test/test_homography.cpp
  7. 2
      modules/core/include/opencv2/core/core_c.h
  8. 2
      modules/core/include/opencv2/core/cuda.hpp
  9. 2
      modules/core/include/opencv2/core/hal/intrin_cpp.hpp
  10. 2
      modules/core/include/opencv2/core/hal/intrin_vsx.hpp
  11. 2
      modules/core/include/opencv2/core/llapi/llapi.h
  12. 6
      modules/core/include/opencv2/core/mat.hpp
  13. 2
      modules/core/include/opencv2/core/simd_intrinsics.hpp
  14. 4
      modules/core/include/opencv2/core/utils/filesystem.private.hpp
  15. 2
      modules/core/misc/python/shadow_umat.hpp
  16. 2
      modules/core/src/datastructs.cpp
  17. 2
      modules/core/src/hal_internal.cpp
  18. 2
      modules/core/src/ocl.cpp
  19. 2
      modules/core/test/test_eigen.cpp
  20. 2
      modules/dnn/include/opencv2/dnn/all_layers.hpp
  21. 2
      modules/dnn/include/opencv2/dnn/dnn.hpp
  22. 2
      modules/dnn/src/ocl4dnn/src/ocl4dnn_conv_spatial.cpp
  23. 2
      modules/dnn/src/onnx/opencv-onnx.proto
  24. 4
      modules/dnn/src/op_inf_engine.cpp
  25. 2
      modules/dnn/src/op_inf_engine.hpp
  26. 2
      modules/dnn/src/tensorflow/tf_importer.cpp
  27. 2
      modules/dnn/src/torch/torch_importer.cpp
  28. 2
      modules/dnn/src/vkcom/shader/softmax.comp
  29. 2
      modules/dnn/test/test_ie_models.cpp
  30. 2
      modules/features2d/perf/perf_feature2d.hpp
  31. 2
      modules/flann/include/opencv2/flann/hierarchical_clustering_index.h
  32. 2
      modules/flann/include/opencv2/flann/kmeans_index.h
  33. 2
      modules/flann/include/opencv2/flann/result_set.h
  34. 6
      modules/gapi/doc/01-background.markdown
  35. 4
      modules/gapi/include/opencv2/gapi/core.hpp
  36. 4
      modules/gapi/include/opencv2/gapi/cpu/gcpukernel.hpp
  37. 2
      modules/gapi/include/opencv2/gapi/garray.hpp
  38. 2
      modules/gapi/include/opencv2/gapi/gcompiled_async.hpp
  39. 2
      modules/gapi/include/opencv2/gapi/gcomputation.hpp
  40. 2
      modules/gapi/include/opencv2/gapi/gcomputation_async.hpp
  41. 2
      modules/gapi/include/opencv2/gapi/gkernel.hpp
  42. 2
      modules/gapi/include/opencv2/gapi/infer.hpp
  43. 2
      modules/gapi/include/opencv2/gapi/ocl/goclkernel.hpp
  44. 2
      modules/gapi/include/opencv2/gapi/own/saturate.hpp
  45. 4
      modules/gapi/src/api/gbackend.cpp
  46. 4
      modules/gapi/src/backends/cpu/gcpucore.cpp
  47. 2
      modules/gapi/src/backends/ie/giebackend.cpp
  48. 4
      modules/gapi/src/backends/ocl/goclcore.cpp
  49. 2
      modules/gapi/src/compiler/gcompiler.cpp
  50. 2
      modules/gapi/src/compiler/gmodelbuilder.cpp
  51. 2
      modules/gapi/src/compiler/passes/exec.cpp
  52. 2
      modules/gapi/src/compiler/passes/kernels.cpp
  53. 2
      modules/gapi/src/compiler/passes/meta.cpp
  54. 2
      modules/highgui/src/window_gtk.cpp
  55. 2
      modules/highgui/src/window_w32.cpp
  56. 2
      modules/imgcodecs/include/opencv2/imgcodecs/imgcodecs_c.h
  57. 2
      modules/imgcodecs/src/grfmt_jpeg.cpp
  58. 2
      modules/imgcodecs/src/grfmt_pam.cpp
  59. 2
      modules/imgcodecs/src/grfmt_pfm.cpp
  60. 2
      modules/imgcodecs/src/grfmt_png.cpp
  61. 4
      modules/imgproc/perf/perf_houghlines.cpp
  62. 6
      modules/imgproc/src/hough.cpp
  63. 2
      modules/imgproc/src/morph.dispatch.cpp
  64. 2
      modules/imgproc/src/rotcalipers.cpp
  65. 2
      modules/imgproc/test/ocl/test_canny.cpp
  66. 2
      modules/imgproc/test/test_canny.cpp
  67. 2
      modules/java/generator/android/java/org/opencv/android/AsyncServiceHelper.java
  68. 4
      modules/java/test/android_test/src/org/opencv/test/OpenCVTestCase.java
  69. 4
      modules/java/test/pure_test/src/org/opencv/test/OpenCVTestCase.java
  70. 2
      modules/js/test/test_calib3d.js
  71. 2
      modules/js/test/test_features2d.js
  72. 4
      modules/js/test/test_imgproc.js
  73. 2
      modules/js/test/test_mat.js
  74. 2
      modules/js/test/test_objdetect.js
  75. 2
      modules/js/test/test_photo.js
  76. 2
      modules/js/test/test_utils.js
  77. 2
      modules/js/test/test_video.js
  78. 2
      modules/ml/doc/ml_intro.markdown
  79. 2
      modules/ml/include/opencv2/ml.hpp
  80. 2
      modules/ml/test/test_emknearestkmeans.cpp
  81. 2
      modules/python/src2/gen2.py
  82. 2
      modules/ts/misc/table_formatter.py
  83. 2
      modules/video/src/ecc.cpp
  84. 2
      modules/video/src/opencl/pyrlk.cl
  85. 4
      modules/videoio/include/opencv2/videoio/container_avi.private.hpp
  86. 4
      modules/videoio/src/cap_aravis.cpp
  87. 4
      modules/videoio/src/cap_avfoundation.mm
  88. 2
      modules/videoio/src/cap_avfoundation_mac.mm
  89. 2
      modules/videoio/src/cap_dshow.cpp
  90. 2
      modules/videoio/src/cap_msmf.cpp
  91. 2
      modules/videoio/src/container_avi.cpp
  92. 4
      modules/videoio/src/wrl.h
  93. 2
      platforms/android/service/engine/src/org/opencv/engine/OpenCVEngineInterface.aidl
  94. 2
      platforms/ios/build_framework.py

