Merge pull request #6285 from sovrasov:python_tests_cleanup
commit
e547916e88
13 changed files with 36 additions and 2406 deletions
@ -1,53 +0,0 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
# Calculating and displaying 2D Hue-Saturation histogram of a color image |
||||
import sys |
||||
import cv2.cv as cv |
||||
|
||||
def hs_histogram(src): |
||||
# Convert to HSV |
||||
hsv = cv.CreateImage(cv.GetSize(src), 8, 3) |
||||
cv.CvtColor(src, hsv, cv.CV_BGR2HSV) |
||||
|
||||
# Extract the H and S planes |
||||
h_plane = cv.CreateMat(src.rows, src.cols, cv.CV_8UC1) |
||||
s_plane = cv.CreateMat(src.rows, src.cols, cv.CV_8UC1) |
||||
cv.Split(hsv, h_plane, s_plane, None, None) |
||||
planes = [h_plane, s_plane] |
||||
|
||||
h_bins = 30 |
||||
s_bins = 32 |
||||
hist_size = [h_bins, s_bins] |
||||
# hue varies from 0 (~0 deg red) to 180 (~360 deg red again */ |
||||
h_ranges = [0, 180] |
||||
# saturation varies from 0 (black-gray-white) to |
||||
# 255 (pure spectrum color) |
||||
s_ranges = [0, 255] |
||||
ranges = [h_ranges, s_ranges] |
||||
scale = 10 |
||||
hist = cv.CreateHist([h_bins, s_bins], cv.CV_HIST_ARRAY, ranges, 1) |
||||
cv.CalcHist([cv.GetImage(i) for i in planes], hist) |
||||
(_, max_value, _, _) = cv.GetMinMaxHistValue(hist) |
||||
|
||||
hist_img = cv.CreateImage((h_bins*scale, s_bins*scale), 8, 3) |
||||
|
||||
for h in range(h_bins): |
||||
for s in range(s_bins): |
||||
bin_val = cv.QueryHistValue_2D(hist, h, s) |
||||
intensity = cv.Round(bin_val * 255 / max_value) |
||||
cv.Rectangle(hist_img, |
||||
(h*scale, s*scale), |
||||
((h+1)*scale - 1, (s+1)*scale - 1), |
||||
cv.RGB(intensity, intensity, intensity), |
||||
cv.CV_FILLED) |
||||
return hist_img |
||||
|
||||
if __name__ == '__main__': |
||||
src = cv.LoadImageM(sys.argv[1]) |
||||
cv.NamedWindow("Source", 1) |
||||
cv.ShowImage("Source", src) |
||||
|
||||
cv.NamedWindow("H-S Histogram", 1) |
||||
cv.ShowImage("H-S Histogram", hs_histogram(src)) |
||||
|
||||
cv.WaitKey(0) |
@ -1,360 +0,0 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
import sys |
||||
import math |
||||
import time |
||||
import random |
||||
|
||||
import numpy |
||||
import transformations |
||||
import cv2.cv as cv |
||||
|
||||
def clamp(a, x, b): |
||||
return numpy.maximum(a, numpy.minimum(x, b)) |
||||
|
||||
def norm(v): |
||||
mag = numpy.sqrt(sum([e * e for e in v])) |
||||
return v / mag |
||||
|
||||
class Vec3: |
||||
def __init__(self, x, y, z): |
||||
self.v = (x, y, z) |
||||
def x(self): |
||||
return self.v[0] |
||||
def y(self): |
||||
return self.v[1] |
||||
def z(self): |
||||
return self.v[2] |
||||
def __repr__(self): |
||||
return "<Vec3 (%s,%s,%s)>" % tuple([repr(c) for c in self.v]) |
||||
def __add__(self, other): |
||||
return Vec3(*[self.v[i] + other.v[i] for i in range(3)]) |
||||
def __sub__(self, other): |
||||
return Vec3(*[self.v[i] - other.v[i] for i in range(3)]) |
||||
def __mul__(self, other): |
||||
if isinstance(other, Vec3): |
||||
return Vec3(*[self.v[i] * other.v[i] for i in range(3)]) |
||||
else: |
||||
return Vec3(*[self.v[i] * other for i in range(3)]) |
||||
def mag2(self): |
||||
return sum([e * e for e in self.v]) |
||||
def __abs__(self): |
||||
return numpy.sqrt(sum([e * e for e in self.v])) |
||||
def norm(self): |
||||
return self * (1.0 / abs(self)) |
||||
