|
|
@ -62,6 +62,101 @@ struct greaterThanPtr |
|
|
|
{ return *a > *b; } |
|
|
|
{ return *a > *b; } |
|
|
|
}; |
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static void |
|
|
|
|
|
|
|
test_cornerEigenValsVecs( const Mat& src, Mat& eigenv, int block_size, |
|
|
|
|
|
|
|
int _aperture_size, double k, int mode, int borderType, const Scalar& _borderValue ) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
int i, j; |
|
|
|
|
|
|
|
Scalar borderValue = _borderValue; |
|
|
|
|
|
|
|
int aperture_size = _aperture_size < 0 ? 3 : _aperture_size; |
|
|
|
|
|
|
|
Point anchor( aperture_size/2, aperture_size/2 ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CV_Assert( src.type() == CV_8UC1 || src.type() == CV_32FC1 ); |
|
|
|
|
|
|
|
CV_Assert( eigenv.type() == CV_32FC1 ); |
|
|
|
|
|
|
|
CV_Assert( ( src.rows == eigenv.rows ) && |
|
|
|
|
|
|
|
(((mode == MINEIGENVAL)||(mode == HARRIS)) && (src.cols == eigenv.cols)) ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int type = src.type(); |
|
|
|
|
|
|
|
int ftype = CV_32FC1; |
|
|
|
|
|
|
|
double kernel_scale = 1; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mat dx2, dy2, dxdy(src.size(), CV_32F), kernel; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kernel = cvtest::calcSobelKernel2D( 1, 0, _aperture_size ); |
|
|
|
|
|
|
|
cvtest::filter2D( src, dx2, ftype, kernel*kernel_scale, anchor, 0, borderType, borderValue ); |
|
|
|
|
|
|
|
kernel = cvtest::calcSobelKernel2D( 0, 1, _aperture_size ); |
|
|
|
|
|
|
|
cvtest::filter2D( src, dy2, ftype, kernel*kernel_scale, anchor, 0, borderType,borderValue ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
double denom = (1 << (aperture_size-1))*block_size; |
|
|
|
|
|
|
|
denom = denom * denom; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if( _aperture_size < 0 ) |
|
|
|
|
|
|
|
denom *= 2.; |
|
|
|
|
|
|
|
if(type != ftype ) |
|
|
|
|
|
|
|
denom *= 255.; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
denom = 1./denom; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for( i = 0; i < src.rows; i++ ) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
float* dxdyp = dxdy.ptr<float>(i); |
|
|
|
|
|
|
|
float* dx2p = dx2.ptr<float>(i); |
|
|
|
|
|
|
|
float* dy2p = dy2.ptr<float>(i); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for( j = 0; j < src.cols; j++ ) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
double xval = dx2p[j], yval = dy2p[j]; |
|
|
|
|
|
|
|
dxdyp[j] = (float)(xval*yval*denom); |
|
|
|
|
|
|
|
dx2p[j] = (float)(xval*xval*denom); |
|
|
|
|
|
|
|
dy2p[j] = (float)(yval*yval*denom); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kernel = Mat::ones(block_size, block_size, CV_32F); |
|
|
|
|
|
|
|
anchor = Point(block_size/2, block_size/2); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cvtest::filter2D( dx2, dx2, ftype, kernel, anchor, 0, borderType, borderValue ); |
|
|
|
|
|
|
|
cvtest::filter2D( dy2, dy2, ftype, kernel, anchor, 0, borderType, borderValue ); |
|
|
|
|
|
|
|
cvtest::filter2D( dxdy, dxdy, ftype, kernel, anchor, 0, borderType, borderValue ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if( mode == MINEIGENVAL ) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
for( i = 0; i < src.rows; i++ ) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
float* eigenvp = eigenv.ptr<float>(i); |
|
|
|
|
|
|
|
const float* dxdyp = dxdy.ptr<float>(i); |
|
|
|
|
|
|
|
const float* dx2p = dx2.ptr<float>(i); |
|
|
|
|
|
|
|
const float* dy2p = dy2.ptr<float>(i); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for( j = 0; j < src.cols; j++ ) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
double a = dx2p[j]*0.5f, b = dxdyp[j], c = dy2p[j]*0.5f; |
|
|
|
|
|
|
|
//double d = sqrt( ( a - c )*( a - c ) + 4*b*b );
|
|
|
|
|
|
|
|
//eigenvp[j] = (float)( 0.5*(a + c - d));
|
|
|
|
|
|
|
|
eigenvp[j] = (float)((a + c) - std::sqrt((a - c)*(a - c) + b*b)); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
else if( mode == HARRIS ) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for( i = 0; i < src.rows; i++ ) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
float* eigenvp = eigenv.ptr<float>(i); |
|
|
|
|
|
|
|
const float* dxdyp = dxdy.ptr<float>(i); |
|
|
|
|
|
|
|
const float* dx2p = dx2.ptr<float>(i); |
|
|
|
|
|
|
|
const float* dy2p = dy2.ptr<float>(i); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for( j = 0; j < src.cols; j++ ) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
double a = dx2p[j], b = dxdyp[j], c = dy2p[j]; |
|
|
|
|
|
|
|
eigenvp[j] = (float)(a*c - b*b - k*(a + c)*(a + c)); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static void |
|
|
|
static void |
|
|
|
test_goodFeaturesToTrack( InputArray _image, OutputArray _corners, |
|
|
|
test_goodFeaturesToTrack( InputArray _image, OutputArray _corners, |
|
|
|
int maxCorners, double qualityLevel, double minDistance, |
|
|
|
int maxCorners, double qualityLevel, double minDistance, |
|
|
@ -74,6 +169,7 @@ test_goodFeaturesToTrack( InputArray _image, OutputArray _corners, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mat image = _image.getMat(), mask = _mask.getMat(); |
|
|
|
Mat image = _image.getMat(), mask = _mask.getMat(); |
|
|
|
|
|
|
|
int aperture_size = gradientSize; |
|
|
|
int borderType = BORDER_DEFAULT; |
|
|
|
int borderType = BORDER_DEFAULT; |
|
|
|
|
|
|
|
|
|
|
|
Mat eig, tmp, tt; |
|
|
|
Mat eig, tmp, tt; |
|
|
@ -81,9 +177,9 @@ test_goodFeaturesToTrack( InputArray _image, OutputArray _corners, |
|
|
|
eig.create( image.size(), CV_32F ); |
|
|
|
eig.create( image.size(), CV_32F ); |
|
|
|
|
|
|
|
|
|
|
|
if( useHarrisDetector ) |
|
|
|
if( useHarrisDetector ) |
|
|
|
cornerHarris( image, eig, blockSize, gradientSize, harrisK ); |
|
|
|
test_cornerEigenValsVecs( image, eig, blockSize, aperture_size, harrisK, HARRIS, borderType, 0 ); |
|
|
|
else |
|
|
|
else |
|
|
|
cornerMinEigenVal( image, eig, blockSize, gradientSize ); |
|
|
|
test_cornerEigenValsVecs( image, eig, blockSize, aperture_size, 0, MINEIGENVAL, borderType, 0 ); |
|
|
|
|
|
|
|
|
|
|
|
double maxVal = 0; |
|
|
|
double maxVal = 0; |
|
|
|
|
|
|
|
|
|
|
|