@ -627,7 +627,7 @@ static void cvProjectPoints2Internal( const CvMat* objectPoints,
if( (CV_MAT_TYPE(A->type) != CV_64FC1 && CV_MAT_TYPE(A->type) != CV_32FC1) ||
A->rows != 3 || A->cols != 3 )
CV_Error( CV_StsBadArg, "Instrinsic parameters must be 3x3 floating-point matrix" );
CV_Error( CV_StsBadArg, "Intrinsic parameters must be 3x3 floating-point matrix" );
cvConvert( A, &_a );
fx = a[0]; fy = a[4];

@ -119,7 +119,7 @@ cv::Mat findHomography1D(cv::InputArray _src,cv::InputArray _dst)
cv::Mat b = cv::Mat::zeros(count,1,CV_64FC1);
// fill A;b and perform singular value decomposition
// it is assumed that w is one for both cooridnates
// it is assumed that w is one for both coordinates
// h22 is kept to 1
switch(src_n.type())
{

@ -252,7 +252,7 @@ class Chessboard: public cv::Feature2D
/**
* \brief Estimates the search area for a specific point based on the given homography
*
* \param[in] H homography descriping the transformation from ideal board to real one
* \param[in] H homography describing the transformation from ideal board to real one
* \param[in] row Row of the point
* \param[in] col Col of the point
* \param[in] p Percentage [0..1]
@ -562,8 +562,8 @@ class Chessboard: public cv::Feature2D
void flipHorizontal();
/**
* \brief Flips and rotates the board so that the anlge of
* either the black or white diagonale is bigger than the x
* \brief Flips and rotates the board so that the angle of
* either the black or white diagonal is bigger than the x
* and y axis of the board and from a right handed
* coordinate system
*/
@ -650,7 +650,7 @@ class Chessboard: public cv::Feature2D
bool right(bool check_empty=false); // moves one corner to the right or returns false
bool bottom(bool check_empty=false); // moves one corner to the bottom or returns false
bool top(bool check_empty=false); // moves one corner to the top or returns false
bool checkCorner()const; // returns ture if the current corner belongs to at least one
bool checkCorner()const; // returns true if the current corner belongs to at least one
// none empty cell
bool isNaN()const; // returns true if the currnet corner is NaN

@ -506,7 +506,7 @@ int cv::recoverPose( InputArray E, InputArray _points1, InputArray _points2,
// Do the cheirality check.
// Notice here a threshold dist is used to filter
// out far away points (i.e. infinite points) since
// their depth may vary between positive and negtive.
// their depth may vary between positive and negative.
std::vector<Mat> allTriangulations(4);
Mat Q;

@ -650,7 +650,7 @@ void PoseSolver::makeCanonicalObjectPoints(InputArray _objectPoints, OutputArray
if (!computeObjextSpaceR3Pts(objectPoints,R))
{
//we could not compute R, problably because there is a duplicate point in {objectPoints(0),objectPoints(1),objectPoints(2)}.
//we could not compute R, probably because there is a duplicate point in {objectPoints(0),objectPoints(1),objectPoints(2)}.
//So we compute it with the SVD (which is slower):
computeObjextSpaceRSvD(UZero,R);
}

@ -191,7 +191,7 @@ void CV_HomographyTest::print_information_4(int _method, int j, int N, int k, in
cout << "Number of point: " << k << endl;
cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl;
cout << "Difference with noise of point: " << diff << endl;
cout << "Maxumum allowed difference: " << max_2diff << endl; cout << endl;
cout << "Maximum allowed difference: " << max_2diff << endl; cout << endl;
}
void CV_HomographyTest::print_information_5(int _method, int j, int N, int l, double diff)
@ -204,7 +204,7 @@ void CV_HomographyTest::print_information_5(int _method, int j, int N, int l, do
cout << "Count of points: " << N << endl;
cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl;
cout << "Difference with noise of points: " << diff << endl;
cout << "Maxumum allowed difference: " << max_diff << endl; cout << endl;
cout << "Maximum allowed difference: " << max_diff << endl; cout << endl;
}
void CV_HomographyTest::print_information_6(int _method, int j, int N, int k, double diff, bool value)
@ -244,7 +244,7 @@ void CV_HomographyTest::print_information_8(int _method, int j, int N, int k, in
cout << "Number of point: " << k << " " << endl;
cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl;
cout << "Difference with noise of point: " << diff << endl;
cout << "Maxumum allowed difference: " << max_2diff << endl; cout << endl;
cout << "Maximum allowed difference: " << max_2diff << endl; cout << endl;
}
void CV_HomographyTest::run(int)

@ -53,7 +53,7 @@
which is incompatible with C
It is OK to disable it because we only extend few plain structures with
C++ construrtors for simpler interoperability with C++ API of the library
C++ constructors for simpler interoperability with C++ API of the library
*/
# pragma warning(disable:4190)
# elif defined __clang__ && __clang_major__ >= 3

@ -126,7 +126,7 @@ public:
CV_WRAP GpuMat(int rows, int cols, int type, GpuMat::Allocator* allocator = GpuMat::defaultAllocator());
CV_WRAP GpuMat(Size size, int type, GpuMat::Allocator* allocator = GpuMat::defaultAllocator());
//! constucts GpuMat and fills it with the specified value _s
//! constructs GpuMat and fills it with the specified value _s
CV_WRAP GpuMat(int rows, int cols, int type, Scalar s, GpuMat::Allocator* allocator = GpuMat::defaultAllocator());
CV_WRAP GpuMat(Size size, int type, Scalar s, GpuMat::Allocator* allocator = GpuMat::defaultAllocator());

@ -76,7 +76,7 @@ implemented as a structure based on a one SIMD register.
- cv::v_uint32x4 and cv::v_int32x4: four 32-bit integer values (unsgined/signed) - int
- cv::v_uint64x2 and cv::v_int64x2: two 64-bit integer values (unsigned/signed) - int64
- cv::v_float32x4: four 32-bit floating point values (signed) - float
- cv::v_float64x2: two 64-bit floating point valies (signed) - double
- cv::v_float64x2: two 64-bit floating point values (signed) - double
@note
cv::v_float64x2 is not implemented in NEON variant, if you want to use this type, don't forget to

@ -1272,7 +1272,7 @@ inline v_float32x4 v_load_expand(const float16_t* ptr)
inline void v_pack_store(float16_t* ptr, const v_float32x4& v)
{
// fixme: Is there any buitin op or intrinsic that cover "xvcvsphp"?
// fixme: Is there any builtin op or intrinsic that cover "xvcvsphp"?
#if CV_VSX3 && !defined(CV_COMPILER_VSX_BROKEN_ASM)
vec_ushort8 vf16;
__asm__ __volatile__ ("xvcvsphp %x0,%x1" : "=wa" (vf16) : "wf" (v.val));

@ -29,7 +29,7 @@ Using this approach OpenCV provides some basic low level functionality for exter
typedef enum cvResult
{
CV_ERROR_FAIL = -1, //!< Some error occured (TODO Require to fill exception information)
CV_ERROR_FAIL = -1, //!< Some error occurred (TODO Require to fill exception information)
CV_ERROR_OK = 0 //!< No error
} CvResult;

