@ -27,6 +27,7 @@
# define OPENCV_CORE_QUATERNION_HPP
# include <opencv2/core.hpp>
# include <opencv2/core/utils/logger.hpp>
# include <iostream>
namespace cv
{
@ -51,6 +52,83 @@ enum QuatAssumeType
QUAT_ASSUME_UNIT
} ;
class QuatEnum
{
public :
/** @brief Enum of Euler angles type.
*
* Without considering the possibility of using two different convertions for the definition of the rotation axes ,
* there exists twelve possible sequences of rotation axes , divided into two groups :
* - Proper Euler angles ( Z - X - Z , X - Y - X , Y - Z - Y , Z - Y - Z , X - Z - X , Y - X - Y )
* - Tait – Bryan angles ( X - Y - Z , Y - Z - X , Z - X - Y , X - Z - Y , Z - Y - X , Y - X - Z ) .
*
* The three elemental rotations may be [ extrinsic ] ( https : //en.wikipedia.org/wiki/Euler_angles#Definition_by_extrinsic_rotations)
* ( rotations about the axes * xyz * of the original coordinate system , which is assumed to remain motionless ) ,
* or [ intrinsic ] ( https : //en.wikipedia.org/wiki/Euler_angles#Definition_by_intrinsic_rotations)(rotations about the axes of the rotating coordinate system *XYZ*, solidary with the moving body, which changes its orientation after each elemental rotation).
*
*
* Extrinsic and intrinsic rotations are relevant .
*
* The definition of the Euler angles is as following ,
* - \ f $ \ theta_1 \ f $ represents the first rotation angle ,
* - \ f $ \ theta_2 \ f $ represents the second rotation angle ,
* - \ f $ \ theta_3 \ f $ represents the third rotation angle .
*
* For intrinsic rotations in the order of X - Y - Z , the rotation matrix R can be calculated by : \ f [ R = X ( \ theta_1 ) Y ( \ theta_2 ) Z ( \ theta_3 ) \ f ]
* For extrinsic rotations in the order of X - Y - Z , the rotation matrix R can be calculated by : \ f [ R = Z ( { \ theta_3 } ) Y ( { \ theta_2 } ) X ( { \ theta_1 } ) \ f ]
* where
* \ f [ X ( { \ theta } ) = { \ begin { bmatrix } 1 & 0 & 0 \ \ 0 & \ cos { \ theta_1 } & - \ sin { \ theta_1 } \ \ 0 & \ sin { \ theta_1 } & \ cos { \ theta_1 } \ \ \ end { bmatrix } } ,
* Y ( { \ theta } ) = { \ begin { bmatrix } \ cos \ theta_ { 2 } & 0 & \ sin \ theta_ { 2 } \ \ 0 & 1 & 0 \ \ \ - sin \ theta_2 & 0 & \ cos \ theta_ { 2 } \ \ \ end { bmatrix } } ,
* Z ( { \ theta } ) = { \ begin { bmatrix } \ cos \ theta_ { 3 } & - \ sin \ theta_3 & 0 \ \ \ sin \ theta_3 & \ cos \ theta_3 & 0 \ \ 0 & 0 & 1 \ \ \ end { bmatrix } } .
* \ f ]
*
* The function is designed according to this set of conventions :
* - [ Right handed ] ( https : //en.wikipedia.org/wiki/Right_hand_rule) reference frames are adopted, and the [right hand rule](https://en.wikipedia.org/wiki/Right_hand_rule) is used to determine the sign of angles.
* - Each matrix is meant to represent an [ active rotation ] ( https : //en.wikipedia.org/wiki/Active_and_passive_transformation) (the composing and composed matrices
* are supposed to act on the coordinates of vectors defined in the initial fixed reference frame and give as a result the coordinates of a rotated vector defined in the same reference frame ) .
* - For \ f $ \ theta_1 \ f $ and \ f $ \ theta_3 \ f $ , the valid range is ( − π , π ] .
*
* For \ f $ \ theta_2 \ f $ , the valid range is [ − π / 2 , π / 2 ] or [ 0 , π ] .
*
* For Tait – Bryan angles , the valid range of \ f $ \ theta_2 \ f $ is [ − π / 2 , π / 2 ] . When transforming a quaternion to Euler angles , the solution of Euler angles is unique in condition of \ f $ \ theta_2 \ in ( − π / 2 , π / 2 ) \ f $ .
