Merge pull request #18624 from qchateau:similarity-mask

* support similarity masks

* add test for similarity threshold

* short license in test

* use UMat in buildSimilarityMask

* fix win32 warnings

* fix test indentation

* fix umat/mat sync

* no in-place argument for erode/dilate
pull/18652/head
Quentin Chateau 4 years ago committed by GitHub
parent 3a99fb9d34
commit ea1e3fb90d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 21
      modules/stitching/include/opencv2/stitching/detail/exposure_compensate.hpp
  2. 99
      modules/stitching/src/exposure_compensate.cpp
  3. 70
      modules/stitching/test/test_exposure_compensate.cpp
  4. 1
      modules/stitching/test/test_precomp.hpp

@ -115,7 +115,7 @@ public:
CV_WRAP GainCompensator()
: GainCompensator(1) {}
CV_WRAP GainCompensator(int nr_feeds)
: nr_feeds_(nr_feeds) {}
: nr_feeds_(nr_feeds), similarity_threshold_(1) {}
void feed(const std::vector<Point> &corners, const std::vector<UMat> &images,
const std::vector<std::pair<UMat,uchar> > &masks) CV_OVERRIDE;
void singleFeed(const std::vector<Point> &corners, const std::vector<UMat> &images,
@ -125,11 +125,18 @@ public:
CV_WRAP void setMatGains(std::vector<Mat>& umv) CV_OVERRIDE ;
CV_WRAP void setNrFeeds(int nr_feeds) { nr_feeds_ = nr_feeds; }
CV_WRAP int getNrFeeds() { return nr_feeds_; }
CV_WRAP void setSimilarityThreshold(double similarity_threshold) { similarity_threshold_ = similarity_threshold; }
CV_WRAP double getSimilarityThreshold() const { return similarity_threshold_; }
void prepareSimilarityMask(const std::vector<Point> &corners, const std::vector<UMat> &images);
std::vector<double> gains() const;
private:
UMat buildSimilarityMask(InputArray src_array1, InputArray src_array2);
Mat_<double> gains_;
int nr_feeds_;
double similarity_threshold_;
std::vector<UMat> similarities_;
};
/** @brief Exposure compensator which tries to remove exposure related artifacts by adjusting image
@ -138,7 +145,8 @@ intensities on each channel independently.
class CV_EXPORTS_W ChannelsCompensator : public ExposureCompensator
{
public:
CV_WRAP ChannelsCompensator(int nr_feeds=1) : nr_feeds_(nr_feeds) {}
CV_WRAP ChannelsCompensator(int nr_feeds=1)
: nr_feeds_(nr_feeds), similarity_threshold_(1) {}
void feed(const std::vector<Point> &corners, const std::vector<UMat> &images,
const std::vector<std::pair<UMat,uchar> > &masks) CV_OVERRIDE;
CV_WRAP void apply(int index, Point corner, InputOutputArray image, InputArray mask) CV_OVERRIDE;
@ -146,11 +154,14 @@ public:
CV_WRAP void setMatGains(std::vector<Mat>& umv) CV_OVERRIDE;
CV_WRAP void setNrFeeds(int nr_feeds) { nr_feeds_ = nr_feeds; }
CV_WRAP int getNrFeeds() { return nr_feeds_; }
CV_WRAP void setSimilarityThreshold(double similarity_threshold) { similarity_threshold_ = similarity_threshold; }
CV_WRAP double getSimilarityThreshold() const { return similarity_threshold_; }
std::vector<Scalar> gains() const { return gains_; }
private:
std::vector<Scalar> gains_;
int nr_feeds_;
double similarity_threshold_;
};
/** @brief Exposure compensator which tries to remove exposure related artifacts by adjusting image blocks.
@ -159,12 +170,15 @@ class CV_EXPORTS_W BlocksCompensator : public ExposureCompensator
{
public:
BlocksCompensator(int bl_width=32, int bl_height=32, int nr_feeds=1)
: bl_width_(bl_width), bl_height_(bl_height), nr_feeds_(nr_feeds), nr_gain_filtering_iterations_(2) {}
: bl_width_(bl_width), bl_height_(bl_height), nr_feeds_(nr_feeds), nr_gain_filtering_iterations_(2),
similarity_threshold_(1) {}
CV_WRAP void apply(int index, Point corner, InputOutputArray image, InputArray mask) CV_OVERRIDE;
CV_WRAP void getMatGains(CV_OUT std::vector<Mat>& umv) CV_OVERRIDE;
CV_WRAP void setMatGains(std::vector<Mat>& umv) CV_OVERRIDE;
CV_WRAP void setNrFeeds(int nr_feeds) { nr_feeds_ = nr_feeds; }
CV_WRAP int getNrFeeds() { return nr_feeds_; }
CV_WRAP void setSimilarityThreshold(double similarity_threshold) { similarity_threshold_ = similarity_threshold; }
CV_WRAP double getSimilarityThreshold() const { return similarity_threshold_; }
CV_WRAP void setBlockSize(int width, int height) { bl_width_ = width; bl_height_ = height; }
CV_WRAP void setBlockSize(Size size) { setBlockSize(size.width, size.height); }
CV_WRAP Size getBlockSize() const { return Size(bl_width_, bl_height_); }
@ -184,6 +198,7 @@ private:
std::vector<UMat> gain_maps_;
int nr_feeds_;
int nr_gain_filtering_iterations_;
double similarity_threshold_;
};
/** @brief Exposure compensator which tries to remove exposure related artifacts by adjusting image block