@ -151,7 +151,7 @@ number of components (vectors/matrices) of the outer vector.
In general, type support is limited to cv::Mat types. Other types are forbidden.
But in some cases we need to support passing of custom non-general Mat types, like arrays of cv::KeyPoint, cv::DMatch, etc.
This data is not intented to be interpreted as an image data, or processed somehow like regular cv::Mat.
This data is not intended to be interpreted as an image data, or processed somehow like regular cv::Mat.
To pass such custom type use rawIn() / rawOut() / rawInOut() wrappers.
Custom type is wrapped as Mat-compatible `CV_8UC<N>` values (N = sizeof(T), N <= CV_CN_MAX).
*/
@ -2380,7 +2380,7 @@ public:
// (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
UMat(int rows, int cols, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
UMat(Size size, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
//! constucts 2D matrix and fills it with the specified value _s.
//! constructs 2D matrix and fills it with the specified value _s.
UMat(int rows, int cols, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT);
UMat(Size size, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT);
@ -2825,7 +2825,7 @@ public:
`ref<_Tp>(i0,...[,hashval])` is equivalent to `*(_Tp*)ptr(i0,...,true[,hashval])`.
The methods always return a valid reference.
If the element did not exist, it is created and initialiazed with 0.
If the element did not exist, it is created and initialized with 0.
*/
//! returns reference to the specified element (1D case)
template<typename _Tp> _Tp& ref(int i0, size_t* hashval=0);

@ -27,7 +27,7 @@ These files can be pre-generated for target configurations of your application
or generated by CMake on the fly (use CMAKE_BINARY_DIR for that).
Notes:
- H/W capability checks are still responsibility of your applcation
- H/W capability checks are still responsibility of your application
- runtime dispatching is not covered by this helper header
*/

@ -49,8 +49,8 @@ public:
void lock(); //< acquire exclusive (writer) lock
void unlock(); //< release exclusive (writer) lock
void lock_shared(); //< acquire sharable (reader) lock
void unlock_shared(); //< release sharable (reader) lock
void lock_shared(); //< acquire shareable (reader) lock
void unlock_shared(); //< release shareable (reader) lock
struct Impl;
protected:

@ -13,7 +13,7 @@ public:
// (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
CV_WRAP UMat(int rows, int cols, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
CV_WRAP UMat(Size size, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
//! constucts 2D matrix and fills it with the specified value _s.
//! constructs 2D matrix and fills it with the specified value _s.
CV_WRAP UMat(int rows, int cols, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT);
CV_WRAP UMat(Size size, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT);

@ -1766,7 +1766,7 @@ cvSeqInsertSlice( CvSeq* seq, int index, const CvArr* from_arr )
CV_Error( CV_StsBadArg, "Source is not a sequence nor matrix" );
if( !CV_IS_MAT_CONT(mat->type) || (mat->rows != 1 && mat->cols != 1) )
CV_Error( CV_StsBadArg, "The source array must be 1d coninuous vector" );
CV_Error( CV_StsBadArg, "The source array must be 1d continuous vector" );
from = cvMakeSeqHeaderForArray( CV_SEQ_KIND_GENERIC, sizeof(from_header),
CV_ELEM_SIZE(mat->type),

@ -63,7 +63,7 @@
#define HAL_LU_SMALL_MATRIX_THRESH 100
#define HAL_CHOLESKY_SMALL_MATRIX_THRESH 100
//lapack stores matrices in column-major order so transposing is neded everywhere
//lapack stores matrices in column-major order so transposing is needed everywhere
template <typename fptype> static inline void
transpose_square_inplace(fptype *src, size_t src_ld, size_t m)
{

@ -5756,7 +5756,7 @@ public:
static OpenCLAllocator* getOpenCLAllocator_() // call once guarantee
{
static OpenCLAllocator* g_allocator = new OpenCLAllocator(); // avoid destrutor call (using of this object is too wide)
static OpenCLAllocator* g_allocator = new OpenCLAllocator(); // avoid destructor call (using of this object is too wide)
g_isOpenCVActivated = true;
return g_allocator;
}

@ -73,7 +73,7 @@ public:
protected:
bool test_values(const cv::Mat& src); // complex test for eigen without vectors
bool check_full(int type); // compex test for symmetric matrix
bool check_full(int type); // complex test for symmetric matrix
virtual void run (int) = 0; // main testing method
protected:

@ -104,7 +104,7 @@ CV__DNN_INLINE_NS_BEGIN
h_t &= o_t \odot tanh(c_t), \\
c_t &= f_t \odot c_{t-1} + i_t \odot g_t, \\
@f}
where @f$\odot@f$ is per-element multiply operation and @f$i_t, f_t, o_t, g_t@f$ is internal gates that are computed using learned wights.
where @f$\odot@f$ is per-element multiply operation and @f$i_t, f_t, o_t, g_t@f$ is internal gates that are computed using learned weights.
Gates are computed as follows:
@f{eqnarray*}{

@ -424,7 +424,7 @@ CV__DNN_INLINE_NS_BEGIN
* @param inpPin descriptor of the second layer input.
*
* Descriptors have the following template <DFN>&lt;layer_name&gt;[.input_number]</DFN>:
* - the first part of the template <DFN>layer_name</DFN> is sting name of the added layer.
* - the first part of the template <DFN>layer_name</DFN> is string name of the added layer.
* If this part is empty then the network input pseudo layer will be used;
* - the second optional part of the template <DFN>input_number</DFN>
* is either number of the layer input, either label one.

@ -618,7 +618,7 @@ void OCL4DNNConvSpatial<Dtype>::calculateBenchmark(const UMat &bottom, UMat &ver
// For large enough input size, we do not need to tune kernels for different
// size. The reason is with large input size, there will be enough work items
// to feed al the EUs.
// FIXME for the gemm like convolution, switch back to eaxct image size.
// FIXME for the gemm like convolution, switch back to exact image size.
#define TUNING_SIZE(x) ((x) > 256 ? 256 : (alignSize(x, 16)))

@ -161,7 +161,7 @@ message NodeProto {
repeated string output = 2; // namespace Value
// An optional identifier for this node in a graph.
// This field MAY be absent in ths version of the IR.
// This field MAY be absent in this version of the IR.
optional string name = 3; // namespace Node
// The symbolic identifier of the Operator to execute.