* If \ f $ \ theta_2 = − π / 2 \ f $ or \ f $ \ theta_2 = π / 2 \ f $ , there are infinite solutions . The common name for this situation is gimbal lock .
* For Proper Euler angles , the valid range of \ f $ \ theta_2 \ f $ is in [ 0 , π ] . The solutions of Euler angles are unique in condition of \ f $ \ theta_2 \ in ( 0 , π ) \ f $ . If \ f $ \ theta_2 = 0 \ f $ or \ f $ \ theta_2 = π \ f $ ,
* there are infinite solutions and gimbal lock will occur .
*/
enum EulerAnglesType
{
INT_XYZ , ///< Intrinsic rotations with the Euler angles type X-Y-Z
INT_XZY , ///< Intrinsic rotations with the Euler angles type X-Z-Y
INT_YXZ , ///< Intrinsic rotations with the Euler angles type Y-X-Z
INT_YZX , ///< Intrinsic rotations with the Euler angles type Y-Z-X
INT_ZXY , ///< Intrinsic rotations with the Euler angles type Z-X-Y
INT_ZYX , ///< Intrinsic rotations with the Euler angles type Z-Y-X
INT_XYX , ///< Intrinsic rotations with the Euler angles type X-Y-X
INT_XZX , ///< Intrinsic rotations with the Euler angles type X-Z-X
INT_YXY , ///< Intrinsic rotations with the Euler angles type Y-X-Y
INT_YZY , ///< Intrinsic rotations with the Euler angles type Y-Z-Y
INT_ZXZ , ///< Intrinsic rotations with the Euler angles type Z-X-Z
INT_ZYZ , ///< Intrinsic rotations with the Euler angles type Z-Y-Z
EXT_XYZ , ///< Extrinsic rotations with the Euler angles type X-Y-Z
EXT_XZY , ///< Extrinsic rotations with the Euler angles type X-Z-Y
EXT_YXZ , ///< Extrinsic rotations with the Euler angles type Y-X-Z
EXT_YZX , ///< Extrinsic rotations with the Euler angles type Y-Z-X
EXT_ZXY , ///< Extrinsic rotations with the Euler angles type Z-X-Y
EXT_ZYX , ///< Extrinsic rotations with the Euler angles type Z-Y-X
EXT_XYX , ///< Extrinsic rotations with the Euler angles type X-Y-X
EXT_XZX , ///< Extrinsic rotations with the Euler angles type X-Z-X
EXT_YXY , ///< Extrinsic rotations with the Euler angles type Y-X-Y
EXT_YZY , ///< Extrinsic rotations with the Euler angles type Y-Z-Y
EXT_ZXZ , ///< Extrinsic rotations with the Euler angles type Z-X-Z
EXT_ZYZ , ///< Extrinsic rotations with the Euler angles type Z-Y-Z
# ifndef CV_DOXYGEN
EULER_ANGLES_MAX_VALUE
# endif
} ;
} ;
template < typename _Tp > class Quat ;
template < typename _Tp > std : : ostream & operator < < ( std : : ostream & , const Quat < _Tp > & ) ;
@ -133,9 +211,9 @@ class Quat
{
static_assert ( std : : is_floating_point < _Tp > : : value , " Quaternion only make sense with type of float or double " ) ;
using value_type = _Tp ;
public :
static constexpr _Tp CV_QUAT_EPS = ( _Tp ) 1.e-6 ;
static constexpr _Tp CV_QUAT_CONVERT_THRESHOLD = ( _Tp ) 1.e-6 ;
Quat ( ) ;
@ -182,6 +260,41 @@ public:
*/
static Quat < _Tp > createFromRvec ( InputArray rvec ) ;
/**
* @ brief
* from Euler angles
*
* A quaternion can be generated from Euler angles by combining the quaternion representations of the Euler rotations .
