Merge pull request #14260 from allanrodriguez:sample-digits-cpp
commit
e98222dfb3
1 changed files with 375 additions and 0 deletions
@ -0,0 +1,375 @@ |
||||
#include "opencv2/core.hpp" |
||||
#include "opencv2/highgui.hpp" |
||||
#include "opencv2/imgcodecs.hpp" |
||||
#include "opencv2/imgproc.hpp" |
||||
#include "opencv2/ml.hpp" |
||||
|
||||
#include <algorithm> |
||||
#include <iostream> |
||||
#include <vector> |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
const int SZ = 20; // size of each digit is SZ x SZ
|
||||
const int CLASS_N = 10; |
||||
const char* DIGITS_FN = "digits.png"; |
||||
|
||||
static void help() |
||||
{ |
||||
cout << |
||||
"\n" |
||||
"SVM and KNearest digit recognition.\n" |
||||
"\n" |
||||
"Sample loads a dataset of handwritten digits from 'digits.png'.\n" |
||||
"Then it trains a SVM and KNearest classifiers on it and evaluates\n" |
||||
"their accuracy.\n" |
||||
"\n" |
||||
"Following preprocessing is applied to the dataset:\n" |
||||
" - Moment-based image deskew (see deskew())\n" |
||||
" - Digit images are split into 4 10x10 cells and 16-bin\n" |
||||
" histogram of oriented gradients is computed for each\n" |
||||
" cell\n" |
||||
" - Transform histograms to space with Hellinger metric (see [1] (RootSIFT))\n" |
||||
"\n" |
||||
"\n" |
||||
"[1] R. Arandjelovic, A. Zisserman\n" |
||||
" \"Three things everyone should know to improve object retrieval\"\n" |
||||
" http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf\n" |
||||
"\n" |
||||
"Usage:\n" |
||||
" ./digits\n" << endl; |
||||
} |
||||
|
||||
static void split2d(const Mat& image, const Size cell_size, vector<Mat>& cells) |
||||
{ |
||||
int height = image.rows; |
||||
int width = image.cols; |
||||
|
||||
int sx = cell_size.width; |
||||
int sy = cell_size.height; |
||||
|
||||
cells.clear(); |
||||
|
||||
for (int i = 0; i < height; i += sy) |
||||
{ |
||||
for (int j = 0; j < width; j += sx) |
||||
{ |
||||
cells.push_back(image(Rect(j, i, sx, sy))); |
||||
} |
||||
} |
||||
} |
||||
|
||||
static void load_digits(const char* fn, vector<Mat>& digits, vector<int>& labels) |
||||
{ |
||||
digits.clear(); |
||||
labels.clear(); |
||||
|
||||
String filename = samples::findFile(fn); |
||||
|
||||
cout << "Loading " << filename << " ..." << endl; |
||||
|
||||
Mat digits_img = imread(filename, IMREAD_GRAYSCALE); |
||||
split2d(digits_img, Size(SZ, SZ), digits); |
||||
|
||||
for (int i = 0; i < CLASS_N; i++) |
||||
{ |
||||
for (size_t j = 0; j < digits.size() / CLASS_N; j++) |
||||
{ |
||||
labels.push_back(i); |
||||
} |
||||
} |
||||
} |
||||
|
||||
static void deskew(const Mat& img, Mat& deskewed_img) |
||||
{ |
||||
Moments m = moments(img); |
||||
|
||||
if (abs(m.mu02) < 0.01) |
||||
{ |
||||
deskewed_img = img.clone(); |
||||
return; |
||||
} |
||||
|
||||
float skew = (float)(m.mu11 / m.mu02); |
||||
float M_vals[2][3] = {{1, skew, -0.5f * SZ * skew}, {0, 1, 0}}; |
||||
Mat M(Size(3, 2), CV_32F); |
||||
|
||||
for (int i = 0; i < M.rows; i++) |
||||
{ |
||||
for (int j = 0; j < M.cols; j++) |
||||
{ |
||||
M.at<float>(i, j) = M_vals[i][j]; |
||||
} |
||||
} |
||||
|
||||
warpAffine(img, deskewed_img, M, Size(SZ, SZ), WARP_INVERSE_MAP | INTER_LINEAR); |
||||
} |
||||
|
||||
static void mosaic(const int width, const vector<Mat>& images, Mat& grid) |
||||
{ |
||||
int mat_width = SZ * width; |
||||
int mat_height = SZ * (int)ceil((double)images.size() / width); |
||||
|
||||
if (!images.empty()) |
||||
{ |
||||
grid = Mat(Size(mat_width, mat_height), images[0].type()); |
||||
|
||||