def dot(self, other): |
||||
return sum([self.v[i] * other.v[i] for i in range(3)]) |
||||
def cross(self, other): |
||||
(ax, ay, az) = self.v |
||||
(bx, by, bz) = other.v |
||||
return Vec3(ay * bz - by * az, az * bx - bz * ax, ax * by - bx * ay) |
||||
|
||||
|
||||
class Ray: |
||||
|
||||
def __init__(self, o, d): |
||||
self.o = o |
||||
self.d = d |
||||
|
||||
def project(self, d): |
||||
return self.o + self.d * d |
||||
|
||||
class Camera: |
||||
|
||||
def __init__(self, F): |
||||
R = Vec3(1., 0., 0.) |
||||
U = Vec3(0, 1., 0) |
||||
self.center = Vec3(0, 0, 0) |
||||
self.pcenter = Vec3(0, 0, F) |
||||
self.up = U |
||||
self.right = R |
||||
|
||||
def genray(self, x, y): |
||||
""" -1 <= y <= 1 """ |
||||
r = numpy.sqrt(x * x + y * y) |
||||
if 0: |
||||
rprime = r + (0.17 * r**2) |
||||
else: |
||||
rprime = (10 * numpy.sqrt(17 * r + 25) - 50) / 17 |
||||
print "scale", rprime / r |
||||
x *= rprime / r |
||||
y *= rprime / r |
||||
o = self.center |
||||
r = (self.pcenter + (self.right * x) + (self.up * y)) - o |
||||
return Ray(o, r.norm()) |
||||
|
||||
class Sphere: |
||||
|
||||
def __init__(self, center, radius): |
||||
self.center = center |
||||
self.radius = radius |
||||
|
||||
def hit(self, r): |
||||
# a = mag2(r.d) |
||||
a = 1. |
||||
v = r.o - self.center |
||||
b = 2 * r.d.dot(v) |
||||
c = self.center.mag2() + r.o.mag2() + -2 * self.center.dot(r.o) - (self.radius ** 2) |
||||
det = (b * b) - (4 * c) |
||||
pred = 0 < det |
||||
|
||||
sq = numpy.sqrt(abs(det)) |
||||
h0 = (-b - sq) / (2) |
||||
h1 = (-b + sq) / (2) |
||||
|
||||
h = numpy.minimum(h0, h1) |
||||
|
||||
pred = pred & (h > 0) |
||||
normal = (r.project(h) - self.center) * (1.0 / self.radius) |
||||
return (pred, numpy.where(pred, h, 999999.), normal) |
||||
|
||||
def pt2plane(p, plane): |
||||
return p.dot(plane) * (1. / abs(plane)) |
||||
|
||||
class Plane: |
||||
|
||||
def __init__(self, p, n, right): |
||||
self.D = -pt2plane(p, n) |
||||
self.Pn = n |
||||
self.right = right |
||||
self.rightD = -pt2plane(p, right) |
||||
self.up = n.cross(right) |
||||
self.upD = -pt2plane(p, self.up) |
||||
|
||||
def hit(self, r): |
||||
Vd = self.Pn.dot(r.d) |
||||
V0 = -(self.Pn.dot(r.o) + self.D) |
||||
h = V0 / Vd |
||||
pred = (0 <= h) |
||||
|
||||
return (pred, numpy.where(pred, h, 999999.), self.Pn) |
||||
|
||||
def localxy(self, loc): |
||||
x = (loc.dot(self.right) + self.rightD) |
||||
y = (loc.dot(self.up) + self.upD) |
||||
return (x, y) |
||||
|
||||
# lena = numpy.fromstring(cv.LoadImage("../samples/c/lena.jpg", 0).tostring(), numpy.uint8) / 255.0 |
||||
|
||||
def texture(xy): |
||||
x,y = xy |
||||
xa = numpy.floor(x * 512) |
||||
ya = numpy.floor(y * 512) |
||||
a = (512 * ya) + xa |
||||
safe = (0 <= x) & (0 <= y) & (x < 1) & (y < 1) |
||||
if 0: |
||||
a = numpy.where(safe, a, 0).astype(numpy.int) |
||||
return numpy.where(safe, numpy.take(lena, a), 0.0) |
||||
else: |
||||
xi = numpy.floor(x * 11).astype(numpy.int) |
||||
yi = numpy.floor(y * 11).astype(numpy.int) |
||||
inside = (1 <= xi) & (xi < 10) & (2 <= yi) & (yi < 9) |
||||
checker = (xi & 1) ^ (yi & 1) |
||||
final = numpy.where(inside, checker, 1.0) |
||||
return numpy.where(safe, final, 0.5) |
||||
|
||||
def under(vv, m): |
||||
return Vec3(*(numpy.dot(m, vv.v + (1,))[:3])) |
||||
|
||||
class Renderer: |