*
* For example , if we use intrinsic rotations in the order of X - Y - Z , \ f $ \ theta_1 \ f $ is rotation around the X - axis , \ f $ \ theta_2 \ f $ is rotation around the Y - axis ,
* \ f $ \ theta_3 \ f $ is rotation around the Z - axis . The final quaternion q can be calculated by
*
* \ f [ { q } = q_ { X , \ theta_1 } q_ { Y , \ theta_2 } q_ { Z , \ theta_3 } \ f ]
* where \ f $ q_ { X , \ theta_1 } \ f $ is created from @ ref createFromXRot , \ f $ q_ { Y , \ theta_2 } \ f $ is created from @ ref createFromYRot ,
* \ f $ q_ { Z , \ theta_3 } \ f $ is created from @ ref createFromZRot .
* @ param angles the Euler angles in a vector of length 3
* @ param eulerAnglesType the convertion Euler angles type
*/
static Quat < _Tp > createFromEulerAngles ( const Vec < _Tp , 3 > & angles , QuatEnum : : EulerAnglesType eulerAnglesType ) ;
/**
* @ brief get a quaternion from a rotation about the Y - axis by \ f $ \ theta \ f $ .
* \ f [ q = \ cos ( \ theta / 2 ) + 0 i + sin ( \ theta / 2 ) j + 0 k \ f ]
*/
static Quat < _Tp > createFromYRot ( const _Tp theta ) ;
/**
* @ brief get a quaternion from a rotation about the X - axis by \ f $ \ theta \ f $ .
* \ f [ q = \ cos ( \ theta / 2 ) + sin ( \ theta / 2 ) i + 0 j + 0 k \ f ]
*/
static Quat < _Tp > createFromXRot ( const _Tp theta ) ;
/**
* @ brief get a quaternion from a rotation about the Z - axis by \ f $ \ theta \ f $ .
* \ f [ q = \ cos ( \ theta / 2 ) + 0 i + 0 j + sin ( \ theta / 2 ) k \ f ]
*/
static Quat < _Tp > createFromZRot ( const _Tp theta ) ;
/**
* @ brief a way to get element .
* @ param index over a range [ 0 , 3 ] .
@ -811,8 +924,8 @@ public:
/**
* @ brief transform a quaternion to a 3 x3 rotation matrix .
* @ param assumeUnit if QUAT_ASSUME_UNIT , this quaternion assume to be a unit quaternion and
* this function will save some computations . Otherwise , this function will normalized this
* quaternion at first then to do the transformation .
* this function will save some computations . Otherwise , this function will normalize this
* quaternion at first then do the transformation .
*
* @ note Matrix A which is to be rotated should have the form
* \ f [ \ begin { bmatrix }
@ -845,8 +958,8 @@ public:
/**
* @ brief transform a quaternion to a 4 x4 rotation matrix .
* @ param assumeUnit if QUAT_ASSUME_UNIT , this quaternion assume to be a unit quaternion and
* this function will save some computations . Otherwise , this function will normalized this
* quaternion at first then to do the transformation .
* this function will save some computations . Otherwise , this function will normalize this
* quaternion at first then do the transformation .
*
* The operations is similar as toRotMat3x3
* except that the points matrix should have the form
@ -1434,6 +1547,74 @@ public:
template < typename S >
friend std : : ostream & cv : : operator < < ( std : : ostream & , const Quat < S > & ) ;
/**
* @ brief Transform a quaternion q to Euler angles .
*
*
* When transforming a quaternion \ f $ q = w + x \ boldsymbol { i } + y \ boldsymbol { j } + z \ boldsymbol { k } \ f $ to Euler angles , rotation matrix M can be calculated by :
* \ f [ \ begin { aligned } { M } & = { \ begin { bmatrix } 1 - 2 ( y ^ { 2 } + z ^ { 2 } ) & 2 ( xy - zx ) & 2 ( xz + yw ) \ \ 2 ( xy + zw ) & 1 - 2 ( x ^ { 2 } + z ^ { 2 } ) & 2 ( yz - xw ) \ \ 2 ( xz - yw ) & 2 ( yz + xw ) & 1 - 2 ( x ^ { 2 } + y ^ { 2 } ) \ end { bmatrix } } \ end { aligned } . \ f ]
* On the other hand , the rotation matrix can be obtained from Euler angles .