@ -610,7 +610,7 @@ void InfEngineBackendNet::forward(const std::vector<Ptr<BackendWrapper> >& outBl
try {
wrapper->outProms[processedOutputs].setException(std::current_exception());
} catch(...) {
CV_LOG_ERROR(NULL, "DNN: Exception occured during async inference exception propagation");
CV_LOG_ERROR(NULL, "DNN: Exception occurred during async inference exception propagation");
}
}
}
@ -623,7 +623,7 @@ void InfEngineBackendNet::forward(const std::vector<Ptr<BackendWrapper> >& outBl
try {
wrapper->outProms[processedOutputs].setException(e);
} catch(...) {
CV_LOG_ERROR(NULL, "DNN: Exception occured during async inference exception propagation");
CV_LOG_ERROR(NULL, "DNN: Exception occurred during async inference exception propagation");
}
}
}

@ -40,7 +40,7 @@
#endif
//#define INFERENCE_ENGINE_DEPRECATED // turn off deprecation warnings from IE
//there is no way to suppress warnigns from IE only at this moment, so we are forced to suppress warnings globally
//there is no way to suppress warnings from IE only at this moment, so we are forced to suppress warnings globally
#if defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif

@ -837,7 +837,7 @@ void TFImporter::populateNet(Net dstNet)
CV_Assert(paddings.type() == CV_32SC1);
if (paddings.total() == 8)
{
// Perhabs, we have NHWC padding dimensions order.
// Perhaps, we have NHWC padding dimensions order.
// N H W C
// 0 1 2 3 4 5 6 7
std::swap(paddings.at<int32_t>(2), paddings.at<int32_t>(6));

@ -312,7 +312,7 @@ struct TorchImporter
fpos = THFile_position(file);
int ktype = readInt();
if (ktype != TYPE_STRING) //skip non-string fileds
if (ktype != TYPE_STRING) //skip non-string fields
{
THFile_seek(file, fpos);
readObject(); //key

@ -46,7 +46,7 @@ void main()
}
}
// substract, exp and accumulate along channel
// subtract, exp and accumulate along channel
for (int i = 0; i < p.channel_size; ++i)
sum_buffer[reduced_buffer_off + i] = 0.f;

@ -14,7 +14,7 @@
// Synchronize headers include statements with src/op_inf_engine.hpp
//
//#define INFERENCE_ENGINE_DEPRECATED // turn off deprecation warnings from IE
//there is no way to suppress warnigns from IE only at this moment, so we are forced to suppress warnings globally
//there is no way to suppress warnings from IE only at this moment, so we are forced to suppress warnings globally
#if defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif

@ -6,7 +6,7 @@
namespace opencv_test
{
/* cofiguration for tests of detectors/descriptors. shared between ocl and cpu tests. */
/* configuration for tests of detectors/descriptors. shared between ocl and cpu tests. */
// detectors/descriptors configurations to test
#define DETECTORS_ONLY \

@ -578,7 +578,7 @@ public:
private:
/**
* Struture representing a node in the hierarchical k-means tree.
* Structure representing a node in the hierarchical k-means tree.
*/
struct Node
{

@ -547,7 +547,7 @@ public:
private:
/**
* Struture representing a node in the hierarchical k-means tree.
* Structure representing a node in the hierarchical k-means tree.
*/
struct KMeansNode
{

@ -301,7 +301,7 @@ public:
unsigned int index_;
};
/** Default cosntructor */
/** Default constructor */
UniqueResultSet() :
is_full_(false), worst_distance_(std::numeric_limits<DistanceType>::max())
{

@ -46,12 +46,12 @@ majority of the work by itself, keeping the algorithm code clean from
device or optimization details. This approach has its own limitations,
though, as graph model is a _constrained_ model and not every
algorithm can be represented as a graph, so the G-API scope is limited
only to regular image processing -- various filters, arithmentic,
only to regular image processing -- various filters, arithmetic,
binary operations, and well-defined geometrical transformations.
## Porting with Graph API {#gapi_intro_port}
The essense of G-API is declaring a sequence of operations to run, and
The essence of G-API is declaring a sequence of operations to run, and
then executing that sequence. G-API is a constrained API, so it puts a
number of limitations on which operations can form a pipeline and
which data these operations may exchange each other.
@ -67,7 +67,7 @@ interfaces, not implementations -- thus the same graph can be executed
on different devices (and, of course, using different optimization
techniques) with little-to-no changes in the graph itself.
G-API supports plugins (_Backends_) which aggreate logic and
G-API supports plugins (_Backends_) which aggregate logic and
intelligence on what is the best way to execute on a particular
platform. Once a pipeline is built with G-API, it can be parametrized
to use either of the backends (or a combination of it) and so a graph

@ -701,7 +701,7 @@ GAPI_EXPORTS GMat divRC(const GScalar& divident, const GMat& src, double scale,
/** @brief Applies a mask to a matrix.
The function mask set value from given matrix if the corresponding pixel value in mask matrix set to true,
and set the matrix value to 0 overwise.
and set the matrix value to 0 otherwise.
Supported src matrix data types are @ref CV_8UC1, @ref CV_16SC1, @ref CV_16UC1. Supported mask data type is @ref CV_8UC1.
@ -1293,7 +1293,7 @@ depths.
*/
GAPI_EXPORTS GMat threshold(const GMat& src, const GScalar& thresh, const GScalar& maxval, int depth);
/** @overload
This function appicable for all threshold depths except CV_THRESH_OTSU and CV_THRESH_TRIANGLE
This function applicable for all threshold depths except CV_THRESH_OTSU and CV_THRESH_TRIANGLE
@note Function textual ID is "org.opencv.core.matrixop.thresholdOT"
*/
GAPI_EXPORTS std::tuple<GMat, GScalar> threshold(const GMat& src, const GScalar& maxval, int depth);

@ -92,7 +92,7 @@ protected:
std::vector<GArg> m_args;
//FIXME: avoid conversion of arguments from internal representaion to OpenCV one on each call
//FIXME: avoid conversion of arguments from internal representation to OpenCV one on each call
//to OCV kernel. (This can be achieved by a two single time conversions in GCPUExecutable::run,
//once on enter for input and output arguments, and once before return for output arguments only
std::unordered_map<std::size_t, GRunArgP> m_results;
@ -229,7 +229,7 @@ struct OCVCallHelper<Impl, std::tuple<Ins...>, std::tuple<Outs...> >
static void call(Inputs&&... ins, Outputs&&... outs)
{
//not using a std::forward on outs is deliberate in order to
//cause compilation error, by tring to bind rvalue references to lvalue references
//cause compilation error, by trying to bind rvalue references to lvalue references
Impl::run(std::forward<Inputs>(ins)..., outs...);
postprocess(outs...);

@ -81,7 +81,7 @@ namespace detail
protected:
GArrayU(); // Default constructor
template<class> friend class cv::GArray; // (avialable to GArray<T> only)
template<class> friend class cv::GArray; // (available to GArray<T> only)
void setConstructFcn(ConstructVec &&cv); // Store T-aware constructor

@ -23,7 +23,7 @@ namespace wip {
class GAsyncContext;
//These functions asynchronously (i.e. probably on a separate thread of execution) call operator() member function of their first argument with copies of rest of arguments (except callback) passed in.
//The difference between the function is the way to get the completion notification (via callback or a waiting on std::future object)
//If exception is occurred during execution of apply it is transfered to the callback (via function parameter) or passed to future (and will be thrown on call to std::future::get)
//If exception is occurred during execution of apply it is transferred to the callback (via function parameter) or passed to future (and will be thrown on call to std::future::get)
//N.B. :
//Input arguments are copied on call to async function (actually on call to cv::gin) and thus do not have to outlive the actual completion of asynchronous activity.