||||
|
||||
def __init__(self, w, h, oversample): |
||||
self.w = w |
||||
self.h = h |
||||
|
||||
random.seed(1) |
||||
x = numpy.arange(self.w*self.h) % self.w |
||||
y = numpy.floor(numpy.arange(self.w*self.h) / self.w) |
||||
h2 = h / 2.0 |
||||
w2 = w / 2.0 |
||||
self.r = [ None ] * oversample |
||||
for o in range(oversample): |
||||
stoch_x = numpy.random.rand(self.w * self.h) |
||||
stoch_y = numpy.random.rand(self.w * self.h) |
||||
nx = (x + stoch_x - 0.5 - w2) / h2 |
||||
ny = (y + stoch_y - 0.5 - h2) / h2 |
||||
self.r[o] = cam.genray(nx, ny) |
||||
|
||||
self.rnds = [random.random() for i in range(10)] |
||||
|
||||
def frame(self, i): |
||||
|
||||
rnds = self.rnds |
||||
roll = math.sin(i * .01 * rnds[0] + rnds[1]) |
||||
pitch = math.sin(i * .01 * rnds[2] + rnds[3]) |
||||
yaw = math.pi * math.sin(i * .01 * rnds[4] + rnds[5]) |
||||
x = math.sin(i * 0.01 * rnds[6]) |
||||
y = math.sin(i * 0.01 * rnds[7]) |
||||
|
||||
x,y,z = -0.5,0.5,1 |
||||
roll,pitch,yaw = (0,0,0) |
||||
|
||||
z = 4 + 3 * math.sin(i * 0.1 * rnds[8]) |
||||
print z |
||||
|
||||
rz = transformations.euler_matrix(roll, pitch, yaw) |
||||
p = Plane(Vec3(x, y, z), under(Vec3(0,0,-1), rz), under(Vec3(1, 0, 0), rz)) |
||||
|
||||
acc = 0 |
||||
for r in self.r: |
||||
(pred, h, norm) = p.hit(r) |
||||
l = numpy.where(pred, texture(p.localxy(r.project(h))), 0.0) |
||||
acc += l |
||||
acc *= (1.0 / len(self.r)) |
||||
|
||||
# print "took", time.time() - st |
||||
|
||||
img = cv.CreateMat(self.h, self.w, cv.CV_8UC1) |
||||
cv.SetData(img, (clamp(0, acc, 1) * 255).astype(numpy.uint8).tostring(), self.w) |
||||
return img |
||||
|
||||
######################################################################### |
||||
|
||||
num_x_ints = 8 |
||||
num_y_ints = 6 |
||||
num_pts = num_x_ints * num_y_ints |
||||
|
||||
def get_corners(mono, refine = False): |
||||
(ok, corners) = cv.FindChessboardCorners(mono, (num_x_ints, num_y_ints), cv.CV_CALIB_CB_ADAPTIVE_THRESH | cv.CV_CALIB_CB_NORMALIZE_IMAGE) |
||||
if refine and ok: |
||||
corners = cv.FindCornerSubPix(mono, corners, (5,5), (-1,-1), ( cv.CV_TERMCRIT_EPS+cv.CV_TERMCRIT_ITER, 30, 0.1 )) |
||||
return (ok, corners) |
||||
|
||||
def mk_object_points(nimages, squaresize = 1): |
||||
opts = cv.CreateMat(nimages * num_pts, 3, cv.CV_32FC1) |
||||
for i in range(nimages): |
||||
for j in range(num_pts): |
||||
opts[i * num_pts + j, 0] = (j / num_x_ints) * squaresize |
||||
opts[i * num_pts + j, 1] = (j % num_x_ints) * squaresize |
||||
opts[i * num_pts + j, 2] = 0 |
||||
return opts |
||||
|
||||
def mk_image_points(goodcorners): |
||||
ipts = cv.CreateMat(len(goodcorners) * num_pts, 2, cv.CV_32FC1) |
||||
for (i, co) in enumerate(goodcorners): |
||||
for j in range(num_pts): |
||||
ipts[i * num_pts + j, 0] = co[j][0] |
||||
ipts[i * num_pts + j, 1] = co[j][1] |
||||
return ipts |
||||
|
||||
def mk_point_counts(nimages): |
||||
npts = cv.CreateMat(nimages, 1, cv.CV_32SC1) |
||||
for i in range(nimages): |
||||
npts[i, 0] = num_pts |
||||
return npts |
||||
|
||||
def cvmat_iterator(cvmat): |
||||
for i in range(cvmat.rows): |
||||
for j in range(cvmat.cols): |
||||
yield cvmat[i,j] |
||||
|
||||
cam = Camera(3.0) |
||||
rend = Renderer(640, 480, 2) |
||||
cv.NamedWindow("snap") |
||||
|
||||
#images = [rend.frame(i) for i in range(0, 2000, 400)] |
