CascadeClassifier refactored. Most of the members and methods are private now.

pull/13383/head
Kirill Kornyakov 14 years ago
parent e7cf541f5f
commit e7f491ae1a
  1. 122
      modules/objdetect/include/opencv2/objdetect/objdetect.hpp
  2. 272
      modules/objdetect/src/cascadedetect.cpp
  3. 24
      modules/traincascade/boost.cpp

@ -278,6 +278,7 @@ class CV_EXPORTS FeatureEvaluator
public:
enum { HAAR = 0, LBP = 1 };
virtual ~FeatureEvaluator();
virtual bool read(const FileNode& node);
virtual Ptr<FeatureEvaluator> clone() const;
virtual int getFeatureType() const;
@ -296,65 +297,96 @@ template<> CV_EXPORTS void Ptr<CvHaarClassifierCascade>::delete_obj();
class CV_EXPORTS_W CascadeClassifier
{
public:
struct CV_EXPORTS DTreeNode
{
int featureIdx;
float threshold; // for ordered features only
int left;
int right;
};
struct CV_EXPORTS DTree
{
int nodeCount;
};
struct CV_EXPORTS Stage
{
int first;
int ntrees;
float threshold;
};
enum { BOOST = 0 };
enum { DO_CANNY_PRUNING = 1, SCALE_IMAGE = 2,
FIND_BIGGEST_OBJECT = 4, DO_ROUGH_SEARCH = 8 };
CV_WRAP CascadeClassifier();
CV_WRAP CascadeClassifier(const string& filename);
~CascadeClassifier();
CV_WRAP CascadeClassifier( const string& filename );
virtual ~CascadeClassifier();
CV_WRAP bool empty() const;
CV_WRAP bool load(const string& filename);
bool read(const FileNode& node);
CV_WRAP virtual bool empty() const;
CV_WRAP bool load( const string& filename );
bool read( const FileNode& node );
CV_WRAP void detectMultiScale( const Mat& image,
CV_OUT vector<Rect>& objects,
double scaleFactor=1.1,
int minNeighbors=3, int flags=0,
Size minSize=Size(),
Size maxSize=Size());
Size maxSize=Size() );
bool isOldFormatCascade() const;
virtual Size getOriginalWindowSize() const;
int getFeatureType() const;
bool setImage(const Mat&);
protected:
virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
int stripSize, int yStep, double factor, vector<Rect>& candidates );
private:
enum { BOOST = 0 };
enum { DO_CANNY_PRUNING = 1, SCALE_IMAGE = 2,
FIND_BIGGEST_OBJECT = 4, DO_ROUGH_SEARCH = 8 };
friend class CascadeClassifierInvoker;
template<class FEval>
friend int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator);
template<class FEval>
friend int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator);
template<class FEval>
friend int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator);
template<class FEval>
friend int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator);
bool setImage( Ptr<FeatureEvaluator>&, const Mat& );
int runAt( Ptr<FeatureEvaluator>&, Point );
bool isStumpBased;
int stageType;
int featureType;
int ncategories;
Size origWinSize;
vector<Stage> stages;
vector<DTree> classifiers;
vector<DTreeNode> nodes;
vector<float> leaves;
vector<int> subsets;
class Data
{
public:
struct CV_EXPORTS DTreeNode
{
int featureIdx;
float threshold; // for ordered features only
int left;
int right;
};
struct CV_EXPORTS DTree
{
int nodeCount;
};
struct CV_EXPORTS Stage
{
int first;
int ntrees;
float threshold;
};
bool read(const FileNode &node);
bool isStumpBased;
int stageType;
int featureType;
int ncategories;
Size origWinSize;
vector<Stage> stages;
vector<DTree> classifiers;
vector<DTreeNode> nodes;
vector<float> leaves;
vector<int> subsets;
};
Ptr<FeatureEvaluator> feval;
Data data;
Ptr<FeatureEvaluator> featureEvaluator;
Ptr<CvHaarClassifierCascade> oldCascade;
};
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
struct CV_EXPORTS_W HOGDescriptor

@ -258,6 +258,7 @@ public:
{ return featuresPtr[featureIdx].calc(offset) * varianceNormFactor; }
virtual double calcOrd(int featureIdx) const
{ return (*this)(featureIdx); }
private:
Size origWinSize;
Ptr<vector<Feature> > features;
@ -440,6 +441,7 @@ bool HaarEvaluator::setWindow( Point pt )
nf = 1.;