for (size_t i = 0; i < images.size(); i++) |
||||
{ |
||||
Mat location_on_grid = grid(Rect(SZ * ((int)i % width), SZ * ((int)i / width), SZ, SZ)); |
||||
images[i].copyTo(location_on_grid); |
||||
} |
||||
} |
||||
} |
||||
|
||||
static void evaluate_model(const vector<float>& predictions, const vector<Mat>& digits, const vector<int>& labels, Mat& mos) |
||||
{ |
||||
double err = 0; |
||||
|
||||
for (size_t i = 0; i < predictions.size(); i++) |
||||
{ |
||||
if ((int)predictions[i] != labels[i]) |
||||
{ |
||||
err++; |
||||
} |
||||
} |
||||
|
||||
err /= predictions.size(); |
||||
|
||||
cout << format("error: %.2f %%", err * 100) << endl; |
||||
|
||||
int confusion[10][10] = {}; |
||||
|
||||
for (size_t i = 0; i < labels.size(); i++) |
||||
{ |
||||
confusion[labels[i]][(int)predictions[i]]++; |
||||
} |
||||
|
||||
cout << "confusion matrix:" << endl; |
||||
for (int i = 0; i < 10; i++) |
||||
{ |
||||
for (int j = 0; j < 10; j++) |
||||
{ |
||||
cout << format("%2d ", confusion[i][j]); |
||||
} |
||||
cout << endl; |
||||
} |
||||
|
||||
cout << endl; |
||||
|
||||
vector<Mat> vis; |
||||
|
||||
for (size_t i = 0; i < digits.size(); i++) |
||||
{ |
||||
Mat img; |
||||
cvtColor(digits[i], img, COLOR_GRAY2BGR); |
||||
|
||||
if ((int)predictions[i] != labels[i]) |
||||
{ |
||||
for (int j = 0; j < img.rows; j++) |
||||
{ |
||||
for (int k = 0; k < img.cols; k++) |
||||
{ |
||||
img.at<Vec3b>(j, k)[0] = 0; |
||||
img.at<Vec3b>(j, k)[1] = 0; |
||||
} |
||||
} |
||||
} |
||||
|
||||
vis.push_back(img); |
||||
} |
||||
|
||||
mosaic(25, vis, mos); |
||||
} |
||||
|
||||
static void bincount(const Mat& x, const Mat& weights, const int min_length, vector<double>& bins) |
||||
{ |
||||
double max_x_val = 0; |
||||
minMaxLoc(x, NULL, &max_x_val); |
||||
|
||||
bins = vector<double>(max((int)max_x_val, min_length)); |
||||
|
||||
for (int i = 0; i < x.rows; i++) |
||||
{ |
||||
for (int j = 0; j < x.cols; j++) |
||||
{ |
||||
bins[x.at<int>(i, j)] += weights.at<float>(i, j); |
||||
} |
||||
} |
||||
} |
||||
|
||||
static void preprocess_hog(const vector<Mat>& digits, Mat& hog) |
||||
{ |
||||
int bin_n = 16; |
||||
int half_cell = SZ / 2; |
||||
double eps = 1e-7; |
||||
|
||||
hog = Mat(Size(4 * bin_n, (int)digits.size()), CV_32F); |
||||
|
||||
for (size_t img_index = 0; img_index < digits.size(); img_index++) |
||||
{ |
||||
Mat gx; |
||||
Sobel(digits[img_index], gx, CV_32F, 1, 0); |
||||
|
||||
Mat gy; |
||||
Sobel(digits[img_index], gy, CV_32F, 0, 1); |
||||
|
||||
Mat mag; |
||||
Mat ang; |
||||
cartToPolar(gx, gy, mag, ang); |
||||
|
||||
Mat bin(ang.size(), CV_32S); |
||||
|
||||
for (int i = 0; i < ang.rows; i++) |
||||
{ |
||||
for (int j = 0; j < ang.cols; j++) |
||||
{ |
||||
bin.at<int>(i, j) = (int)(bin_n * ang.at<float>(i, j) / (2 * CV_PI)); |
||||
} |
||||
} |
||||
|
||||
Mat bin_cells[] = { |
||||
bin(Rect(0, 0, half_cell, half_cell)), |
||||
bin(Rect(half_cell, 0, half_cell, half_cell)), |
||||
bin(Rect(0, half_cell, half_cell, half_cell)), |
||||
bin(Rect(half_cell, half_cell, half_cell, half_cell)) |
||||
}; |
||||
Mat mag_cells[] = { |
||||
mag(Rect(0, 0, half_cell, half_cell)), |
||||
mag(Rect(half_cell, 0, half_cell, half_cell)), |
||||
mag(Rect(0, half_cell, half_cell, half_cell)), |
||||
mag(Rect(half_cell, half_cell, half_cell, half_cell)) |
||||
}; |
||||
|
||||
vector<double> hist; |
||||
hist.reserve(4 * bin_n); |
||||
|
||||
for (int i = 0; i < 4; i++) |
||||
{ |
||||
vector<double> partial_hist; |
||||
bincount(bin_cells[i], mag_cells[i], bin_n, partial_hist); |
||||