||||
images = [rend.frame(i) for i in [1200]] |
||||
|
||||
if 0: |
||||
for i,img in enumerate(images): |
||||
cv.SaveImage("final/%06d.png" % i, img) |
||||
|
||||
size = cv.GetSize(images[0]) |
||||
corners = [get_corners(i) for i in images] |
||||
|
||||
goodcorners = [co for (im, (ok, co)) in zip(images, corners) if ok] |
||||
|
||||
def checkerboard_error(xformed): |
||||
def pt2line(a, b, c): |
||||
x0,y0 = a |
||||
x1,y1 = b |
||||
x2,y2 = c |
||||
return abs((x2 - x1) * (y1 - y0) - (x1 - x0) * (y2 - y1)) / math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) |
||||
errorsum = 0. |
||||
for im in xformed: |
||||
for row in range(6): |
||||
l0 = im[8 * row] |
||||
l1 = im[8 * row + 7] |
||||
for col in range(1, 7): |
||||
e = pt2line(im[8 * row + col], l0, l1) |
||||
#print "row", row, "e", e |
||||
errorsum += e |
||||
|
||||
return errorsum |
||||
|
||||
if True: |
||||
from scipy.optimize import fmin |
||||
|
||||
def xf(pt, poly): |
||||
x, y = pt |
||||
r = math.sqrt((x - 320) ** 2 + (y - 240) ** 2) |
||||
fr = poly(r) / r |
||||
return (320 + (x - 320) * fr, 240 + (y - 240) * fr) |
||||
def silly(p, goodcorners): |
||||
# print "eval", p |
||||
|
||||
d = 1.0 # - sum(p) |
||||
poly = numpy.poly1d(list(p) + [d, 0.]) |
||||
|
||||
xformed = [[xf(pt, poly) for pt in co] for co in goodcorners] |
||||
|
||||
return checkerboard_error(xformed) |
||||
|
||||
x0 = [ 0. ] |
||||
#print silly(x0, goodcorners) |
||||
print "initial error", silly(x0, goodcorners) |
||||
xopt = fmin(silly, x0, args=(goodcorners,)) |
||||
print "xopt", xopt |
||||
print "final error", silly(xopt, goodcorners) |
||||
|
||||
d = 1.0 # - sum(xopt) |
||||
poly = numpy.poly1d(list(xopt) + [d, 0.]) |
||||
print "final polynomial" |
||||
print poly |
||||
|
||||
for co in goodcorners: |
||||
scrib = cv.CreateMat(480, 640, cv.CV_8UC3) |
||||
cv.SetZero(scrib) |
||||
cv.DrawChessboardCorners(scrib, (num_x_ints, num_y_ints), [xf(pt, poly) for pt in co], True) |
||||
cv.ShowImage("snap", scrib) |
||||
cv.WaitKey() |
||||
|
||||
sys.exit(0) |
||||
|
||||
for (i, (img, (ok, co))) in enumerate(zip(images, corners)): |
||||
scrib = cv.CreateMat(img.rows, img.cols, cv.CV_8UC3) |
||||
cv.CvtColor(img, scrib, cv.CV_GRAY2BGR) |
||||
if ok: |
||||
cv.DrawChessboardCorners(scrib, (num_x_ints, num_y_ints), co, True) |
||||
cv.ShowImage("snap", scrib) |
||||
cv.WaitKey() |
||||
|
||||
print len(goodcorners) |
||||
ipts = mk_image_points(goodcorners) |
||||
opts = mk_object_points(len(goodcorners), .1) |
||||
npts = mk_point_counts(len(goodcorners)) |
||||
|
||||
intrinsics = cv.CreateMat(3, 3, cv.CV_64FC1) |
||||
distortion = cv.CreateMat(4, 1, cv.CV_64FC1) |
||||
cv.SetZero(intrinsics) |
||||
cv.SetZero(distortion) |
||||
# focal lengths have 1/1 ratio |
||||
intrinsics[0,0] = 1.0 |
||||
intrinsics[1,1] = 1.0 |
||||
cv.CalibrateCamera2(opts, ipts, npts, |
||||
cv.GetSize(images[0]), |
||||
intrinsics, |
||||
distortion, |
||||
cv.CreateMat(len(goodcorners), 3, cv.CV_32FC1), |
||||
cv.CreateMat(len(goodcorners), 3, cv.CV_32FC1), |
||||
flags = 0) # cv.CV_CALIB_ZERO_TANGENT_DIST) |
||||
print "D =", list(cvmat_iterator(distortion)) |
||||
print "K =", list(cvmat_iterator(intrinsics)) |
||||
mapx = cv.CreateImage((640, 480), cv.IPL_DEPTH_32F, 1) |
||||
mapy = cv.CreateImage((640, 480), cv.IPL_DEPTH_32F, 1) |