@ -83,7 +83,7 @@ namespace detail
* In the above example, sobelEdge expects one Mat on input and
* produces one Mat; while sobelEdgeSub expects two Mats on input and
* produces one Mat. GComputation's protocol defines how other
* computaion methods should be used -- cv::GComputation::compile() and
* computation methods should be used -- cv::GComputation::compile() and
* cv::GComputation::apply(). For example, if a graph is defined on
* two GMat inputs, two cv::Mat objects have to be passed to apply()
* for execution. GComputation checks protocol correctness in runtime

@ -24,7 +24,7 @@ namespace wip {
class GAsyncContext;
//These functions asynchronously (i.e. probably on a separate thread of execution) call apply member function of their first argument with copies of rest of arguments (except callback) passed in.
//The difference between the function is the way to get the completion notification (via callback or a waiting on std::future object)
//If exception is occurred during execution of apply it is transfered to the callback (via function parameter) or passed to future (and will be thrown on call to std::future::get)
//If exception is occurred during execution of apply it is transferred to the callback (via function parameter) or passed to future (and will be thrown on call to std::future::get)
//N.B. :
//Input arguments are copied on call to async function (actually on call to cv::gin) and thus do not have to outlive the actual completion of asynchronous activity.

@ -323,7 +323,7 @@ namespace gapi {
* implementations in form of type list (variadic template) and
* generates a kernel package atop of that.
*
* Kernel packages can be also generated programatically, starting
* Kernel packages can be also generated programmatically, starting
* with an empty package (created with the default constructor)
* and then by populating it with kernels via call to
* GKernelPackage::include(). Note this method is also a template

@ -164,7 +164,7 @@ typename Net::ResultL infer(cv::GArray<cv::Rect> roi, Args&&... args) {
* @param args network's input parameters as specified in G_API_NET() macro.
* @return an object of return type as defined in G_API_NET().
* If a network has multiple return values (defined with a tuple), a tuple of
* objects of apprpriate type is returned.
* objects of appropriate type is returned.
* @sa G_API_NET()
*/
template<typename Net, typename... Args>

@ -198,7 +198,7 @@ struct OCLCallHelper<Impl, std::tuple<Ins...>, std::tuple<Outs...> >
static void call(Inputs&&... ins, Outputs&&... outs)
{
//not using a std::forward on outs is deliberate in order to
//cause compilation error, by tring to bind rvalue references to lvalue references
//cause compilation error, by trying to bind rvalue references to lvalue references
Impl::run(std::forward<Inputs>(ins)..., outs...);
postprocess_ocl(outs...);

@ -66,7 +66,7 @@ static inline DST saturate(SRC x, R round)
GAPI_DbgAssert(std::is_integral<DST>::value &&
std::is_floating_point<SRC>::value);
#ifdef _WIN32
// Suppress warning about convering x to floating-point
// Suppress warning about converting x to floating-point
// Note that x is already floating-point at this point
#pragma warning(disable: 4244)
#endif

@ -239,7 +239,7 @@ void resetInternalData(Mag& mag, const Data &d)
break;
case GShape::GMAT:
// Do nothign here - FIXME unify with initInternalData?
// Do nothing here - FIXME unify with initInternalData?
break;
default:
@ -281,7 +281,7 @@ cv::GRunArgP getObjPtr(Mag& mag, const RcDesc &rc, bool is_umat)
return GRunArgP(&mag.template slot<cv::gapi::own::Mat>()[rc.id]);
case GShape::GSCALAR: return GRunArgP(&mag.template slot<cv::gapi::own::Scalar>()[rc.id]);
// Note: .at() is intentional for GArray as object MUST be already there
// (and constructer by either bindIn/Out or resetInternal)
// (and constructor by either bindIn/Out or resetInternal)
case GShape::GARRAY:
// FIXME(DM): For some absolutely unknown to me reason, move
// semantics is involved here without const_cast to const (and

@ -413,7 +413,7 @@ GAPI_OCV_KERNEL(GCPUSplit3, cv::gapi::core::GSplit3)
std::vector<cv::Mat> outMats = {m1, m2, m3};
cv::split(in, outMats);
// Write back FIXME: Write a helper or avoid this nonsence completely!
// Write back FIXME: Write a helper or avoid this nonsense completely!
m1 = outMats[0];
m2 = outMats[1];
m3 = outMats[2];
@ -427,7 +427,7 @@ GAPI_OCV_KERNEL(GCPUSplit4, cv::gapi::core::GSplit4)
std::vector<cv::Mat> outMats = {m1, m2, m3, m4};
cv::split(in, outMats);
// Write back FIXME: Write a helper or avoid this nonsence completely!
// Write back FIXME: Write a helper or avoid this nonsense completely!
m1 = outMats[0];
m2 = outMats[1];
m3 = outMats[2];

@ -204,7 +204,7 @@ struct IECallContext
// Input parameters passed to an inference operation.
std::vector<cv::GArg> args;
//FIXME: avoid conversion of arguments from internal representaion to OpenCV one on each call
//FIXME: avoid conversion of arguments from internal representation to OpenCV one on each call
//to OCV kernel. (This can be achieved by a two single time conversions in GCPUExecutable::run,
//once on enter for input and output arguments, and once before return for output arguments only
//FIXME: check if the above applies to this backend (taken from CPU)

@ -410,7 +410,7 @@ GAPI_OCL_KERNEL(GOCLSplit3, cv::gapi::core::GSplit3)
std::vector<cv::UMat> outMats = {m1, m2, m3};
cv::split(in, outMats);
// Write back FIXME: Write a helper or avoid this nonsence completely!
// Write back FIXME: Write a helper or avoid this nonsense completely!
m1 = outMats[0];
m2 = outMats[1];
m3 = outMats[2];
@ -424,7 +424,7 @@ GAPI_OCL_KERNEL(GOCLSplit4, cv::gapi::core::GSplit4)
std::vector<cv::UMat> outMats = {m1, m2, m3, m4};
cv::split(in, outMats);
// Write back FIXME: Write a helper or avoid this nonsence completely!
// Write back FIXME: Write a helper or avoid this nonsense completely!
m1 = outMats[0];
m2 = outMats[1];
m3 = outMats[2];