hist.insert(hist.end(), partial_hist.begin(), partial_hist.end()); |
||||
} |
||||
|
||||
// transform to Hellinger kernel
|
||||
double sum = 0; |
||||
|
||||
for (size_t i = 0; i < hist.size(); i++) |
||||
{ |
||||
sum += hist[i]; |
||||
} |
||||
|
||||
for (size_t i = 0; i < hist.size(); i++) |
||||
{ |
||||
hist[i] /= sum + eps; |
||||
hist[i] = sqrt(hist[i]); |
||||
} |
||||
|
||||
double hist_norm = norm(hist); |
||||
|
||||
for (size_t i = 0; i < hist.size(); i++) |
||||
{ |
||||
hog.at<float>((int)img_index, (int)i) = (float)(hist[i] / (hist_norm + eps)); |
||||
} |
||||
} |
||||
} |
||||
|
||||
static void shuffle(vector<Mat>& digits, vector<int>& labels) |
||||
{ |
||||
vector<int> shuffled_indexes(digits.size()); |
||||
|
||||
for (size_t i = 0; i < digits.size(); i++) |
||||
{ |
||||
shuffled_indexes[i] = (int)i; |
||||
} |
||||
|
||||
randShuffle(shuffled_indexes); |
||||
|
||||
vector<Mat> shuffled_digits(digits.size()); |
||||
vector<int> shuffled_labels(labels.size()); |
||||
|
||||
for (size_t i = 0; i < shuffled_indexes.size(); i++) |
||||
{ |
||||
shuffled_digits[shuffled_indexes[i]] = digits[i]; |
||||
shuffled_labels[shuffled_indexes[i]] = labels[i]; |
||||
} |
||||
|
||||
digits = shuffled_digits; |
||||
labels = shuffled_labels; |
||||
} |
||||
|
||||
int main() |
||||
{ |
||||
help(); |
||||
|
||||
vector<Mat> digits; |
||||
vector<int> labels; |
||||
|
||||
load_digits(DIGITS_FN, digits, labels); |
||||
|
||||
cout << "preprocessing..." << endl; |
||||
|
||||
// shuffle digits
|
||||
shuffle(digits, labels); |
||||
|
||||
vector<Mat> digits2; |
||||
|
||||
for (size_t i = 0; i < digits.size(); i++) |
||||
{ |
||||
Mat deskewed_digit; |
||||
deskew(digits[i], deskewed_digit); |
||||
digits2.push_back(deskewed_digit); |
||||
} |
||||
|
||||
Mat samples; |
||||
|
||||
preprocess_hog(digits2, samples); |
||||
|
||||
int train_n = (int)(0.9 * samples.rows); |
||||
Mat test_set; |
||||
|
||||
vector<Mat> digits_test(digits2.begin() + train_n, digits2.end()); |
||||
mosaic(25, digits_test, test_set); |
||||
imshow("test set", test_set); |
||||
|
||||
Mat samples_train = samples(Rect(0, 0, samples.cols, train_n)); |
||||
Mat samples_test = samples(Rect(0, train_n, samples.cols, samples.rows - train_n)); |
||||
vector<int> labels_train(labels.begin(), labels.begin() + train_n); |
||||
vector<int> labels_test(labels.begin() + train_n, labels.end()); |
||||
|
||||
Ptr<ml::KNearest> k_nearest; |
||||
Ptr<ml::SVM> svm; |
||||
vector<float> predictions; |
||||
Mat vis; |
||||
|
||||
cout << "training KNearest..." << endl; |
||||
k_nearest = ml::KNearest::create(); |
||||
k_nearest->train(samples_train, ml::ROW_SAMPLE, labels_train); |
||||
|
||||
// predict digits with KNearest
|
||||
k_nearest->findNearest(samples_test, 4, predictions); |
||||
evaluate_model(predictions, digits_test, labels_test, vis); |
||||
imshow("KNearest test", vis); |
||||
k_nearest.release(); |
||||
|
||||
cout << "training SVM..." << endl; |
||||
svm = ml::SVM::create(); |
||||
svm->setGamma(5.383); |
||||
svm->setC(2.67); |
||||
svm->setKernel(ml::SVM::RBF); |
||||
svm->setType(ml::SVM::C_SVC); |
||||
svm->train(samples_train, ml::ROW_SAMPLE, labels_train); |
||||
|
||||
// predict digits with SVM
|
||||
svm->predict(samples_test, predictions); |
||||
evaluate_model(predictions, digits_test, labels_test, vis); |
||||
imshow("SVM test", vis); |
||||
cout << "Saving SVM as \"digits_svm.yml\"..." << endl; |
||||
svm->save("digits_svm.yml"); |
||||
svm.release(); |
||||
|
||||
waitKey(); |
||||
|
||||
return 0; |
||||
} |
Loading…
Reference in new issue