* Using intrinsic rotations with Euler angles type XYZ as an example ,
* \ f $ \ theta_1 \ f $ , \ f $ \ theta_2 \ f $ , \ f $ \ theta_3 \ f $ are three angles for Euler angles , the rotation matrix R can be calculated by : \ f [ R = X ( \ theta_1 ) Y ( \ theta_2 ) Z ( \ theta_3 )
* = { \ begin { bmatrix } \ cos \ theta_ { 2 } \ cos \ theta_ { 3 } & - \ cos \ theta_ { 2 } \ sin \ theta_ { 3 } & \ sin \ theta_ { 2 } \ \ \ cos \ theta_ { 1 } \ sin \ theta_ { 3 } + \ cos \ theta_ { 3 } \ sin \ theta_ { 1 } \ sin \ theta_ { 2 } & \ cos \ theta_ { 1 } \ cos \ theta_ { 3 } - \ sin \ theta_ { 1 } \ sin \ theta_ { 2 } \ sin \ theta_ { 3 } & - \ cos \ theta_ { 2 } \ sin \ theta_ { 1 } \ \ \ sin \ theta_ { 1 } \ sin \ theta_ { 3 } - \ cos \ theta_ { 1 } \ cos \ theta_ { 3 } \ sin \ theta_ { 2 } & \ cos \ theta_ { 3 } \ sin \ theta_ { 1 } + \ cos \ theta_ { 1 } \ sin \ theta_ { 2 } \ sin \ theta_ { 3 } & \ cos \ theta_ { 1 } \ cos_ { 2 } \ end { bmatrix } } \ f ]
* Rotation matrix M and R are equal . As long as \ f $ s_ { 2 } \ neq 1 \ f $ , by comparing each element of two matrices , the solution is \ f $ \ begin { cases } \ theta_1 = \ arctan2 ( - m_ { 23 } , m_ { 33 } ) \ \ \ theta_2 = arcsin ( m_ { 13 } ) \ \ \ theta_3 = \ arctan2 ( - m_ { 12 } , m_ { 11 } ) \ end { cases } \ f $ .
*
* When \ f $ s_ { 2 } = 1 \ f $ or \ f $ s_ { 2 } = - 1 \ f $ , the gimbal lock occurs . The function will prompt " WARNING: Gimbal Lock will occur. Euler angles is non-unique. For intrinsic rotations, we set the third angle to 0, and for external rotation, we set the first angle to 0. " .
*
* When \ f $ s_ { 2 } = 1 \ f $ ,
* The rotation matrix R is \ f $ R = { \ begin { bmatrix } 0 & 0 & 1 \ \ \ sin ( \ theta_1 + \ theta_3 ) & \ cos ( \ theta_1 + \ theta_3 ) & 0 \ \ - \ cos ( \ theta_1 + \ theta_3 ) & \ sin ( \ theta_1 + \ theta_3 ) & 0 \ end { bmatrix } } \ f $ .
*
* The number of solutions is infinite with the condition \ f $ \ begin { cases } \ theta_1 + \ theta_3 = \ arctan2 ( m_ { 21 } , m_ { 22 } ) \ \ \ theta_2 = \ pi / 2 \ end { cases } \ \ f $ .
*
* We set \ f $ \ theta_3 = 0 \ f $ , the solution is \ f $ \ begin { cases } \ theta_1 = \ arctan2 ( m_ { 21 } , m_ { 22 } ) \ \ \ theta_2 = \ pi / 2 \ \ \ theta_3 = 0 \ end { cases } \ f $ .
*
* When \ f $ s_ { 2 } = - 1 \ f $ ,
* The rotation matrix R is \ f $ X_ { 1 } Y_ { 2 } Z_ { 3 } = { \ begin { bmatrix } 0 & 0 & - 1 \ \ - \ sin ( \ theta_1 - \ theta_3 ) & \ cos ( \ theta_1 - \ theta_3 ) & 0 \ \ \ cos ( \ theta_1 - \ theta_3 ) & \ sin ( \ theta_1 - \ theta_3 ) & 0 \ end { bmatrix } } \ f $ .
*
* The number of solutions is infinite with the condition \ f $ \ begin { cases } \ theta_1 + \ theta_3 = \ arctan2 ( m_ { 32 } , m_ { 22 } ) \ \ \ theta_2 = \ pi / 2 \ end { cases } \ \ f $ .
