updated documentation to reflect newer changes to LogisticRegression class

pull/3119/head
Rahul Kavi 11 years ago committed by Maksim Shabunin
parent 64aaa6e1ae
commit e4a90c19cc
  1. 112
      modules/ml/doc/logistic_regression.rst

@ -7,7 +7,7 @@ ML implements logistic regression, which is a probabilistic classification techn
Like SVM, Logistic Regression can be extended to work on multi-class classification problems like digit recognition (i.e. recognizing digitis like 0,1 2, 3,... from the given images).
This version of Logistic Regression supports both binary and multi-class classifications (for multi-class it creates a multiple 2-class classifiers).
In order to train the logistic regression classifier, Batch Gradient Descent and Mini-Batch Gradient Descent algorithms are used (see [BatchDesWiki]_).
Logistic Regression is a discriminative classifier (see [LogRegTomMitch]_ for more details). Logistic Regression is implemented as a C++ class in ``CvLR``.
Logistic Regression is a discriminative classifier (see [LogRegTomMitch]_ for more details). Logistic Regression is implemented as a C++ class in ``LogisticRegression``.
In Logistic Regression, we try to optimize the training paramater
@ -28,26 +28,26 @@ or class 0 if
.
In Logistic Regression, choosing the right parameters is of utmost importance for reducing the training error and ensuring high training accuracy.
``CvLR_TrainParams`` is the structure that defines parameters that are required to train a Logistic Regression classifier.
The learning rate is determined by ``CvLR_TrainParams.alpha``. It determines how faster we approach the solution.
It is a positive real number. Optimization algorithms like Batch Gradient Descent and Mini-Batch Gradient Descent are supported in ``CvLR``.
``LogisticRegressionParams`` is the structure that defines parameters that are required to train a Logistic Regression classifier.
The learning rate is determined by ``LogisticRegressionParams.alpha``. It determines how faster we approach the solution.
It is a positive real number. Optimization algorithms like Batch Gradient Descent and Mini-Batch Gradient Descent are supported in ``LogisticRegression``.
It is important that we mention the number of iterations these optimization algorithms have to run.
The number of iterations are mentioned by ``CvLR_TrainParams.num_iters``.
The number of iterations are mentioned by ``LogisticRegressionParams.num_iters``.
The number of iterations can be thought as number of steps taken and learning rate specifies if it is a long step or a short step. These two parameters define how fast we arrive at a possible solution.
In order to compensate for overfitting regularization is performed, which can be enabled by setting ``CvLR_TrainParams.regularized`` to a positive integer (greater than zero).
One can specify what kind of regularization has to be performed by setting ``CvLR_TrainParams.norm`` to ``CvLR::REG_L1`` or ``CvLR::REG_L2`` values.
``CvLR`` provides a choice of 2 training methods with Batch Gradient Descent or the Mini-Batch Gradient Descent. To specify this, set ``CvLR_TrainParams.train_method`` to either ``CvLR::BATCH`` or ``CvLR::MINI_BATCH``.
If ``CvLR_TrainParams`` is set to ``CvLR::MINI_BATCH``, the size of the mini batch has to be to a postive integer using ``CvLR_TrainParams.minibatchsize``.
In order to compensate for overfitting regularization is performed, which can be enabled by setting ``LogisticRegressionParams.regularized`` to a positive integer (greater than zero).
One can specify what kind of regularization has to be performed by setting ``LogisticRegressionParams.norm`` to ``LogisticRegression::REG_L1`` or ``LogisticRegression::REG_L2`` values.
``LogisticRegression`` provides a choice of 2 training methods with Batch Gradient Descent or the Mini-Batch Gradient Descent. To specify this, set ``LogisticRegressionParams.train_method`` to either ``LogisticRegression::BATCH`` or ``LogisticRegression::MINI_BATCH``.
If ``LogisticRegressionParams`` is set to ``LogisticRegression::MINI_BATCH``, the size of the mini batch has to be to a postive integer using ``LogisticRegressionParams.mini_batch_size``.