@ -297,7 +297,7 @@ void cv::gimpl::GCompiler::compileIslands(ade::Graph &g)
cv::GCompiled cv::gimpl::GCompiler::produceCompiled(GPtr &&pg)
{
// This is the final compilation step. Here:
// - An instance of GExecutor is created. Depening on the platform,
// - An instance of GExecutor is created. Depending on the platform,
// build configuration, etc, a GExecutor may be:
// - a naive single-thread graph interpreter;
// - a std::thread-based thing

@ -80,7 +80,7 @@ cv::gimpl::Unrolled cv::gimpl::unrollExpr(const GProtoArgs &ins,
std::unordered_set<GObjId> in_objs_p;
for (const auto& in_obj : ins)
{
// Objects are guarnateed to remain alive while this method
// Objects are guaranteed to remain alive while this method
// is working, so it is safe to keep pointers here and below
in_objs_p.insert(&proto::origin_of(in_obj));
}

@ -454,7 +454,7 @@ namespace
m_changes.enqueue<Change::DropLink>(m_g, m_cons, out_edge);
}
// D: Process the intermediate slots (betweed Prod n Cons).
// D: Process the intermediate slots (between Prod n Cons).
// D/1 - Those which are optimized out are just removed from the model
for (auto opt_slot_nh : mo.opt_interim_slots)
{

@ -32,7 +32,7 @@ namespace
cv::GArgs in_args;
};
// Generaly the algorithm is following
// Generally the algorithm is following
//
// 1. Get GCompoundKernel implementation
// 2. Create GCompoundContext

@ -113,7 +113,7 @@ void cv::gimpl::passes::inferMeta(ade::passes::PassContext &ctx, bool meta_is_in
} // for(sorted)
}
// After all metadata in graph is infered, store a vector of inferred metas
// After all metadata in graph is inferred, store a vector of inferred metas
// for computation output values.
void cv::gimpl::passes::storeResultingMeta(ade::passes::PassContext &ctx)
{

@ -1806,7 +1806,7 @@ static gboolean icvOnMouse( GtkWidget *widget, GdkEvent *event, gpointer user_da
else if( event->type == GDK_SCROLL )
{
#if defined(GTK_VERSION3_4)
// NOTE: in current implementation doesn't possible to put into callback function delta_x and delta_y separetely
// NOTE: in current implementation doesn't possible to put into callback function delta_x and delta_y separately
double delta = (event->scroll.delta_x + event->scroll.delta_y);
cv_event = (event->scroll.delta_y!=0) ? CV_EVENT_MOUSEHWHEEL : CV_EVENT_MOUSEWHEEL;
#else

@ -1231,7 +1231,7 @@ cvShowImage( const char* name, const CvArr* arr )
cv::flip(dst, dst, 0);
}
// ony resize window if needed
// only resize window if needed
if (changed_size)
icvUpdateWindowPos(window);
InvalidateRect(window->hwnd, 0, 0);

@ -1 +1 @@
#error "This header with legacy C API declarations has been removed from OpenCV. Legacy contants are available from legacy/constants_c.h file."
#error "This header with legacy C API declarations has been removed from OpenCV. Legacy constants are available from legacy/constants_c.h file."

@ -52,7 +52,7 @@
#include <stdio.h>
#include <setjmp.h>
// the following defines are a hack to avoid multiple problems with frame ponter handling and setjmp
// the following defines are a hack to avoid multiple problems with frame pointer handling and setjmp
// see http://gcc.gnu.org/ml/gcc/2011-10/msg00324.html for some details
#define mingw_getsp(...) 0
#define __builtin_frame_address(...) 0

@ -62,7 +62,7 @@ namespace cv {
#define MAX_PAM_HEADER_IDENITFIER_LENGTH 8
#define MAX_PAM_HEADER_VALUE_LENGTH 255
/* PAM header fileds */
/* PAM header fields */
typedef enum {
PAM_HEADER_NONE,
PAM_HEADER_COMMENT,

@ -47,7 +47,7 @@ template<> double atoT<double>(const std::string& s) { return std::atof(s.c_str(
template<typename T>
T read_number(cv::RLByteStream& strm)
{
// should be enogh to take string representation of any number
// should be enough to take string representation of any number
const size_t buffer_size = 2048;
std::vector<char> buffer(buffer_size, 0);

@ -72,7 +72,7 @@
#pragma warning( disable: 4611 )
#endif
// the following defines are a hack to avoid multiple problems with frame ponter handling and setjmp
// the following defines are a hack to avoid multiple problems with frame pointer handling and setjmp
// see http://gcc.gnu.org/ml/gcc/2011-10/msg00324.html for some details
#define mingw_getsp(...) 0
#define __builtin_frame_address(...) 0

@ -28,7 +28,7 @@ PERF_TEST_P(Image_RhoStep_ThetaStep_Threshold, HoughLines,
Canny(image, image, 32, 128);
// add some syntetic lines:
// add some synthetic lines:
line(image, Point(0, 0), Point(image.cols, image.rows), Scalar::all(255), 3);
line(image, Point(image.cols, 0), Point(image.cols/2, image.rows), Scalar::all(255), 3);
@ -89,7 +89,7 @@ PERF_TEST_P(Image_RhoStep_ThetaStep_Threshold, HoughLines3f,
Canny(image, image, 32, 128);
// add some syntetic lines:
// add some synthetic lines:
line(image, Point(0, 0), Point(image.cols, image.rows), Scalar::all(255), 3);
line(image, Point(image.cols, 0), Point(image.cols/2, image.rows), Scalar::all(255), 3);

@ -603,7 +603,7 @@ HoughLinesProbabilistic( Mat& image,
if( k > 0 )
dx = -dx, dy = -dy;
// walk along the line using fixed-point arithmetics,
// walk along the line using fixed-point arithmetic,
// stop at the image border or in case of too big gap
for( ;; x += dx, y += dy )
{
@ -651,7 +651,7 @@ HoughLinesProbabilistic( Mat& image,
if( k > 0 )
dx = -dx, dy = -dy;
// walk along the line using fixed-point arithmetics,
// walk along the line using fixed-point arithmetic,
// stop at the image border or in case of too big gap
for( ;; x += dx, y += dy )
{
@ -968,7 +968,7 @@ void HoughLinesPointSet( InputArray _point, OutputArray _lines, int lines_max, i
createTrigTable( numangle, min_theta, theta_step,
irho, tabSin, tabCos );
// stage 1. fill accumlator
// stage 1. fill accumulator
for( i = 0; i < (int)point.size(); i++ )
for(int n = 0; n < numangle; n++ )
{

@ -269,7 +269,7 @@ static bool ippMorph(int op, int src_type, int dst_type,
return false;
// Multiple iterations on small mask is not effective in current integration
// Implace imitation for 3x3 kernel is not efficient
// Inplace imitation for 3x3 kernel is not efficient
// Advanced morphology for small mask introduces degradations
if((iterations > 1 || src_data == dst_data || (op != MORPH_ERODE && op != MORPH_DILATE)) && kernel_width*kernel_height < 25)
return false;