*
* We set \ f $ \ theta_3 = 0 \ f $ , the solution is \ f $ \ begin { cases } \ theta_1 = \ arctan2 ( m_ { 32 } , m_ { 22 } ) \ \ \ theta_2 = - \ pi / 2 \ \ \ theta_3 = 0 \ end { cases } \ f $ .
*
* Since \ f $ sin \ theta \ in [ - 1 , 1 ] \ f $ and \ f $ cos \ theta \ in [ - 1 , 1 ] \ f $ , the unnormalized quaternion will cause computational troubles . For this reason , this function will normalize the quaternion at first and @ ref QuatAssumeType is not needed .
*
* When the gimbal lock occurs , we set \ f $ \ theta_3 = 0 \ f $ for intrinsic rotations or \ f $ \ theta_1 = 0 \ f $ for extrinsic rotations .
*
* As a result , for every Euler angles type , we can get solution as shown in the following table .
* EulerAnglesType | Ordinary | \ f $ \ theta_2 = π / 2 \ f $ | \ f $ \ theta_2 = - π / 2 \ f $
* - - - - - - - - - - - - - | - - - - - - - - - - - - - | - - - - - - - - - - - - - | - - - - - - - - - - - - -
* INT_XYZ | \ f $ \ theta_1 = \ arctan2 ( - m_ { 23 } , m_ { 33 } ) \ \ \ theta_2 = \ arcsin ( m_ { 13 } ) \ \ \ theta_3 = \ arctan2 ( - m_ { 12 } , m_ { 11 } ) \ f $ | \ f $ \ theta_1 = \ arctan2 ( m_ { 21 } , m_ { 22 } ) \ \ \ theta_2 = \ pi / 2 \ \ \ theta_3 = 0 \ f $ | \ f $ \ theta_1 = \ arctan2 ( m_ { 32 } , m_ { 22 } ) \ \ \ theta_2 = - \ pi / 2 \ \ \ theta_3 = 0 \ f $
* INT_XZY | \ f $ \ theta_1 = \ arctan2 ( m_ { 32 } , m_ { 22 } ) \ \ \ theta_2 = - \ arcsin ( m_ { 12 } ) \ \ \ theta_3 = \ arctan2 ( m_ { 13 } , m_ { 11 } ) \ f $ | \ f $ \ theta_1 = \ arctan2 ( m_ { 31 } , m_ { 33 } ) \ \ \ theta_2 = \ pi / 2 \ \ \ theta_3 = 0 \ f $ | \ f $ \ theta_1 = \ arctan2 ( - m_ { 23 } , m_ { 33 } ) \ \ \ theta_2 = - \ pi / 2 \ \ \ theta_3 = 0 \ f $
* INT_YXZ | \ f $ \ theta_1 = \ arctan2 ( m_ { 13 } , m_ { 33 } ) \ \ \ theta_2 = - \ arcsin ( m_ { 23 } ) \ \ \ theta_3 = \ arctan2 ( m_ { 21 } , m_ { 22 } ) \ f $ | \ f $ \ theta_1 = \ arctan2 ( m_ { 12 } , m_ { 11 } ) \ \ \ theta_2 = \ pi / 2 \ \ \ theta_3 = 0 \ f $ | \ f $ \ theta_1 = \ arctan2 ( - m_ { 12 } , m_ { 11 } ) \ \ \ theta_2 = - \ pi / 2 \ \ \ theta_3 = 0 \ f $
* INT_YZX | \ f $ \ theta_1 = \ arctan2 ( - m_ { 31 } , m_ { 11 } ) \ \ \ theta_2 = \ arcsin ( m_ { 21 } ) \ \ \ theta_3 = \ arctan2 ( - m_ { 23 } , m_ { 22 } ) \ f $ | \ f $ \ theta_1 = \ arctan2 ( m_ { 13 } , m_ { 33 } ) \ \ \ theta_2 = \ pi / 2 \ \ \ theta_3 = 0 \ f $ | \ f $ \ theta_1 = \ arctan2 ( m_ { 13 } , m_ { 12 } ) \ \ \ theta_2 = - \ pi / 2 \ \ \ theta_3 = 0 \ f $
