@ -429,6 +429,8 @@ Calculates the distance to the closest zero pixel for each pixel of the source i
:param maskSize:Size of the distance transform mask. It can be 3, 5, or ``CV_DIST_MASK_PRECISE`` (the latter option is only supported by the first function). In case of the ``CV_DIST_L1`` or ``CV_DIST_C`` distance type, the parameter is forced to 3 because a :math:`3\times 3` mask gives the same result as :math:`5\times 5` or any larger aperture.
:param labels:Optional output 2D array of labels (the discrete Voronoi diagram). It has the type ``CV_32SC1`` and the same size as ``src`` . See the details below.
:param labelType:Type of the label array to build. If ``labelType==DIST_LABEL_CCOMP`` then each connected component of zeros in ``src`` (as well as all the non-zero pixels closest to the connected component) will be assigned the same label. If ``labelType==DIST_LABEL_PIXEL`` then each zero pixel (and all the non-zero pixels closest to it) gets its own label.
The functions ``distanceTransform`` calculate the approximate or precise
distance from every binary image pixel to the nearest zero pixel.
@ -469,17 +471,13 @@ Note that both the precise and the approximate algorithms are linear on the numb
The second variant of the function does not only compute the minimum distance for each pixel
:math:`(x, y)` but also identifies the nearest connected
component consisting of zero pixels. Index of the component is stored in
component consisting of zero pixels (``labelType==DIST_LABEL_CCOMP``) or the nearest zero pixel (``labelType==DIST_LABEL_PIXEL``). Index of the component/pixel is stored in
:math:`\texttt{labels}(x, y)` .
The connected components of zero pixels are also found and marked by the function.
When ``labelType==DIST_LABEL_CCOMP``, the function automatically finds connected components of zero pixels in the input image and marks them with distinct labels. When ``labelType==DIST_LABEL_CCOMP``, the function scans through the input image and marks all the zero pixels with distinct labels.
In this mode, the complexity is still linear.
That is, the function provides a very fast way to compute the Voronoi diagram for a binary image.
Currently, the second variant can use only the approximate distance transform algorithm.
Currently, the second variant can use only the approximate distance transform algorithm, i.e. ``maskSize=CV_DIST_MASK_PRECISE`` is not supported yet.