@ -104,7 +104,7 @@ static void rotatingCalipers( const Point2f* points, int n, int mode, float* out
/* rotating calipers sides will always have coordinates
(a,b) (-b,a) (-a,-b) (b, -a)
*/
/* this is a first base bector (a,b) initialized by (1,0) */
/* this is a first base vector (a,b) initialized by (1,0) */
float orientation = 0;
float base_a;
float base_b = 0;

@ -77,7 +77,7 @@ PARAM_TEST_CASE(Canny, Channels, ApertureSize, L2gradient, UseRoi)
void generateTestData()
{
Mat img = readImageType("shared/fruits.png", CV_8UC(cn));
ASSERT_FALSE(img.empty()) << "cann't load shared/fruits.png";
ASSERT_FALSE(img.empty()) << "can't load shared/fruits.png";
Size roiSize = img.size();
int type = img.type();

@ -357,7 +357,7 @@ PARAM_TEST_CASE(CannyVX, ImagePath, ApertureSize, L2gradient)
void loadImage()
{
src = cv::imread(cvtest::TS::ptr()->get_data_path() + imgPath, IMREAD_GRAYSCALE);
ASSERT_FALSE(src.empty()) << "cann't load image: " << imgPath;
ASSERT_FALSE(src.empty()) << "can't load image: " << imgPath;
}
};

@ -268,7 +268,7 @@ class AsyncServiceHelper
}
else
{
Log.d(TAG, "Wating for package installation");
Log.d(TAG, "Waiting for package installation");
}
Log.d(TAG, "Unbind from service");

@ -501,10 +501,10 @@ public class OpenCVTestCase extends TestCase {
double maxDiff = Core.norm(diff, Core.NORM_INF);
if (isEqualityMeasured)
assertTrue("Max difference between expected and actiual Mats is "+ maxDiff + ", that bigger than " + eps,
assertTrue("Max difference between expected and actual Mats is "+ maxDiff + ", that bigger than " + eps,
maxDiff <= eps);
else
assertFalse("Max difference between expected and actiual Mats is "+ maxDiff + ", that less than " + eps,
assertFalse("Max difference between expected and actual Mats is "+ maxDiff + ", that less than " + eps,
maxDiff <= eps);
}

@ -527,10 +527,10 @@ public class OpenCVTestCase extends TestCase {
double maxDiff = Core.norm(diff, Core.NORM_INF);
if (isEqualityMeasured)
assertTrue("Max difference between expected and actiual Mats is "+ maxDiff + ", that bigger than " + eps,
assertTrue("Max difference between expected and actual Mats is "+ maxDiff + ", that bigger than " + eps,
maxDiff <= eps);
else
assertFalse("Max difference between expected and actiual Mats is "+ maxDiff + ", that less than " + eps,
assertFalse("Max difference between expected and actual Mats is "+ maxDiff + ", that less than " + eps,
maxDiff <= eps);
}

@ -3,7 +3,7 @@
// of this distribution and at http://opencv.org/license.html.
if (typeof module !== 'undefined' && module.exports) {
// The envrionment is Node.js
// The environment is Node.js
var cv = require('./opencv.js'); // eslint-disable-line no-var
}

@ -3,7 +3,7 @@
// of this distribution and at http://opencv.org/license.html.
if (typeof module !== 'undefined' && module.exports) {
// The envrionment is Node.js
// The environment is Node.js
var cv = require('./opencv.js'); // eslint-disable-line no-var
}

@ -69,7 +69,7 @@
//
if (typeof module !== 'undefined' && module.exports) {
// The envrionment is Node.js
// The environment is Node.js
var cv = require('./opencv.js'); // eslint-disable-line no-var
}
@ -92,7 +92,7 @@ QUnit.test('test_imgProc', function(assert) {
binView[0] = 10;
cv.calcHist(source, channels, mask, hist, histSize, ranges, false);
// hist should contains a N X 1 arrary.
// hist should contains a N X 1 array.
let size = hist.size();
assert.equal(size.height, 256);
assert.equal(size.width, 1);

@ -69,7 +69,7 @@
//
if (typeof module !== 'undefined' && module.exports) {
// The envrionment is Node.js
// The environment is Node.js
var cv = require('./opencv.js'); // eslint-disable-line no-var
}

@ -69,7 +69,7 @@
//
if (typeof module !== 'undefined' && module.exports) {
// The envrionment is Node.js
// The environment is Node.js
var cv = require('./opencv.js'); // eslint-disable-line no-var
cv.FS_createLazyFile('/', 'haarcascade_frontalface_default.xml', // eslint-disable-line new-cap
'haarcascade_frontalface_default.xml', true, false);

@ -41,7 +41,7 @@
// Author : Rijubrata Bhaumik, Intel Corporation. rijubrata.bhaumik[at]intel[dot]com
if (typeof module !== 'undefined' && module.exports) {
// The envrionment is Node.js
// The environment is Node.js
var cv = require('./opencv.js'); // eslint-disable-line no-var
}

@ -68,7 +68,7 @@
//
if (typeof module !== 'undefined' && module.exports) {
// The envrionment is Node.js
// The environment is Node.js
var cv = require('./opencv.js'); // eslint-disable-line no-var
}
QUnit.module('Utils', {});

@ -68,7 +68,7 @@
//
if (typeof module !== 'undefined' && module.exports) {
// The envrionment is Node.js
// The environment is Node.js
var cv = require('./opencv.js'); // eslint-disable-line no-var
}

@ -433,7 +433,7 @@ Logistic Regression {#ml_intro_lr}
ML implements logistic regression, which is a probabilistic classification technique. Logistic
Regression is a binary classification algorithm which is closely related to Support Vector Machines
(SVM). Like SVM, Logistic Regression can be extended to work on multi-class classification problems
like digit recognition (i.e. recognizing digitis like 0,1 2, 3,... from the given images). This
like digit recognition (i.e. recognizing digits like 0,1 2, 3,... from the given images). This
version of Logistic Regression supports both binary and multi-class classifications (for multi-class
it creates a multiple 2-class classifiers). In order to train the logistic regression classifier,
Batch Gradient Descent and Mini-Batch Gradient Descent algorithms are used (see

@ -1764,7 +1764,7 @@ Note that the parameters margin regularization, initial step size, and step decr
To use SVMSGD algorithm do as follows:
- first, create the SVMSGD object. The algoorithm will set optimal parameters by default, but you can set your own parameters via functions setSvmsgdType(),
- first, create the SVMSGD object. The algorithm will set optimal parameters by default, but you can set your own parameters via functions setSvmsgdType(),
setMarginType(), setMarginRegularization(), setInitialStepSize(), and setStepDecreasingPower().
- then the SVM model can be trained using the train features and the correspondent labels by the method train().