* INT_ZXY | \ f $ \ theta_1 = \ arctan2 ( - m_ { 12 } , m_ { 22 } ) \ \ \ theta_2 = \ arcsin ( m_ { 32 } ) \ \ \ theta_3 = \ arctan2 ( - m_ { 31 } , m_ { 33 } ) \ f $ | \ f $ \ theta_1 = \ arctan2 ( m_ { 21 } , m_ { 11 } ) \ \ \ theta_2 = \ pi / 2 \ \ \ theta_3 = 0 \ f $ | \ f $ \ theta_1 = \ arctan2 ( m_ { 21 } , m_ { 11 } ) \ \ \ theta_2 = - \ pi / 2 \ \ \ theta_3 = 0 \ f $
* INT_ZYX | \ f $ \ theta_1 = \ arctan2 ( m_ { 21 } , m_ { 11 } ) \ \ \ theta_2 = \ arcsin ( - m_ { 31 } ) \ \ \ theta_3 = \ arctan2 ( m_ { 32 } , m_ { 33 } ) \ f $ | \ f $ \ theta_1 = \ arctan2 ( m_ { 23 } , m_ { 22 } ) \ \ \ theta_2 = \ pi / 2 \ \ \ theta_3 = 0 \ f $ | \ f $ \ theta_1 = \ arctan2 ( - m_ { 12 } , m_ { 22 } ) \ \ \ theta_2 = - \ pi / 2 \ \ \ theta_3 = 0 \ f $
* EXT_XYZ | \ f $ \ theta_1 = \ arctan2 ( m_ { 32 } , m_ { 33 } ) \ \ \ theta_2 = \ arcsin ( - m_ { 31 } ) \ \ \ \ theta_3 = \ arctan2 ( m_ { 21 } , m_ { 11 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = \ pi / 2 \ \ \ theta_3 = \ arctan2 ( m_ { 23 } , m_ { 22 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = - \ pi / 2 \ \ \ theta_3 = \ arctan2 ( - m_ { 12 } , m_ { 22 } ) \ f $
* EXT_XZY | \ f $ \ theta_1 = \ arctan2 ( - m_ { 23 } , m_ { 22 } ) \ \ \ theta_2 = \ arcsin ( m_ { 21 } ) \ \ \ theta_3 = \ arctan2 ( - m_ { 31 } , m_ { 11 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = \ pi / 2 \ \ \ theta_3 = \ arctan2 ( m_ { 13 } , m_ { 33 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = - \ pi / 2 \ \ \ theta_3 = \ arctan2 ( m_ { 13 } , m_ { 12 } ) \ f $
* EXT_YXZ | \ f $ \ theta_1 = \ arctan2 ( - m_ { 31 } , m_ { 33 } ) \ \ \ theta_2 = \ arcsin ( m_ { 32 } ) \ \ \ theta_3 = \ arctan2 ( - m_ { 12 } , m_ { 22 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = \ pi / 2 \ \ \ theta_3 = \ arctan2 ( m_ { 21 } , m_ { 11 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = - \ pi / 2 \ \ \ theta_3 = \ arctan2 ( m_ { 21 } , m_ { 11 } ) \ f $
* EXT_YZX | \ f $ \ theta_1 = \ arctan2 ( m_ { 13 } , m_ { 11 } ) \ \ \ theta_2 = - \ arcsin ( m_ { 12 } ) \ \ \ theta_3 = \ arctan2 ( m_ { 32 } , m_ { 22 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = \ pi / 2 \ \ \ theta_3 = \ arctan2 ( m_ { 31 } , m_ { 33 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = - \ pi / 2 \ \ \ theta_3 = \ arctan2 ( - m_ { 23 } , m_ { 33 } ) \ f $
* EXT_ZXY | \ f $ \ theta_1 = \ arctan2 ( m_ { 21 } , m_ { 22 } ) \ \ \ theta_2 = - \ arcsin ( m_ { 23 } ) \ \ \ theta_3 = \ arctan2 ( m_ { 13 } , m_ { 33 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = \ pi / 2 \ \ \ theta_3 = \ arctan2 ( m_ { 12 } , m_ { 11 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = - \ pi / 2 \ \ \ theta_3 = \ arctan2 ( - m_ { 12 } , m_ { 11 } ) \ f $