A sample set of training parameters for the Logistic Regression classifier can be initialized as follows:
::
CvLR_TrainParams params;
LogisticRegressionParams params;
params.alpha = 0.5;
params.num_iters = 10000;
params.norm = CvLR::REG_L2;
params.norm = LogisticRegression::REG_L2;
params.regularized = 1;
params.train_method = CvLR::MINI_BATCH;
params.minibatchsize = 10;
params.train_method = LogisticRegression::MINI_BATCH;
params.mini_batch_size = 10;
.. [LogRegWiki] http://en.wikipedia.org/wiki/Logistic_regression. Wikipedia article about the Logistic Regression algorithm.
@ -56,9 +56,9 @@ A sample set of training parameters for the Logistic Regression classifier can b
.. [LogRegTomMitch] http://www.cs.cmu.edu/~tom/NewChapters.html. "Generative and Discriminative Classifiers: Naive Bayes and Logistic Regression" in Machine Learning, Tom Mitchell.
.. [BatchDesWiki] http://en.wikipedia.org/wiki/Gradient_descent_optimization. Wikipedia article about Gradient Descent based optimization.
CvLR_TrainParams
----------------
.. ocv:struct:: CvLR_TrainParams
LogisticRegressionParams
------------------------
.. ocv:struct:: LogisticRegressionParams
Parameters of the Logistic Regression training algorithm. You can initialize the structure using a constructor or declaring the variable and initializing the the individual parameters.
@ -74,7 +74,7 @@ CvLR_TrainParams
.. ocv:member:: int norm
The type of normalization applied. It takes value ``CvLR::L1`` or ``CvLR::L2``.
The type of normalization applied. It takes value ``LogisticRegression::L1`` or ``LogisticRegression::L2``.
.. ocv:member:: int regularized
@ -82,89 +82,95 @@ CvLR_TrainParams
.. ocv:member:: int train_method
The kind of training method used to train the classifier. It should be set to either ``CvLR::BATCH`` or ``CvLR::MINI_BATCH``.
The kind of training method used to train the classifier. It should be set to either ``LogisticRegression::BATCH`` or ``LogisticRegression::MINI_BATCH``.
.. ocv:member:: int minibatchsize
.. ocv:member:: int mini_batch_size
If the training method is set to CvLR::MINI_BATCH, it has to be set to positive integer. It can range from 1 to number of training samples.
If the training method is set to LogisticRegression::MINI_BATCH, it has to be set to positive integer. It can range from 1 to number of training samples.
CvLR_TrainParams::CvLR_TrainParams
----------------------------------
LogisticRegressionParams::LogisticRegressionParams
--------------------------------------------------
The constructors.
.. ocv:function:: CvLR_TrainParams::CvLR_TrainParams()
.. ocv:function:: LogisticRegressionParams::LogisticRegressionParams()
.. ocv:function:: CvLR_TrainParams::CvLR_TrainParams(double alpha, int num_iters, int norm, int regularized, int train_method, int minbatchsize)
.. ocv:function:: LogisticRegressionParams::LogisticRegressionParams(double alpha, int num_iters, int norm, int regularized, int train_method, int minbatchsize)
:param alpha: Specifies the learning rate.
:param num_iters: Specifies the number of iterations.
:param norm: Specifies the kind of regularization to be applied. ``CvLR::REG_L1`` or ``CvLR::REG_L2``. To use this, set ``CvLR_TrainParams.regularized`` to a integer greater than zero.
:param norm: Specifies the kind of regularization to be applied. ``LogisticRegression::REG_L1`` or ``LogisticRegression::REG_L2``. To use this, set ``LogisticRegressionParams.regularized`` to a integer greater than zero.
:param: regularized: To enable or disable regularization. Set to positive integer (greater than zero) to enable and to 0 to disable.
:param: train_method: Specifies the kind of training method used. It should be set to either ``CvLR::BATCH`` or ``CvLR::MINI_BATCH``. If using ``CvLR::MINI_BATCH``, set ``CvLR_TrainParams.minibatchsize`` to a positive integer.