varianceNormFactor = 1./nf;
offset = (int)pOffset;
return true;
}
@ -614,7 +616,7 @@ CascadeClassifier::~CascadeClassifier()
bool CascadeClassifier::empty() const
{
return oldCascade.empty() && stages.empty();
return oldCascade.empty() && data.stages.empty();
}
bool CascadeClassifier::load(const string& filename)
@ -635,31 +637,31 @@ bool CascadeClassifier::load(const string& filename)
}
template<class FEval>
inline int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_feval )
inline int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator )
{
int si, nstages = (int)cascade.stages.size();
int nstages = (int)cascade.data.stages.size();
int nodeOfs = 0, leafOfs = 0;
FEval& feval = (FEval&)*_feval;
float* cascadeLeaves = &cascade.leaves[0];
CascadeClassifier::DTreeNode* cascadeNodes = &cascade.nodes[0];
CascadeClassifier::DTree* cascadeWeaks = &cascade.classifiers[0];
CascadeClassifier::Stage* cascadeStages = &cascade.stages[0];
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
float* cascadeLeaves = &cascade.data.leaves[0];
CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
CascadeClassifier::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0];
CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0];
for( si = 0; si < nstages; si++ )
for( int si = 0; si < nstages; si++ )
{
CascadeClassifier::Stage& stage = cascadeStages[si];
CascadeClassifier::Data::Stage& stage = cascadeStages[si];
int wi, ntrees = stage.ntrees;
double sum = 0;
for( wi = 0; wi < ntrees; wi++ )
{
CascadeClassifier::DTree& weak = cascadeWeaks[stage.first + wi];
CascadeClassifier::Data::DTree& weak = cascadeWeaks[stage.first + wi];
int idx = 0, root = nodeOfs;
do
{
CascadeClassifier::DTreeNode& node = cascadeNodes[root + idx];
double val = feval(node.featureIdx);
CascadeClassifier::Data::DTreeNode& node = cascadeNodes[root + idx];
double val = featureEvaluator(node.featureIdx);
idx = val < node.threshold ? node.left : node.right;
}
while( idx > 0 );
@ -674,32 +676,32 @@ inline int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_f
}
template<class FEval>
inline int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_feval )
inline int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator )
{
int si, nstages = (int)cascade.stages.size();
int nstages = (int)cascade.data.stages.size();
int nodeOfs = 0, leafOfs = 0;
FEval& feval = (FEval&)*_feval;
size_t subsetSize = (cascade.ncategories + 31)/32;
int* cascadeSubsets = &cascade.subsets[0];
float* cascadeLeaves = &cascade.leaves[0];
CascadeClassifier::DTreeNode* cascadeNodes = &cascade.nodes[0];
CascadeClassifier::DTree* cascadeWeaks = &cascade.classifiers[0];
CascadeClassifier::Stage* cascadeStages = &cascade.stages[0];
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
size_t subsetSize = (cascade.data.ncategories + 31)/32;
int* cascadeSubsets = &cascade.data.subsets[0];
float* cascadeLeaves = &cascade.data.leaves[0];
CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
CascadeClassifier::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0];
CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0];
for( si = 0; si < nstages; si++ )
for(int si = 0; si < nstages; si++ )
{
CascadeClassifier::Stage& stage = cascadeStages[si];
CascadeClassifier::Data::Stage& stage = cascadeStages[si];
int wi, ntrees = stage.ntrees;
double sum = 0;
for( wi = 0; wi < ntrees; wi++ )
{
CascadeClassifier::DTree& weak = cascadeWeaks[stage.first + wi];
CascadeClassifier::Data::DTree& weak = cascadeWeaks[stage.first + wi];
int idx = 0, root = nodeOfs;
do
{
CascadeClassifier::DTreeNode& node = cascadeNodes[root + idx];
int c = feval(node.featureIdx);
CascadeClassifier::Data::DTreeNode& node = cascadeNodes[root + idx];
int c = featureEvaluator(node.featureIdx);
const int* subset = &cascadeSubsets[(root + idx)*subsetSize];