* EXT_ZYX | \ f $ \ theta_1 = \ arctan2 ( - m_ { 12 } , m_ { 11 } ) \ \ \ theta_2 = \ arcsin ( m_ { 13 } ) \ \ \ theta_3 = \ arctan2 ( - m_ { 23 } , m_ { 33 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = \ pi / 2 \ \ \ theta_3 = \ arctan2 ( m_ { 21 } , m_ { 22 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = - \ pi / 2 \ \ \ theta_3 = \ arctan2 ( m_ { 32 } , m_ { 22 } ) \ f $
*
* EulerAnglesType | Ordinary | \ f $ \ theta_2 = 0 \ f $ | \ f $ \ theta_2 = π \ f $
* - - - - - - - - - - - - - | - - - - - - - - - - - - - | - - - - - - - - - - - - - | - - - - - - - - - - - - -
* INT_XYX | \ f $ \ theta_1 = \ arctan2 ( m_ { 21 } , - m_ { 31 } ) \ \ \ theta_2 = \ arccos ( m_ { 11 } ) \ \ \ theta_3 = \ arctan2 ( m_ { 12 } , m_ { 13 } ) \ f $ | \ f $ \ theta_1 = \ arctan2 ( m_ { 32 } , m_ { 33 } ) \ \ \ theta_2 = 0 \ \ \ theta_3 = 0 \ f $ | \ f $ \ theta_1 = \ arctan2 ( m_ { 23 } , m_ { 22 } ) \ \ \ theta_2 = \ pi \ \ \ theta_3 = 0 \ f $
* INT_XZX | \ f $ \ theta_1 = \ arctan2 ( m_ { 31 } , m_ { 21 } ) \ \ \ theta_2 = \ arccos ( m_ { 11 } ) \ \ \ theta_3 = \ arctan2 ( m_ { 13 } , - m_ { 12 } ) \ f $ | \ f $ \ theta_1 = \ arctan2 ( m_ { 32 } , m_ { 33 } ) \ \ \ theta_2 = 0 \ \ \ theta_3 = 0 \ f $ | \ f $ \ theta_1 = \ arctan2 ( - m_ { 32 } , m_ { 33 } ) \ \ \ theta_2 = \ pi \ \ \ theta_3 = 0 \ f $
* INT_YXY | \ f $ \ theta_1 = \ arctan2 ( m_ { 12 } , m_ { 32 } ) \ \ \ theta_2 = \ arccos ( m_ { 22 } ) \ \ \ theta_3 = \ arctan2 ( m_ { 21 } , - m_ { 23 } ) \ f $ | \ f $ \ theta_1 = \ arctan2 ( m_ { 13 } , m_ { 11 } ) \ \ \ theta_2 = 0 \ \ \ theta_3 = 0 \ f $ | \ f $ \ theta_1 = \ arctan2 ( - m_ { 31 } , m_ { 11 } ) \ \ \ theta_2 = \ pi \ \ \ theta_3 = 0 \ f $
* INT_YZY | \ f $ \ theta_1 = \ arctan2 ( m_ { 32 } , - m_ { 12 } ) \ \ \ theta_2 = \ arccos ( m_ { 22 } ) \ \ \ theta_3 = \ arctan2 ( m_ { 23 } , m_ { 21 } ) \ f $ | \ f $ \ theta_1 = \ arctan2 ( m_ { 13 } , m_ { 11 } ) \ \ \ theta_2 = 0 \ \ \ theta_3 = 0 \ f $ | \ f $ \ theta_1 = \ arctan2 ( m_ { 13 } , - m_ { 11 } ) \ \ \ theta_2 = \ pi \ \ \ theta_3 = 0 \ f $
* INT_ZXZ | \ f $ \ theta_1 = \ arctan2 ( - m_ { 13 } , m_ { 23 } ) \ \ \ theta_2 = \ arccos ( m_ { 33 } ) \ \ \ theta_3 = \ arctan2 ( m_ { 31 } , m_ { 32 } ) \ f $ | \ f $ \ theta_1 = \ arctan2 ( m_ { 21 } , m_ { 22 } ) \ \ \ theta_2 = 0 \ \ \ theta_3 = 0 \ f $ | \ f $ \ theta_1 = \ arctan2 ( m_ { 21 } , m_ { 11 } ) \ \ \ theta_2 = \ pi \ \ \ theta_3 = 0 \ f $
* INT_ZYZ | \ f $ \ theta_1 = \ arctan2 ( m_ { 23 } , m_ { 13 } ) \ \ \ theta_2 = \ arccos ( m_ { 33 } ) \ \ \ theta_3 = \ arctan2 ( m_ { 32 } , - m_ { 31 } ) \ f $ | \ f $ \ theta_1 = \ arctan2 ( m_ { 21 } , m_ { 11 } ) \ \ \ theta_2 = 0 \ \ \ theta_3 = 0 \ f $ | \ f $ \ theta_1 = \ arctan2 ( m_ { 21 } , m_ { 11 } ) \ \ \ theta_2 = \ pi \ \ \ theta_3 = 0 \ f $
