|
|
@ -106,4 +106,108 @@ PERF_TEST_P(KNNFixture, KNN, |
|
|
|
}else |
|
|
|
}else |
|
|
|
OCL_PERF_ELSE |
|
|
|
OCL_PERF_ELSE |
|
|
|
SANITY_CHECK(best_label); |
|
|
|
SANITY_CHECK(best_label); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
typedef TestBaseWithParam<tuple<int> > SVMFixture; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// code is based on: samples\cpp\tutorial_code\ml\non_linear_svms\non_linear_svms.cpp
|
|
|
|
|
|
|
|
PERF_TEST_P(SVMFixture, DISABLED_SVM, |
|
|
|
|
|
|
|
testing::Values(50, 100)) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const int NTRAINING_SAMPLES = get<0>(GetParam()); // Number of training samples per class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define FRAC_LINEAR_SEP 0.9f // Fraction of samples which compose the linear separable part
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const int WIDTH = 512, HEIGHT = 512; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mat trainData(2*NTRAINING_SAMPLES, 2, CV_32FC1); |
|
|
|
|
|
|
|
Mat labels (2*NTRAINING_SAMPLES, 1, CV_32FC1); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RNG rng(100); // Random value generation class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Set up the linearly separable part of the training data
|
|
|
|
|
|
|
|
int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Generate random points for the class 1
|
|
|
|
|
|
|
|
Mat trainClass = trainData.rowRange(0, nLinearSamples); |
|
|
|
|
|
|
|
// The x coordinate of the points is in [0, 0.4)
|
|
|
|
|
|
|
|
Mat c = trainClass.colRange(0, 1); |
|
|
|
|
|
|
|
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(0.4 * WIDTH)); |
|
|
|
|
|
|
|
// The y coordinate of the points is in [0, 1)
|
|
|
|
|
|
|
|
c = trainClass.colRange(1,2); |
|
|
|
|
|
|
|
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Generate random points for the class 2
|
|
|
|
|
|
|
|
trainClass = trainData.rowRange(2*NTRAINING_SAMPLES-nLinearSamples, 2*NTRAINING_SAMPLES); |
|
|
|
|
|
|
|
// The x coordinate of the points is in [0.6, 1]
|
|
|
|
|
|
|
|
c = trainClass.colRange(0 , 1); |
|
|
|
|
|
|
|
rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH)); |
|
|
|
|
|
|
|
// The y coordinate of the points is in [0, 1)
|
|
|
|
|
|
|
|
c = trainClass.colRange(1,2); |
|
|
|
|
|
|
|
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//------------------ Set up the non-linearly separable part of the training data ---------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Generate random points for the classes 1 and 2
|
|
|
|
|
|
|
|
trainClass = trainData.rowRange( nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples); |
|
|
|
|
|
|
|
// The x coordinate of the points is in [0.4, 0.6)
|
|
|
|
|
|
|
|
c = trainClass.colRange(0,1); |
|
|
|
|
|
|
|
rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH)); |
|
|
|
|
|
|
|
// The y coordinate of the points is in [0, 1)
|
|
|
|
|
|
|
|
c = trainClass.colRange(1,2); |
|
|
|
|
|
|
|
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//------------------------- Set up the labels for the classes ---------------------------------
|
|
|
|
|
|
|
|
labels.rowRange( 0, NTRAINING_SAMPLES).setTo(1); // Class 1
|
|
|
|
|
|
|
|
labels.rowRange(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES).setTo(2); // Class 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//------------------------ Set up the support vector machines parameters --------------------
|
|
|
|
|
|
|
|
CvSVMParams params; |
|
|
|
|
|
|
|
params.svm_type = SVM::C_SVC; |
|
|
|
|
|
|
|
params.C = 0.1; |
|
|
|
|
|
|
|
params.kernel_type = SVM::LINEAR; |
|
|
|
|
|
|
|
params.term_crit = TermCriteria(CV_TERMCRIT_ITER, (int)1e7, 1e-6); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mat dst = Mat::zeros(HEIGHT, WIDTH, CV_8UC1); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mat samples(WIDTH*HEIGHT, 2, CV_32FC1); |
|
|
|
|
|
|
|
int k = 0; |
|
|
|
|
|
|
|
for (int i = 0; i < HEIGHT; ++i) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
for (int j = 0; j < WIDTH; ++j) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
samples.at<float>(k, 0) = (float)i; |
|
|
|
|
|
|
|
samples.at<float>(k, 0) = (float)j; |
|
|
|
|
|
|
|
k++; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
Mat results(WIDTH*HEIGHT, 1, CV_32FC1); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CvMat samples_ = samples; |
|
|
|
|
|
|
|
CvMat results_ = results; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if(RUN_PLAIN_IMPL) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
CvSVM svm; |
|
|
|
|
|
|
|
svm.train(trainData, labels, Mat(), Mat(), params); |
|
|
|
|
|
|
|
TEST_CYCLE() |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
svm.predict(&samples_, &results_); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
else if(RUN_OCL_IMPL) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
CvSVM_OCL svm; |
|
|
|
|
|
|
|
svm.train(trainData, labels, Mat(), Mat(), params); |
|
|
|
|
|
|
|
OCL_TEST_CYCLE() |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
svm.predict(&samples_, &results_); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
else |
|
|
|
|
|
|
|
OCL_PERF_ELSE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SANITY_CHECK_NOTHING(); |
|
|
|
|
|
|
|
} |
|
|
|