@ -90,6 +90,7 @@ void GainCompensator::feed(const std::vector<Point> &corners, const std::vector<
const int num_images = static_cast<int>(images.size());
Mat accumulated_gains;
prepareSimilarityMask(corners, images);
for (int n = 0; n < nr_feeds_; ++n)
{
@ -133,6 +134,8 @@ void GainCompensator::singleFeed(const std::vector<Point> &corners, const std::v
Mat subimg1, subimg2;
Mat_<uchar> submask1, submask2, intersect;
std::vector<UMat>::iterator similarity_it = similarities_.begin();
for (int i = 0; i < num_images; ++i)
{
for (int j = i; j < num_images; ++j)
@ -147,6 +150,13 @@ void GainCompensator::singleFeed(const std::vector<Point> &corners, const std::v
submask2 = masks[j].first(Rect(roi.tl() - corners[j], roi.br() - corners[j])).getMat(ACCESS_READ);
intersect = (submask1 == masks[i].second) & (submask2 == masks[j].second);
if (!similarities_.empty())
{
CV_Assert(similarity_it != similarities_.end());
UMat similarity = *similarity_it++;
bitwise_and(intersect, similarity, intersect);
}
int intersect_count = countNonZero(intersect);
N(i, j) = N(j, i) = std::max(1, intersect_count);
@ -298,6 +308,88 @@ void GainCompensator::setMatGains(std::vector<Mat>& umv)
}
}
void GainCompensator::prepareSimilarityMask(
const std::vector<Point> &corners, const std::vector<UMat> &images)
{
if (similarity_threshold_ >= 1)
{
LOGLN(" skipping similarity mask: disabled");
return;
}
if (!similarities_.empty())
{
LOGLN(" skipping similarity mask: already set");
return;
}
LOGLN(" calculating similarity mask");
const int num_images = static_cast<int>(images.size());
for (int i = 0; i < num_images; ++i)
{
for (int j = i; j < num_images; ++j)
{
Rect roi;
if (overlapRoi(corners[i], corners[j], images[i].size(), images[j].size(), roi))
{
UMat subimg1 = images[i](Rect(roi.tl() - corners[i], roi.br() - corners[i]));
UMat subimg2 = images[j](Rect(roi.tl() - corners[j], roi.br() - corners[j]));
UMat similarity = buildSimilarityMask(subimg1, subimg2);
similarities_.push_back(similarity);
}
}
}
}
UMat GainCompensator::buildSimilarityMask(InputArray src_array1, InputArray src_array2)
{
CV_Assert(src_array1.rows() == src_array2.rows() && src_array1.cols() == src_array2.cols());
CV_Assert(src_array1.type() == src_array2.type());
CV_Assert(src_array1.type() == CV_8UC3 || src_array1.type() == CV_8UC1);
Mat src1 = src_array1.getMat();
Mat src2 = src_array2.getMat();
UMat umat_similarity(src1.rows, src1.cols, CV_8UC1);
Mat similarity = umat_similarity.getMat(ACCESS_WRITE);
if (src1.channels() == 3)
{
for (int y = 0; y < similarity.rows; ++y)
{
for (int x = 0; x < similarity.cols; ++x)
{
Vec<float, 3> vec_diff =
Vec<float, 3>(*src1.ptr<Vec<uchar, 3>>(y, x))
- Vec<float, 3>(*src2.ptr<Vec<uchar, 3>>(y, x));
double diff = norm(vec_diff * (1.f / 255.f));
*similarity.ptr<uchar>(y, x) = diff <= similarity_threshold_ ? 255 : 0;
}
}
}
else // if (src1.channels() == 1)
{
for (int y = 0; y < similarity.rows; ++y)
{
for (int x = 0; x < similarity.cols; ++x)
{
float diff = std::abs(static_cast<int>(*src1.ptr<uchar>(y, x))
- static_cast<int>(*src2.ptr<uchar>(y, x))) / 255.f;
*similarity.ptr<uchar>(y, x) = diff <= similarity_threshold_ ? 255 : 0;
}
}
}
similarity.release();
Mat kernel = getStructuringElement(MORPH_RECT, Size(3,3));
UMat umat_erode;
erode(umat_similarity, umat_erode, kernel);
dilate(umat_erode, umat_similarity, kernel);
return umat_similarity;
}
void ChannelsCompensator::feed(const std::vector<Point> &corners, const std::vector<UMat> &images,
const std::vector<std::pair<UMat,uchar> > &masks)
{
@ -317,11 +409,15 @@ void ChannelsCompensator::feed(const std::vector<Point> &corners, const std::vec
// For each channel, feed the channel of each image in a GainCompensator
gains_.clear();
gains_.resize(images.size());
GainCompensator compensator(getNrFeeds());
compensator.setSimilarityThreshold(getSimilarityThreshold());
compensator.prepareSimilarityMask(corners, images);
for (int c = 0; c < 3; ++c)
{
const std::vector<UMat>& channels = images_channels[c];
GainCompensator compensator(getNrFeeds());
compensator.feed(corners, channels, masks);
std::vector<double> gains = compensator.gains();
@ -400,6 +496,7 @@ void BlocksCompensator::feed(const std::vector<Point> &corners, const std::vecto
{
Compensator compensator;
compensator.setNrFeeds(getNrFeeds());
compensator.setSimilarityThreshold(getSimilarityThreshold());
compensator.feed(block_corners, block_images, block_masks);
gain_maps_.clear();