* EXT_XYX | \ f $ \ theta_1 = \ arctan2 ( m_ { 12 } , m_ { 13 } ) \ \ \ theta_2 = \ arccos ( m_ { 11 } ) \ \ \ theta_3 = \ arctan2 ( m_ { 21 } , - m_ { 31 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = 0 \ \ \ theta_3 = \ arctan2 ( m_ { 32 } , m_ { 33 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = \ pi \ \ \ theta_3 = \ arctan2 ( m_ { 23 } , m_ { 22 } ) \ f $
* EXT_XZX | \ f $ \ theta_1 = \ arctan2 ( m_ { 13 } , - m_ { 12 } ) \ \ \ theta_2 = \ arccos ( m_ { 11 } ) \ \ \ theta_3 = \ arctan2 ( m_ { 31 } , m_ { 21 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = 0 \ \ \ theta_3 = \ arctan2 ( m_ { 32 } , m_ { 33 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = \ pi \ \ \ theta_3 = \ arctan2 ( - m_ { 32 } , m_ { 33 } ) \ f $
* EXT_YXY | \ f $ \ theta_1 = \ arctan2 ( m_ { 21 } , - m_ { 23 } ) \ \ \ theta_2 = \ arccos ( m_ { 22 } ) \ \ \ theta_3 = \ arctan2 ( m_ { 12 } , m_ { 32 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = 0 \ \ \ theta_3 = \ arctan2 ( m_ { 13 } , m_ { 11 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = \ pi \ \ \ theta_3 = \ arctan2 ( - m_ { 31 } , m_ { 11 } ) \ f $
* EXT_YZY | \ f $ \ theta_1 = \ arctan2 ( m_ { 23 } , m_ { 21 } ) \ \ \ theta_2 = \ arccos ( m_ { 22 } ) \ \ \ theta_3 = \ arctan2 ( m_ { 32 } , - m_ { 12 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = 0 \ \ \ theta_3 = \ arctan2 ( m_ { 13 } , m_ { 11 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = \ pi \ \ \ theta_3 = \ arctan2 ( m_ { 13 } , - m_ { 11 } ) \ f $
* EXT_ZXZ | \ f $ \ theta_1 = \ arctan2 ( m_ { 31 } , m_ { 32 } ) \ \ \ theta_2 = \ arccos ( m_ { 33 } ) \ \ \ theta_3 = \ arctan2 ( - m_ { 13 } , m_ { 23 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = 0 \ \ \ theta_3 = \ arctan2 ( m_ { 21 } , m_ { 22 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = \ pi \ \ \ theta_3 = \ arctan2 ( m_ { 21 } , m_ { 11 } ) \ f $
* EXT_ZYZ | \ f $ \ theta_1 = \ arctan2 ( m_ { 32 } , - m_ { 31 } ) \ \ \ theta_2 = \ arccos ( m_ { 33 } ) \ \ \ theta_3 = \ arctan2 ( m_ { 23 } , m_ { 13 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = 0 \ \ \ theta_3 = \ arctan2 ( m_ { 21 } , m_ { 11 } ) \ f $ | \ f $ \ theta_1 = 0 \ \ \ theta_2 = \ pi \ \ \ theta_3 = \ arctan2 ( m_ { 21 } , m_ { 11 } ) \ f $
*
* @ param eulerAnglesType the convertion Euler angles type
*/
Vec < _Tp , 3 > toEulerAngles ( QuatEnum : : EulerAnglesType eulerAnglesType ) ;
_Tp w , x , y , z ;
} ;