||||
cv.InitUndistortMap(intrinsics, distortion, mapx, mapy) |
||||
for img in images: |
||||
r = cv.CloneMat(img) |
||||
cv.Remap(img, r, mapx, mapy) |
||||
cv.ShowImage("snap", r) |
||||
cv.WaitKey() |
@ -1,25 +0,0 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
import sys |
||||
import cv2.cv as cv |
||||
|
||||
def findstereocorrespondence(image_left, image_right): |
||||
# image_left and image_right are the input 8-bit single-channel images |
||||
# from the left and the right cameras, respectively |
||||
(r, c) = (image_left.rows, image_left.cols) |
||||
disparity_left = cv.CreateMat(r, c, cv.CV_16S) |
||||
disparity_right = cv.CreateMat(r, c, cv.CV_16S) |
||||
state = cv.CreateStereoGCState(16, 2) |
||||
cv.FindStereoCorrespondenceGC(image_left, image_right, disparity_left, disparity_right, state, 0) |
||||
return (disparity_left, disparity_right) |
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
|
||||
(l, r) = [cv.LoadImageM(f, cv.CV_LOAD_IMAGE_GRAYSCALE) for f in sys.argv[1:]] |
||||
|
||||
(disparity_left, disparity_right) = findstereocorrespondence(l, r) |
||||
|
||||
disparity_left_visual = cv.CreateMat(l.rows, l.cols, cv.CV_8U) |
||||
cv.ConvertScale(disparity_left, disparity_left_visual, -16) |
||||
cv.SaveImage("disparity.pgm", disparity_left_visual) |
@ -1,36 +0,0 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
import cv2.cv as cv |
||||
import unittest |
||||
|
||||
class TestGoodFeaturesToTrack(unittest.TestCase): |
||||
def test(self): |
||||
arr = cv.LoadImage("../samples/c/lena.jpg", 0) |
||||
original = cv.CloneImage(arr) |
||||
size = cv.GetSize(arr) |
||||
eig_image = cv.CreateImage(size, cv.IPL_DEPTH_32F, 1) |
||||
temp_image = cv.CreateImage(size, cv.IPL_DEPTH_32F, 1) |
||||
threshes = [ x / 100. for x in range(1,10) ] |
||||
|
||||
results = dict([(t, cv.GoodFeaturesToTrack(arr, eig_image, temp_image, 20000, t, 2, useHarris = 1)) for t in threshes]) |
||||
|
||||
# Check that GoodFeaturesToTrack has not modified input image |
||||
self.assert_(arr.tostring() == original.tostring()) |
||||
|
||||
# Check for repeatability |
||||
for i in range(10): |
||||
results2 = dict([(t, cv.GoodFeaturesToTrack(arr, eig_image, temp_image, 20000, t, 2, useHarris = 1)) for t in threshes]) |
||||
self.assert_(results == results2) |
||||
|
||||
for t0,t1 in zip(threshes, threshes[1:]): |
||||
r0 = results[t0] |
||||
r1 = results[t1] |
||||
|
||||
# Increasing thresh should make result list shorter |
||||
self.assert_(len(r0) > len(r1)) |
||||
|
||||
# Increasing thresh should monly truncate result list |
||||
self.assert_(r0[:len(r1)] == r1) |
||||
|
||||
if __name__ == '__main__': |
||||
unittest.main() |
@ -1,9 +0,0 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
import cv2.cv as cv |
||||
import numpy as np |
||||
cv.NamedWindow('Leak') |
||||
while 1: |
||||
leak = np.random.random((480, 640)) * 255 |
||||
cv.ShowImage('Leak', leak.astype(np.uint8)) |
||||
cv.WaitKey(10) |
@ -1,12 +0,0 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
import cv2.cv as cv |
||||
import numpy as np |
||||
import time |
||||
|
||||
while True: |
||||
for i in range(4000): |
||||
a = cv.CreateImage((1024,1024), cv.IPL_DEPTH_8U, 1) |
||||
b = cv.CreateMat(1024, 1024, cv.CV_8UC1) |
||||
c = cv.CreateMatND([1024,1024], cv.CV_8UC1) |
||||
print "pause..." |