idx = (subset[c>>5] & (1 << (c & 31))) ? node.left : node.right;
}
@ -715,25 +717,25 @@ inline int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator>
}
template<class FEval>
inline int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_feval )
inline int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator )
{
int nodeOfs = 0, leafOfs = 0;
FEval& feval = (FEval&)*_feval;
float* cascadeLeaves = &cascade.leaves[0];
CascadeClassifier::DTreeNode* cascadeNodes = &cascade.nodes[0];
CascadeClassifier::Stage* cascadeStages = &cascade.stages[0];
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
float* cascadeLeaves = &cascade.data.leaves[0];
CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0];
int nstages = (int)cascade.stages.size();
int nstages = (int)cascade.data.stages.size();
for( int stageIdx = 0; stageIdx < nstages; stageIdx++ )
{
CascadeClassifier::Stage& stage = cascadeStages[stageIdx];
CascadeClassifier::Data::Stage& stage = cascadeStages[stageIdx];
double sum = 0.0;
int ntrees = stage.ntrees;
for( int i = 0; i < ntrees; i++, nodeOfs++, leafOfs+= 2 )
{
CascadeClassifier::DTreeNode& node = cascadeNodes[nodeOfs];
double value = feval(node.featureIdx);
CascadeClassifier::Data::DTreeNode& node = cascadeNodes[nodeOfs];
double value = featureEvaluator(node.featureIdx);
sum += cascadeLeaves[ value < node.threshold ? leafOfs : leafOfs + 1 ];
}
@ -745,27 +747,27 @@ inline int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator
}
template<class FEval>
inline int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_feval )
inline int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator )
{
int si, nstages = (int)cascade.stages.size();
int nstages = (int)cascade.data.stages.size();
int nodeOfs = 0, leafOfs = 0;
FEval& feval = (FEval&)*_feval;
size_t subsetSize = (cascade.ncategories + 31)/32;
int* cascadeSubsets = &cascade.subsets[0];
float* cascadeLeaves = &cascade.leaves[0];
CascadeClassifier::DTreeNode* cascadeNodes = &cascade.nodes[0];
CascadeClassifier::Stage* cascadeStages = &cascade.stages[0];
for( si = 0; si < nstages; si++ )
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
size_t subsetSize = (cascade.data.ncategories + 31)/32;
int* cascadeSubsets = &cascade.data.subsets[0];
float* cascadeLeaves = &cascade.data.leaves[0];
CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0];
for( int si = 0; si < nstages; si++ )
{
CascadeClassifier::Stage& stage = cascadeStages[si];
CascadeClassifier::Data::Stage& stage = cascadeStages[si];
int wi, ntrees = stage.ntrees;
double sum = 0;
for( wi = 0; wi < ntrees; wi++ )
{
CascadeClassifier::DTreeNode& node = cascadeNodes[nodeOfs];
int c = feval(node.featureIdx);
CascadeClassifier::Data::DTreeNode& node = cascadeNodes[nodeOfs];
int c = featureEvaluator(node.featureIdx);
const int* subset = &cascadeSubsets[nodeOfs*subsetSize];
sum += cascadeLeaves[ subset[c>>5] & (1 << (c & 31)) ? leafOfs : leafOfs+1];
nodeOfs++;
@ -780,43 +782,30 @@ inline int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvalu
int CascadeClassifier::runAt( Ptr<FeatureEvaluator>& featureEvaluator, Point pt )
{
CV_Assert( oldCascade.empty() );
/*if( !oldCascade.empty() )
return cvRunHaarClassifierCascade(oldCascade, pt, 0);*/
assert(featureType == FeatureEvaluator::HAAR ||
featureType == FeatureEvaluator::LBP);
assert(data.featureType == FeatureEvaluator::HAAR ||
data.featureType == FeatureEvaluator::LBP);
return !featureEvaluator->setWindow(pt) ? -1 :
isStumpBased ? ( featureType == FeatureEvaluator::HAAR ?
data.isStumpBased ? ( data.featureType == FeatureEvaluator::HAAR ?
predictOrderedStump<HaarEvaluator>( *this, featureEvaluator ) :
predictCategoricalStump<LBPEvaluator>( *this, featureEvaluator ) ) :
( featureType == FeatureEvaluator::HAAR ?