:param: train_method: Specifies the kind of training method used. It should be set to either ``LogisticRegression::BATCH`` or ``LogisticRegression::MINI_BATCH``. If using ``LogisticRegression::MINI_BATCH``, set ``LogisticRegressionParams.mini_batch_size`` to a positive integer.
:param: minibatchsize: Specifies the number of training samples taken in each step of Mini-Batch Gradient Descent.
:param: mini_batch_size: Specifies the number of training samples taken in each step of Mini-Batch Gradient Descent.
By initializing this structure, one can set all the parameters required for Logistic Regression classifier.
CvLR
----
.. ocv:class:: CvLR : public CvStatModel
LogisticRegression
------------------
.. ocv:class:: LogisticRegression : public CvStatModel
Implements Logistic Regression classifier.
CvLR::CvLR
----------
LogisticRegression::LogisticRegression
--------------------------------------
The constructors.
.. ocv:function:: CvLR::CvLR()
.. ocv:function:: LogisticRegression::LogisticRegression()
.. ocv:function:: CvLR::CvLR(const cv::Mat& data, const cv::Mat& labels, const CvLR_TrainParams& params)
.. ocv:function:: LogisticRegression::LogisticRegression(cv::InputArray data_ip, cv::InputArray labels_ip, const LogisticRegressionParams& params);
:param data: The data variable of type ``CV_32F``. Each data instance has to be arranged per across different rows.
:param labels: The data variable of type ``CV_32F``. Each label instance has to be arranged across differnet rows.
:param labels_ip: The data variable of type ``CV_32F``. Each label instance has to be arranged across different rows.
:param params: The training parameters for the classifier of type ``CVLR_TrainParams``.
:param params: The training parameters for the classifier of type ``LogisticRegressionParams``.
The constructor with parameters allows to create a Logistic Regression object intialized with given data and trains it.
CvLR::train
-----------
LogisticRegression::train
-------------------------
Trains the Logistic Regression classifier and returns true if successful.
.. ocv:function:: bool CvLR::train(const cv::Mat& data, const cv::Mat& labels)
.. ocv:function:: bool LogisticRegression::train(cv::InputArray data_ip, cv::InputArray label_ip)
:param data: The data variable of type ``CV_32F``. Each data instance has to be arranged per across different rows.
:param data_ip: An InputArray variable of type ``CV_32F``. Each data instance has to be arranged per across different rows.
:param labels: The data variable of type ``CV_32F``. Each label instance has to be arranged across differnet rows.
:param labels_ip: An InputArray variable of type ``CV_32F``. Each label instance has to be arranged across differnet rows.
CvLR::predict
-------------
LogisticRegression::predict
---------------------------
Predicts responses for input samples and returns a float type.
.. ocv:function:: float CvLR::predict(const Mat& data)
:param data: The data variable should be a row matrix and of type ``CV_32F``.
.. ocv:function:: float CvLR::predict( const Mat& data, Mat& predicted_labels )
.. ocv:function:: void LogisticRegression::predict( cv::InputArray data, cv::OutputArray predicted_labels ) const;
:param data: The input data for the prediction algorithm. The ``data`` variable should be of type ``CV_32F``.
:param predicted_labels: Predicted labels as a column matrix and of type ``CV_32S``.
The function ``CvLR::predict(const Mat& data)`` returns the label of single data variable. It should be used if data contains only 1 row.
CvLR::get_learnt_mat()
----------------------
LogisticRegression::get_learnt_thetas
---------------------------------------
This function returns the trained paramters arranged across rows. For a two class classifcation problem, it returns a row matrix.
.. ocv:function:: cv::Mat CvLR::get_learnt_mat()
.. ocv:function:: cv::Mat LogisticRegression::get_learnt_thetas()
It returns learnt paramters of the Logistic Regression as a matrix of type ``CV_32F``.
LogisticRegression::save
------------------------
This function saves the trained LogisticRegression clasifier to disk.
.. ocv:function:: void LogisticRegression::save(string filepath) const
LogisticRegression::load
------------------------
This function loads the trained LogisticRegression clasifier from disk.
.. ocv:function:: void LogisticRegression::load(const string filepath)

Loading…
Cancel
Save