@ -1,8 +0,0 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
import cv2.cv as cv |
||||
import math |
||||
import time |
||||
|
||||
while True: |
||||
h = cv.CreateHist([40], cv.CV_HIST_ARRAY, [[0,255]], 1) |
@ -1,11 +0,0 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
import cv2.cv as cv |
||||
import math |
||||
import time |
||||
|
||||
N=50000 |
||||
print "leak4" |
||||
while True: |
||||
seq=list((i*1., i*1.) for i in range(N)) |
||||
cv.Moments(seq) |
@ -1,16 +0,0 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
import cv2.cv as cv |
||||
|
||||
def precornerdetect(image): |
||||
# assume that the image is floating-point |
||||
corners = cv.CloneMat(image) |
||||
cv.PreCornerDetect(image, corners, 3) |
||||
|
||||
dilated_corners = cv.CloneMat(image) |
||||
cv.Dilate(corners, dilated_corners, None, 1) |
||||
|
||||
corner_mask = cv.CreateMat(image.rows, image.cols, cv.CV_8UC1) |
||||
cv.Sub(corners, dilated_corners, corners) |
||||
cv.CmpS(corners, 0, corner_mask, cv.CV_CMP_GE) |
||||
return (corners, corner_mask) |
@ -0,0 +1,36 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
# Python 2/3 compatibility |
||||
from __future__ import print_function |
||||
|
||||
import cv2 |
||||
import numpy as np |
||||
|
||||
from tests_common import NewOpenCVTests |
||||
|
||||
class TestGoodFeaturesToTrack_test(NewOpenCVTests): |
||||
def test_goodFeaturesToTrack(self): |
||||
arr = self.get_sample('samples/data/lena.jpg', 0) |
||||
original = arr.copy(True) |
||||
threshes = [ x / 100. for x in range(1,10) ] |
||||
numPoints = 20000 |
||||
|
||||
results = dict([(t, cv2.goodFeaturesToTrack(arr, numPoints, t, 2, useHarrisDetector=True)) for t in threshes]) |
||||
# Check that GoodFeaturesToTrack has not modified input image |
||||
self.assertTrue(arr.tostring() == original.tostring()) |
||||
# Check for repeatability |
||||
for i in range(1): |
||||
results2 = dict([(t, cv2.goodFeaturesToTrack(arr, numPoints, t, 2, useHarrisDetector=True)) for t in threshes]) |
||||
for t in threshes: |
||||
self.assertTrue(len(results2[t]) == len(results[t])) |
||||
for i in range(len(results[t])): |
||||
self.assertTrue(cv2.norm(results[t][i][0] - results2[t][i][0]) == 0) |
||||
|
||||
for t0,t1 in zip(threshes, threshes[1:]): |
||||
r0 = results[t0] |
||||
r1 = results[t1] |
||||
# Increasing thresh should make result list shorter |
||||
self.assertTrue(len(r0) > len(r1)) |
||||
# Increasing thresh should monly truncate result list |
||||
for i in range(len(r1)): |
||||
self.assertTrue(cv2.norm(r1[i][0] - r0[i][0])==0) |
@ -1,78 +0,0 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
import urllib |
||||
import cv2.cv as cv |
||||
import Image |
||||
import unittest |
||||
|
||||
class TestLoadImage(unittest.TestCase): |
||||
def setUp(self): |
||||
open("large.jpg", "w").write(urllib.urlopen("http://www.cs.ubc.ca/labs/lci/curious_george/img/ROS_bug_imgs/IMG_3560.jpg").read()) |
||||
|
||||
def test_load(self): |
||||
pilim = Image.open("large.jpg") |
||||
cvim = cv.LoadImage("large.jpg") |
||||
self.assert_(len(pilim.tostring()) == len(cvim.tostring())) |
||||
|
||||
class Creating(unittest.TestCase): |
||||
size=(640, 480) |
||||
repeat=100 |
||||
def test_0_Create(self): |
||||
image = cv.CreateImage(self.size, cv.IPL_DEPTH_8U, 1) |
||||
cnt=cv.CountNonZero(image) |