( data.featureType == FeatureEvaluator::HAAR ?
predictOrdered<HaarEvaluator>( *this, featureEvaluator ) :
predictCategorical<LBPEvaluator>( *this, featureEvaluator ) );
}
bool CascadeClassifier::setImage( Ptr<FeatureEvaluator>& featureEvaluator, const Mat& image )
{
/*if( !oldCascade.empty() )
{
Mat sum(image.rows+1, image.cols+1, CV_32S);
Mat tilted(image.rows+1, image.cols+1, CV_32S);
Mat sqsum(image.rows+1, image.cols+1, CV_64F);
integral(image, sum, sqsum, tilted);
CvMat _sum = sum, _sqsum = sqsum, _tilted = tilted;
cvSetImagesForHaarClassifierCascade( oldCascade, &_sum, &_sqsum, &_tilted, 1. );
return true;
}*/
return empty() ? false : featureEvaluator->setImage(image, origWinSize);
return empty() ? false : featureEvaluator->setImage(image, data.origWinSize);
}
struct CascadeClassifierInvoker
{
CascadeClassifierInvoker( CascadeClassifier& _cc, Size _sz1, int _stripSize, int _yStep, double _factor, ConcurrentRectVector& _vec )
{
classifier = &_cc;
processingAreaSize = _sz1;
processingRectSize = _sz1;
stripSize = _stripSize;
yStep = _yStep;
scalingFactor = _factor;
@ -825,19 +814,19 @@ struct CascadeClassifierInvoker
void operator()(const BlockedRange& range) const
{
Ptr<FeatureEvaluator> evaluator = classifier->feval->clone();
Size winSize(cvRound(classifier->origWinSize.width * scalingFactor), cvRound(classifier->origWinSize.height * scalingFactor));
Ptr<FeatureEvaluator> evaluator = classifier->featureEvaluator->clone();
Size winSize(cvRound(classifier->data.origWinSize.width * scalingFactor), cvRound(classifier->data.origWinSize.height * scalingFactor));
int y1 = range.begin() * stripSize;
int y2 = min(range.end() * stripSize, processingAreaSize.height);
int y2 = min(range.end() * stripSize, processingRectSize.height);
for( int y = y1; y < y2; y += yStep )
{
for( int x = 0; x < processingAreaSize.width; x += yStep )
for( int x = 0; x < processingRectSize.width; x += yStep )
{
int result = classifier->runAt(evaluator, Point(x, y));
if( result > 0 )
rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor),
winSize.width, winSize.height));
winSize.width, winSize.height));
if( result == 0 )
x += yStep;
}
@ -846,14 +835,46 @@ struct CascadeClassifierInvoker
CascadeClassifier* classifier;
ConcurrentRectVector* rectangles;
Size processingAreaSize;
Size processingRectSize;
int stripSize, yStep;
double scalingFactor;
};
struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } };
bool CascadeClassifier::detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
int stripSize, int yStep, double factor, vector<Rect>& candidates )
{
if( !featureEvaluator->setImage( image, data.origWinSize ) )
return false;
ConcurrentRectVector concurrentCandidates;
parallel_for(BlockedRange(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor, concurrentCandidates));
candidates.insert( candidates.end(), concurrentCandidates.begin(), concurrentCandidates.end() );
return true;
}
bool CascadeClassifier::isOldFormatCascade() const
{
return !oldCascade.empty();
}
int CascadeClassifier::getFeatureType() const
{
return featureEvaluator->getFeatureType();
}
Size CascadeClassifier::getOriginalWindowSize() const
{
return data.origWinSize;
}
bool CascadeClassifier::setImage(const Mat& image)