@ -614,7 +614,7 @@ protected:
if( data.empty() )
{
ts->printf(cvtest::TS::LOG, "File with spambase dataset cann't be read.\n");
ts->printf(cvtest::TS::LOG, "File with spambase dataset can't be read.\n");
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
return;
}

@ -721,7 +721,7 @@ class FuncInfo(object):
aname, argno = v.py_outlist[0]
code_ret = "return pyopencv_from(%s)" % (aname,)
else:
# ther is more than 1 return parameter; form the tuple out of them
# there is more than 1 return parameter; form the tuple out of them
fmtspec = "N"*len(v.py_outlist)
backcvt_arg_list = []
for aname, argno in v.py_outlist:

@ -585,7 +585,7 @@ $(function(){
$(tbl_row).remove()
})
if($("tbody tr", tbl).length == 0) {
$("<tr><td colspan='"+$("thead tr:first th", tbl).length+"'>No results mathing your search criteria</td></tr>")
$("<tr><td colspan='"+$("thead tr:first th", tbl).length+"'>No results matching your search criteria</td></tr>")
.appendTo($("tbody", tbl))
}
}

@ -90,7 +90,7 @@ static void image_jacobian_homo_ECC(const Mat& src1, const Mat& src2,
//instead of dividing each block with den,
//just pre-devide the block of gradients (it's more efficient)
//just pre-divide the block of gradients (it's more efficient)
Mat src1Divided_;
Mat src2Divided_;

@ -48,7 +48,7 @@
#define GRIDSIZE 3
#define LSx 8
#define LSy 8
// defeine local memory sizes
// define local memory sizes
#define LM_W (LSx*GRIDSIZE+2)
#define LM_H (LSy*GRIDSIZE+2)
#define BUFFER (LSx*LSy)

@ -58,7 +58,7 @@ RIFF ('AVI '
{xxdb|xxdc|xxpc|xxwb}
xx - stream number: 00, 01, 02, ...
db - uncompressed video frame
dc - commpressed video frame
dc - compressed video frame
pc - palette change
wb - audio frame
@ -139,7 +139,7 @@ class BitStream;
// {xxdb|xxdc|xxpc|xxwb}
// xx - stream number: 00, 01, 02, ...
// db - uncompressed video frame
// dc - commpressed video frame
// dc - compressed video frame
// pc - palette change
// wb - audio frame

@ -300,10 +300,10 @@ bool CvCaptureCAM_Aravis::grabFrame()
size_t buffer_size;
framebuffer = (void*)arv_buffer_get_data (arv_buffer, &buffer_size);
// retieve image size properites
// retrieve image size properites
arv_buffer_get_image_region (arv_buffer, &xoffset, &yoffset, &width, &height);
// retieve image ID set by camera
// retrieve image ID set by camera
frameID = arv_buffer_get_frame_id(arv_buffer);
arv_stream_push_buffer(stream, arv_buffer);

@ -1196,7 +1196,7 @@ CvVideoWriter_AVFoundation::CvVideoWriter_AVFoundation(const char* filename, int
NSError *error = nil;
// Make sure the file does not already exist. Necessary to overwirte??
// Make sure the file does not already exist. Necessary to overwrite??
/*
NSFileManager *fileManager = [NSFileManager defaultManager];
if ([fileManager fileExistsAtPath:path]){
@ -1238,7 +1238,7 @@ CvVideoWriter_AVFoundation::CvVideoWriter_AVFoundation(const char* filename, int
if(mMovieWriter.status == AVAssetWriterStatusFailed){
NSLog(@"%@", [mMovieWriter.error localizedDescription]);
// TODO: error handling, cleanup. Throw execption?
// TODO: error handling, cleanup. Throw exception?
// return;
}

@ -1196,7 +1196,7 @@ CvVideoWriter_AVFoundation::CvVideoWriter_AVFoundation(const std::string &filena
NSError *error = nil;
// Make sure the file does not already exist. Necessary to overwirte??
// Make sure the file does not already exist. Necessary to overwrite??
/*
NSFileManager *fileManager = [NSFileManager defaultManager];
if ([fileManager fileExistsAtPath:path]){

@ -481,7 +481,7 @@ class videoInput{
bool setupDeviceFourcc(int deviceID, int w, int h,int fourcc);
//These two are only for capture cards
//USB and Firewire cameras souldn't specify connection
//USB and Firewire cameras shouldn't specify connection
bool setupDevice(int deviceID, int connection);
bool setupDevice(int deviceID, int w, int h, int connection);

@ -1199,7 +1199,7 @@ bool CvCapture_MSMF::grabFrame()
{
if (streamIndex != dwStreamIndex)
{
CV_LOG_DEBUG(NULL, "videoio(MSMF): Wrong stream readed. Abort capturing");
CV_LOG_DEBUG(NULL, "videoio(MSMF): Wrong stream read. Abort capturing");
close();
}
else if (flags & MF_SOURCE_READERF_ERROR)

@ -668,7 +668,7 @@ void BitStream::writeBlock()
}
size_t BitStream::getPos() const {
return safe_int_cast<size_t>(m_current - m_start, "Failed to determine AVI bufer position: value is out of range") + m_pos;
return safe_int_cast<size_t>(m_current - m_start, "Failed to determine AVI buffer position: value is out of range") + m_pos;
}
void BitStream::putByte(int val)

@ -49,8 +49,8 @@ private:
unsigned char __k;
};
static_assert(sizeof(Guid) == sizeof(::_GUID), "Incorect size for Guid");
static_assert(sizeof(__rcGUID_t) == sizeof(::_GUID), "Incorect size for __rcGUID_t");
static_assert(sizeof(Guid) == sizeof(::_GUID), "Incorrect size for Guid");
static_assert(sizeof(__rcGUID_t) == sizeof(::_GUID), "Incorrect size for __rcGUID_t");
////////////////////////////////////////////////////////////////////////////////
inline Guid::Guid() : __a(0), __b(0), __c(0), __d(0), __e(0), __f(0), __g(0), __h(0), __i(0), __j(0), __k(0)

@ -1,7 +1,7 @@
package org.opencv.engine;
/**
* Class provides Java interface to OpenCV Engine Service. Is synchronious with native OpenCVEngine class.
* Class provides Java interface to OpenCV Engine Service. Is synchronous with native OpenCVEngine class.
*/
interface OpenCVEngineInterface
{

@ -31,7 +31,7 @@ from __future__ import print_function
import glob, re, os, os.path, shutil, string, sys, argparse, traceback, multiprocessing
from subprocess import check_call, check_output, CalledProcessError
IPHONEOS_DEPLOYMENT_TARGET='8.0' # default, can be changed via command line options or environemnt variable
IPHONEOS_DEPLOYMENT_TARGET='8.0' # default, can be changed via command line options or environment variable
def execute(cmd, cwd = None):
print("Executing: %s in %s" % (cmd, cwd), file=sys.stderr)

Loading…
Cancel
Save