||||
self.assertEqual(cnt, 0, msg="Created image is not black. CountNonZero=%i" % cnt) |
||||
|
||||
def test_2_CreateRepeat(self): |
||||
cnt=0 |
||||
for i in range(self.repeat): |
||||
image = cv.CreateImage(self.size, cv.IPL_DEPTH_8U, 1) |
||||
cnt+=cv.CountNonZero(image) |
||||
self.assertEqual(cnt, 0, msg="Created images are not black. Mean CountNonZero=%.3f" % (1.*cnt/self.repeat)) |
||||
|
||||
def test_2a_MemCreated(self): |
||||
cnt=0 |
||||
v=[] |
||||
for i in range(self.repeat): |
||||
image = cv.CreateImage(self.size, cv.IPL_DEPTH_8U, 1) |
||||
cv.FillPoly(image, [[(0, 0), (0, 100), (100, 0)]], 0) |
||||
cnt+=cv.CountNonZero(image) |
||||
v.append(image) |
||||
self.assertEqual(cnt, 0, msg="Memorized images are not black. Mean CountNonZero=%.3f" % (1.*cnt/self.repeat)) |
||||
|
||||
def test_3_tostirng(self): |
||||
image = cv.CreateImage(self.size, cv.IPL_DEPTH_8U, 1) |
||||
image.tostring() |
||||
cnt=cv.CountNonZero(image) |
||||
self.assertEqual(cnt, 0, msg="After tostring(): CountNonZero=%i" % cnt) |
||||
|
||||
def test_40_tostringRepeat(self): |
||||
cnt=0 |
||||
image = cv.CreateImage(self.size, cv.IPL_DEPTH_8U, 1) |
||||
cv.Set(image, cv.Scalar(0,0,0,0)) |
||||
for i in range(self.repeat*100): |
||||
image.tostring() |
||||
cnt=cv.CountNonZero(image) |
||||
self.assertEqual(cnt, 0, msg="Repeating tostring(): Mean CountNonZero=%.3f" % (1.*cnt/self.repeat)) |
||||
|
||||
def test_41_CreateToStringRepeat(self): |
||||
cnt=0 |
||||
for i in range(self.repeat*100): |
||||
image = cv.CreateImage(self.size, cv.IPL_DEPTH_8U, 1) |
||||
cv.Set(image, cv.Scalar(0,0,0,0)) |
||||
image.tostring() |
||||
cnt+=cv.CountNonZero(image) |
||||
self.assertEqual(cnt, 0, msg="Repeating create and tostring(): Mean CountNonZero=%.3f" % (1.*cnt/self.repeat)) |
||||
|
||||
def test_4a_MemCreatedToString(self): |
||||
cnt=0 |
||||
v=[] |
||||
for i in range(self.repeat): |
||||
image = cv.CreateImage(self.size, cv.IPL_DEPTH_8U, 1) |
||||
cv.Set(image, cv.Scalar(0,0,0,0)) |
||||
image.tostring() |
||||
cnt+=cv.CountNonZero(image) |
||||
v.append(image) |
||||
self.assertEqual(cnt, 0, msg="Repeating and memorizing after tostring(): Mean CountNonZero=%.3f" % (1.*cnt/self.repeat)) |
||||
|
||||
if __name__ == '__main__': |
||||
unittest.main() |
@ -1,91 +0,0 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
import unittest |
||||
import random |
||||
import time |
||||
import math |
||||
import sys |
||||
import array |
||||
import os |
||||
|
||||
import cv2.cv as cv |
||||
|
||||
def find_sample(s): |
||||
for d in ["../samples/c/", "../doc/pics/"]: |
||||
path = os.path.join(d, s) |
||||
if os.access(path, os.R_OK): |
||||
return path |
||||
return s |
||||
|
||||
class TestTickets(unittest.TestCase): |
||||
|
||||
def test_2542670(self): |
||||
xys = [(94, 121), (94, 122), (93, 123), (92, 123), (91, 124), (91, 125), (91, 126), (92, 127), (92, 128), (92, 129), (92, 130), (92, 131), (91, 132), (90, 131), (90, 130), (90, 131), (91, 132), (92, 133), (92, 134), (93, 135), (94, 136), (94, 137), (94, 138), (95, 139), (96, 140), (96, 141), (96, 142), (96, 143), (97, 144), (97, 145), (98, 146), (99, 146), (100, 146), (101, 146), (102, 146), (103, 146), (104, 146), (105, 146), (106, 146), (107, 146), (108, 146), (109, 146), (110, 146), (111, 146), (112, 146), (113, 146), (114, 