{
featureEvaluator->setImage(image, data.origWinSize);
}
void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& objects,
double scaleFactor, int minNeighbors,
int flags, Size minObjectSize, Size maxObjectSize )
@ -865,7 +886,7 @@ void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& object
if( empty() )
return;
if( !oldCascade.empty() )
if( isOldFormatCascade() )
{
MemStorage storage(cvCreateMemStorage(0));
CvMat _image = image;
@ -892,51 +913,50 @@ void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& object
}
Mat imageBuffer(image.rows + 1, image.cols + 1, CV_8U);
ConcurrentRectVector candidates;
vector<Rect> candidates;
for( double factor = 1; ; factor *= scaleFactor )
{
int stripCount, stripSize;
Size originalWindowSize = getOriginalWindowSize();
Size windowSize( cvRound(origWinSize.width*factor), cvRound(origWinSize.height*factor) );
Size windowSize( cvRound(originalWindowSize.width*factor), cvRound(originalWindowSize.height*factor) );
Size scaledImageSize( cvRound( grayImage.cols/factor ), cvRound( grayImage.rows/factor ) );
Size processingAreaSize( scaledImageSize.width - origWinSize.width, scaledImageSize.height - origWinSize.height );
Size processingRectSize( scaledImageSize.width - originalWindowSize.width, scaledImageSize.height - originalWindowSize.height );
if( processingAreaSize.width <= 0 || processingAreaSize.height <= 0 )
if( processingRectSize.width <= 0 || processingRectSize.height <= 0 )
break;
if( windowSize.width > maxObjectSize.width || windowSize.height > maxObjectSize.height )
break;
if( windowSize.width < minObjectSize.width || windowSize.height < minObjectSize.height )
continue;
Mat scaledImage( scaledImageSize, CV_8U, imageBuffer.data );
resize( grayImage, scaledImage, scaledImageSize, 0, 0, CV_INTER_LINEAR );
int yStep = factor > 2. ? 1 : 2;
int stripCount, stripSize;
#ifdef HAVE_TBB
const int PTS_PER_THREAD = 1000;
stripCount = ((processingAreaSize.width/yStep)*(processingAreaSize.height + yStep-1)/yStep + PTS_PER_THREAD/2)/PTS_PER_THREAD;
stripCount = ((processingRectSize.width/yStep)*(processingRectSize.height + yStep-1)/yStep + PTS_PER_THREAD/2)/PTS_PER_THREAD;
stripCount = std::min(std::max(stripCount, 1), 100);
stripSize = (((processingAreaSize.height + stripCount - 1)/stripCount + yStep-1)/yStep)*yStep;
stripSize = (((processingRectSize.height + stripCount - 1)/stripCount + yStep-1)/yStep)*yStep;
#else
stripCount = 1;
stripSize = processingAreaSize.height;
stripSize = processingRectSize.height;
#endif
Mat scaledImage( scaledImageSize, CV_8U, imageBuffer.data );
resize( grayImage, scaledImage, scaledImageSize, 0, 0, CV_INTER_LINEAR );
if( !feval->setImage( scaledImage, origWinSize ) )
if( !detectSingleScale( scaledImage, stripCount, processingRectSize, stripSize, yStep, factor, candidates ) )
break;
parallel_for(BlockedRange(0, stripCount), CascadeClassifierInvoker(*this, processingAreaSize, stripSize, yStep, factor, candidates));
}
objects.resize(candidates.size());
std::copy(candidates.begin(), candidates.end(), objects.begin());
groupRectangles( objects, minNeighbors, GROUP_EPS );
}
bool CascadeClassifier::read(const FileNode& root)
bool CascadeClassifier::Data::read(const FileNode &root)
{
// load stage params
string stageTypeStr = (string)root[CC_STAGE_TYPE];
@ -944,7 +964,7 @@ bool CascadeClassifier::read(const FileNode& root)
stageType = BOOST;
else
return false;
string featureTypeStr = (string)root[CC_FEATURE_TYPE];
if( featureTypeStr == CC_HAAR )
featureType = FeatureEvaluator::HAAR;
@ -952,33 +972,33 @@ bool CascadeClassifier::read(const FileNode& root)
featureType = FeatureEvaluator::LBP;
else
return false;
origWinSize.width = (int)root[CC_WIDTH];
origWinSize.height = (int)root[CC_HEIGHT];
CV_Assert( origWinSize.height > 0 && origWinSize.width > 0 );
isStumpBased = (int)(root[CC_STAGE_PARAMS][CC_MAX_DEPTH]) == 1 ? true : false;
// load feature params
FileNode fn = root[CC_FEATURE_PARAMS];
if( fn.empty() )
return false;
ncategories = fn[CC_MAX_CAT_COUNT];
int subsetSize = (ncategories + 31)/32,
nodeStep = 3 + ( ncategories>0 ? subsetSize : 1 );
// load stages
fn = root[CC_STAGES];
if( fn.empty() )
return false;
stages.reserve(fn.size());
classifiers.clear();
nodes.clear();
FileNodeIterator it = fn.begin(), it_end = fn.end();
for( int si = 0; it != it_end; si++, ++it )
{
FileNode fns = *it;
@ -991,7 +1011,7 @@ bool CascadeClassifier::read(const FileNode& root)
stage.first = (int)classifiers.size();
stages.push_back(stage);
classifiers.reserve(stages[si].first + stages[si].ntrees);
FileNodeIterator it1 = fns.begin(), it1_end = fns.end();
for( ; it1 != it1_end; ++it1 ) // weak trees
{
@ -1000,56 +1020,62 @@ bool CascadeClassifier::read(const FileNode& root)
FileNode leafValues = fnw[CC_LEAF_VALUES];
if( internalNodes.empty() || leafValues.empty() )
return false;
DTree tree;
tree.nodeCount = (int)internalNodes.size()/nodeStep;
classifiers.push_back(tree);
nodes.reserve(nodes.size() + tree.nodeCount);
leaves.reserve(leaves.size() + leafValues.size());
if( subsetSize > 0 )
subsets.reserve(subsets.size() + tree.nodeCount*subsetSize);
FileNodeIterator it2 = internalNodes.begin(), it2_end = internalNodes.end();
for( ; it2 != it2_end; ) // nodes
FileNodeIterator internalNodesIter = internalNodes.begin(), internalNodesEnd = internalNodes.end();
for( ; internalNodesIter != internalNodesEnd; ) // nodes
{
DTreeNode node;
node.left = (int)*it2; ++it2;
node.right = (int)*it2; ++it2;
node.featureIdx = (int)*it2; ++it2;
node.left = (int)*internalNodesIter; ++internalNodesIter;
node.right = (int)*internalNodesIter; ++internalNodesIter;
node.featureIdx = (int)*internalNodesIter; ++internalNodesIter;
if( subsetSize > 0 )
{
for( int j = 0; j < subsetSize; j++, ++it2 )
subsets.push_back((int)*it2);
for( int j = 0; j < subsetSize; j++, ++internalNodesIter )
subsets.push_back((int)*internalNodesIter);
node.threshold = 0.f;
}
else
{
node.threshold = (float)*it2; ++it2;
node.threshold = (float)*internalNodesIter; ++internalNodesIter;
}
nodes.push_back(node);
}
it2 = leafValues.begin(), it2_end = leafValues.end();
for( ; it2 != it2_end; ++it2 ) // leaves
leaves.push_back((float)*it2);
internalNodesIter = leafValues.begin(), internalNodesEnd = leafValues.end();
for( ; internalNodesIter != internalNodesEnd; ++internalNodesIter ) // leaves
leaves.push_back((float)*internalNodesIter);
}
}
return true;
}
bool CascadeClassifier::read(const FileNode& root)
{
if( !data.read(root) )
return false;
// load features
feval = FeatureEvaluator::create(featureType);
fn = root[CC_FEATURES];
featureEvaluator = FeatureEvaluator::create(data.featureType);
FileNode fn = root[CC_FEATURES];
if( fn.empty() )
return false;
return feval->read(fn);
return featureEvaluator->read(fn);
}
template<> void Ptr<CvHaarClassifierCascade>::delete_obj()
{ cvReleaseHaarClassifierCascade(&obj); }
} // namespace cv
/* End of file. */

@ -474,9 +474,9 @@ float CvCascadeBoostTrainData::getVarValue( int vi, int si )
struct FeatureIdxOnlyPrecalc
{
FeatureIdxOnlyPrecalc( const CvFeatureEvaluator* _feval, CvMat* _buf, int _sample_count, bool _is_buf_16u )
FeatureIdxOnlyPrecalc( const CvFeatureEvaluator* _featureEvaluator, CvMat* _buf, int _sample_count, bool _is_buf_16u )
{
feval = _feval;
featureEvaluator = _featureEvaluator;
sample_count = _sample_count;
udst = (unsigned short*)_buf->data.s;
idst = _buf->data.i;
@ -490,7 +490,7 @@ struct FeatureIdxOnlyPrecalc
{
for( int si = 0; si < sample_count; si++ )
{
valCachePtr[si] = (*feval)( fi, si );
valCachePtr[si] = (*featureEvaluator)( fi, si );
if ( is_buf_16u )
*(udst + fi*sample_count + si) = (unsigned short)si;
else
@ -502,7 +502,7 @@ struct FeatureIdxOnlyPrecalc
icvSortIntAux( idst + fi*sample_count, sample_count, valCachePtr );
}
}
const CvFeatureEvaluator* feval;
const CvFeatureEvaluator* featureEvaluator;
int sample_count;
int* idst;
unsigned short* udst;
@ -511,9 +511,9 @@ struct FeatureIdxOnlyPrecalc
struct FeatureValAndIdxPrecalc
{
FeatureValAndIdxPrecalc( const CvFeatureEvaluator* _feval, CvMat* _buf, Mat* _valCache, int _sample_count, bool _is_buf_16u )
FeatureValAndIdxPrecalc( const CvFeatureEvaluator* _featureEvaluator, CvMat* _buf, Mat* _valCache, int _sample_count, bool _is_buf_16u )
{
feval = _feval;
featureEvaluator = _featureEvaluator;
valCache = _valCache;
sample_count = _sample_count;
udst = (unsigned short*)_buf->data.s;
@ -526,7 +526,7 @@ struct FeatureValAndIdxPrecalc
{
for( int si = 0; si < sample_count; si++ )
{
valCache->at<float>(fi,si) = (*feval)( fi, si );
valCache->at<float>(fi,si) = (*featureEvaluator)( fi, si );
if ( is_buf_16u )
*(udst + fi*sample_count + si) = (unsigned short)si;
else
@ -538,7 +538,7 @@ struct FeatureValAndIdxPrecalc
icvSortIntAux( idst + fi*sample_count, sample_count, valCache->ptr<float>(fi) );
}
}
const CvFeatureEvaluator* feval;
const CvFeatureEvaluator* featureEvaluator;
Mat* valCache;
int sample_count;
int* idst;
@ -548,9 +548,9 @@ struct FeatureValAndIdxPrecalc
struct FeatureValOnlyPrecalc
{
FeatureValOnlyPrecalc( const CvFeatureEvaluator* _feval, Mat* _valCache, int _sample_count )
FeatureValOnlyPrecalc( const CvFeatureEvaluator* _featureEvaluator, Mat* _valCache, int _sample_count )
{
feval = _feval;
featureEvaluator = _featureEvaluator;
valCache = _valCache;
sample_count = _sample_count;
}
@ -558,9 +558,9 @@ struct FeatureValOnlyPrecalc
{
for ( int fi = range.begin(); fi < range.end(); fi++)
for( int si = 0; si < sample_count; si++ )
valCache->at<float>(fi,si) = (*feval)( fi, si );
valCache->at<float>(fi,si) = (*featureEvaluator)( fi, si );
}
const CvFeatureEvaluator* feval;
const CvFeatureEvaluator* featureEvaluator;
Mat* valCache;
int sample_count;
};

Loading…
Cancel
Save