@ -0,0 +1,70 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test {
namespace {
double minPSNR(UMat src1, UMat src2)
{
std::vector<UMat> src1_channels, src2_channels;
split(src1, src1_channels);
split(src2, src2_channels);
double psnr = cvtest::PSNR(src1_channels[0], src2_channels[0]);
psnr = std::min(psnr, cvtest::PSNR(src1_channels[1], src2_channels[1]));
return std::min(psnr, cvtest::PSNR(src1_channels[2], src2_channels[2]));
}
TEST(ExposureCompensate, SimilarityThreshold)
{
UMat source;
imread(cvtest::TS::ptr()->get_data_path() + "stitching/s1.jpg").copyTo(source);
UMat image1 = source.clone();
UMat image2 = source.clone();
// Add a big artifact
image2(Rect(150, 150, 100, 100)).setTo(Scalar(0, 0, 255));
UMat mask(image1.size(), CV_8U);
mask.setTo(255);
detail::BlocksChannelsCompensator compensator;
compensator.setNrGainsFilteringIterations(0); // makes it more clear
// Feed the compensator, image 1 and 2 are perfectly
// identical, except for the red artifact in image 2
// Apart from that artifact, there is no exposure to compensate
compensator.setSimilarityThreshold(1);
uchar xff = 255;
compensator.feed(
{{}, {}},
{image1, image2},
{{mask, xff}, {mask, xff}}
);
// Verify that the artifact in image 2 did create
// an artifact in image1 during the exposure compensation
UMat image1_result = image1.clone();
compensator.apply(0, {}, image1_result, mask);
double psnr_no_similarity_mask = minPSNR(image1, image1_result);
EXPECT_LT(psnr_no_similarity_mask, 45);
// Add a similarity threshold and verify that
// the artifact in image1 is gone
compensator.setSimilarityThreshold(0.1);
compensator.feed(
{{}, {}},
{image1, image2},
{{mask, xff}, {mask, xff}}
);
image1_result = image1.clone();
compensator.apply(0, {}, image1_result, mask);
double psnr_similarity_mask = minPSNR(image1, image1_result);
EXPECT_GT(psnr_similarity_mask, 300);
}
} // namespace
} // namespace opencv_test

@ -8,6 +8,7 @@
#include "opencv2/stitching.hpp"
#include "opencv2/stitching/detail/matchers.hpp"
#include "opencv2/stitching/detail/blenders.hpp"
#include "opencv2/stitching/detail/exposure_compensate.hpp"
#ifdef HAVE_OPENCV_XFEATURES2D
#include "opencv2/xfeatures2d/nonfree.hpp"

Loading…
Cancel
Save