146), (115, 146), (116, 146), (117, 146), (118, 146), (119, 146), (120, 146), (121, 146), (122, 146), (123, 146), (124, 146), (125, 146), (126, 146), (126, 145), (126, 144), (126, 143), (126, 142), (126, 141), (126, 140), (127, 139), (127, 138), (127, 137), (127, 136), (127, 135), (127, 134), (127, 133), (128, 132), (129, 132), (130, 131), (131, 130), (131, 129), (131, 128), (132, 127), (133, 126), (134, 125), (134, 124), (135, 123), (136, 122), (136, 121), (135, 121), (134, 121), (133, 121), (132, 121), (131, 121), (130, 121), (129, 121), (128, 121), (127, 121), (126, 121), (125, 121), (124, 121), (123, 121), (122, 121), (121, 121), (120, 121), (119, 121), (118, 121), (117, 121), (116, 121), (115, 121), (114, 121), (113, 121), (112, 121), (111, 121), (110, 121), (109, 121), (108, 121), (107, 121), (106, 121), (105, 121), (104, 121), (103, 121), (102, 121), (101, 121), (100, 121), (99, 121), (98, 121), (97, 121), (96, 121), (95, 121)] |
||||
|
||||
#xys = xys[:12] + xys[16:] |
||||
pts = cv.CreateMat(len(xys), 1, cv.CV_32SC2) |
||||
for i,(x,y) in enumerate(xys): |
||||
pts[i,0] = (x, y) |
||||
storage = cv.CreateMemStorage() |
||||
hull = cv.ConvexHull2(pts, storage) |
||||
hullp = cv.ConvexHull2(pts, storage, return_points = 1) |
||||
defects = cv.ConvexityDefects(pts, hull, storage) |
||||
|
||||
vis = cv.CreateImage((1000,1000), 8, 3) |
||||
x0 = min([x for (x,y) in xys]) - 10 |
||||
x1 = max([x for (x,y) in xys]) + 10 |
||||
y0 = min([y for (y,y) in xys]) - 10 |
||||
y1 = max([y for (y,y) in xys]) + 10 |
||||
def xform(pt): |
||||
x,y = pt |
||||
return (1000 * (x - x0) / (x1 - x0), |
||||
1000 * (y - y0) / (y1 - y0)) |
||||
|
||||
for d in defects[:2]: |
||||
cv.Zero(vis) |
||||
|
||||
# First draw the defect as a red triangle |
||||
cv.FillConvexPoly(vis, [xform(p) for p in d[:3]], cv.RGB(255,0,0)) |
||||
|
||||
# Draw the convex hull as a thick green line |
||||
for a,b in zip(hullp, hullp[1:]): |
||||
cv.Line(vis, xform(a), xform(b), cv.RGB(0,128,0), 3) |
||||
|
||||
# Draw the original contour as a white line |
||||
for a,b in zip(xys, xys[1:]): |
||||
cv.Line(vis, xform(a), xform(b), (255,255,255)) |
||||
|
||||
self.snap(vis) |
||||
|
||||
def test_2686307(self): |
||||
lena = cv.LoadImage(find_sample("lena.jpg"), 1) |
||||
dst = cv.CreateImage((512,512), 8, 3) |
||||
cv.Set(dst, (128,192,255)) |
||||
mask = cv.CreateImage((512,512), 8, 1) |
||||
cv.Zero(mask) |
||||
cv.Rectangle(mask, (10,10), (300,100), 255, -1) |
||||
cv.Copy(lena, dst, mask) |
||||
self.snapL([lena, dst, mask]) |
||||
m = cv.CreateMat(480, 640, cv.CV_8UC1) |
||||
print "ji", m |
||||
print m.rows, m.cols, m.type, m.step |
||||
|
||||
def snap(self, img): |
||||
self.snapL([img]) |
||||
|
||||
def snapL(self, L): |
||||
for i,img in enumerate(L): |
||||
cv.NamedWindow("snap-%d" % i, 1) |
||||
cv.ShowImage("snap-%d" % i, img) |
||||
cv.WaitKey() |
||||
cv.DestroyAllWindows() |
||||
|
||||
if __name__ == '__main__': |
||||
random.seed(0) |
||||
if len(sys.argv) == 1: |
||||
suite = unittest.TestLoader().loadTestsFromTestCase(TestTickets) |
||||
unittest.TextTestRunner(verbosity=2).run(suite) |
||||
else: |
||||
suite = unittest.TestSuite() |
||||
suite.addTest(TestTickets(sys.argv[1])) |
||||
unittest.TextTestRunner(verbosity=2).run(suite) |
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue