Merge pull request #2235 from alalek:ocl_svm_perf_test

pull/2366/merge
Andrey Pavlenko 11 years ago committed by OpenCV Buildbot
commit e6420c523d
  1. 106
      modules/ocl/perf/perf_ml.cpp

@ -106,4 +106,108 @@ PERF_TEST_P(KNNFixture, KNN,
}else
OCL_PERF_ELSE
SANITY_CHECK(best_label);
}
}
typedef TestBaseWithParam<tuple<int> > SVMFixture;
// code is based on: samples\cpp\tutorial_code\ml\non_linear_svms\non_linear_svms.cpp
PERF_TEST_P(SVMFixture, DISABLED_SVM,
testing::Values(50, 100))
{
const int NTRAINING_SAMPLES = get<0>(GetParam()); // Number of training samples per class
#define FRAC_LINEAR_SEP 0.9f // Fraction of samples which compose the linear separable part
const int WIDTH = 512, HEIGHT = 512;
Mat trainData(2*NTRAINING_SAMPLES, 2, CV_32FC1);
Mat labels (2*NTRAINING_SAMPLES, 1, CV_32FC1);
RNG rng(100); // Random value generation class
// Set up the linearly separable part of the training data
int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES);
// Generate random points for the class 1
Mat trainClass = trainData.rowRange(0, nLinearSamples);
// The x coordinate of the points is in [0, 0.4)
Mat c = trainClass.colRange(0, 1);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(0.4 * WIDTH));
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1,2);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
// Generate random points for the class 2
trainClass = trainData.rowRange(2*NTRAINING_SAMPLES-nLinearSamples, 2*NTRAINING_SAMPLES);
// The x coordinate of the points is in [0.6, 1]
c = trainClass.colRange(0 , 1);
rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH));
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1,2);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
//------------------ Set up the non-linearly separable part of the training data ---------------
// Generate random points for the classes 1 and 2
trainClass = trainData.rowRange( nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples);
// The x coordinate of the points is in [0.4, 0.6)
c = trainClass.colRange(0,1);
rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH));
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1,2);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
//------------------------- Set up the labels for the classes ---------------------------------
labels.rowRange( 0, NTRAINING_SAMPLES).setTo(1); // Class 1
labels.rowRange(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES).setTo(2); // Class 2
//------------------------ Set up the support vector machines parameters --------------------
CvSVMParams params;
params.svm_type = SVM::C_SVC;
params.C = 0.1;
params.kernel_type = SVM::LINEAR;
params.term_crit = TermCriteria(CV_TERMCRIT_ITER, (int)1e7, 1e-6);
Mat dst = Mat::zeros(HEIGHT, WIDTH, CV_8UC1);
Mat samples(WIDTH*HEIGHT, 2, CV_32FC1);
int k = 0;
for (int i = 0; i < HEIGHT; ++i)
{
for (int j = 0; j < WIDTH; ++j)
{
samples.at<float>(k, 0) = (float)i;
samples.at<float>(k, 0) = (float)j;
k++;
}
}
Mat results(WIDTH*HEIGHT, 1, CV_32FC1);
CvMat samples_ = samples;
CvMat results_ = results;
if(RUN_PLAIN_IMPL)
{
CvSVM svm;
svm.train(trainData, labels, Mat(), Mat(), params);
TEST_CYCLE()
{
svm.predict(&samples_, &results_);
}
}
else if(RUN_OCL_IMPL)
{
CvSVM_OCL svm;
svm.train(trainData, labels, Mat(), Mat(), params);
OCL_TEST_CYCLE()
{
svm.predict(&samples_, &results_);
}
}
else
OCL_PERF_ELSE
SANITY_CHECK_NOTHING();
}

Loading…
Cancel
Save