|
|
|
@ -94,7 +94,6 @@ typedef struct CvHidHaarClassifierCascade |
|
|
|
|
sqsumtype *pq0, *pq1, *pq2, *pq3; |
|
|
|
|
sumtype *p0, *p1, *p2, *p3; |
|
|
|
|
|
|
|
|
|
void** ipp_stages; |
|
|
|
|
bool is_tree; |
|
|
|
|
bool isStumpBased; |
|
|
|
|
} CvHidHaarClassifierCascade; |
|
|
|
@ -128,23 +127,6 @@ icvReleaseHidHaarClassifierCascade( CvHidHaarClassifierCascade** _cascade ) |
|
|
|
|
{ |
|
|
|
|
if( _cascade && *_cascade ) |
|
|
|
|
{ |
|
|
|
|
#ifdef HAVE_IPP |
|
|
|
|
CvHidHaarClassifierCascade* cascade = *_cascade; |
|
|
|
|
if( CV_IPP_CHECK_COND && cascade->ipp_stages ) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
for( i = 0; i < cascade->count; i++ ) |
|
|
|
|
{ |
|
|
|
|
if( cascade->ipp_stages[i] ) |
|
|
|
|
#if IPP_VERSION_X100 < 900 && !IPP_DISABLE_HAAR |
|
|
|
|
ippiHaarClassifierFree_32f( (IppiHaarClassifier_32f*)cascade->ipp_stages[i] ); |
|
|
|
|
#else |
|
|
|
|
cvFree(&cascade->ipp_stages[i]); |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
cvFree( &cascade->ipp_stages ); |
|
|
|
|
#endif |
|
|
|
|
cvFree( _cascade ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -153,10 +135,6 @@ icvReleaseHidHaarClassifierCascade( CvHidHaarClassifierCascade** _cascade ) |
|
|
|
|
static CvHidHaarClassifierCascade* |
|
|
|
|
icvCreateHidHaarClassifierCascade( CvHaarClassifierCascade* cascade ) |
|
|
|
|
{ |
|
|
|
|
CvRect* ipp_features = 0; |
|
|
|
|
float *ipp_weights = 0, *ipp_thresholds = 0, *ipp_val1 = 0, *ipp_val2 = 0; |
|
|
|
|
int* ipp_counts = 0; |
|
|
|
|
|
|
|
|
|
CvHidHaarClassifierCascade* out = 0; |
|
|
|
|
|
|
|
|
|
int i, j, k, l; |
|
|
|
@ -312,72 +290,9 @@ icvCreateHidHaarClassifierCascade( CvHaarClassifierCascade* cascade ) |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#if defined HAVE_IPP && !IPP_DISABLE_HAAR |
|
|
|
|
int can_use_ipp = CV_IPP_CHECK_COND && (!out->has_tilted_features && !out->is_tree && out->isStumpBased); |
|
|
|
|
|
|
|
|
|
if( can_use_ipp ) |
|
|
|
|
{ |
|
|
|
|
int ipp_datasize = cascade->count*sizeof(out->ipp_stages[0]); |
|
|
|
|
float ipp_weight_scale=(float)(1./((orig_window_size.width-icv_object_win_border*2)* |
|
|
|
|
(orig_window_size.height-icv_object_win_border*2))); |
|
|
|
|
|
|
|
|
|
out->ipp_stages = (void**)cvAlloc( ipp_datasize ); |
|
|
|
|
memset( out->ipp_stages, 0, ipp_datasize ); |
|
|
|
|
|
|
|
|
|
ipp_features = (CvRect*)cvAlloc( max_count*3*sizeof(ipp_features[0]) ); |
|
|
|
|
ipp_weights = (float*)cvAlloc( max_count*3*sizeof(ipp_weights[0]) ); |
|
|
|
|
ipp_thresholds = (float*)cvAlloc( max_count*sizeof(ipp_thresholds[0]) ); |
|
|
|
|
ipp_val1 = (float*)cvAlloc( max_count*sizeof(ipp_val1[0]) ); |
|
|
|
|
ipp_val2 = (float*)cvAlloc( max_count*sizeof(ipp_val2[0]) ); |
|
|
|
|
ipp_counts = (int*)cvAlloc( max_count*sizeof(ipp_counts[0]) ); |
|
|
|
|
|
|
|
|
|
for( i = 0; i < cascade->count; i++ ) |
|
|
|
|
{ |
|
|
|
|
CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i; |
|
|
|
|
for( j = 0, k = 0; j < stage_classifier->count; j++ ) |
|
|
|
|
{ |
|
|
|
|
CvHaarClassifier* classifier = stage_classifier->classifier + j; |
|
|
|
|
int rect_count = 2 + (classifier->haar_feature->rect[2].r.width != 0); |
|
|
|
|
|
|
|
|
|
ipp_thresholds[j] = classifier->threshold[0]; |
|
|
|
|
ipp_val1[j] = classifier->alpha[0]; |
|
|
|
|
ipp_val2[j] = classifier->alpha[1]; |
|
|
|
|
ipp_counts[j] = rect_count; |
|
|
|
|
|
|
|
|
|
for( l = 0; l < rect_count; l++, k++ ) |
|
|
|
|
{ |
|
|
|
|
ipp_features[k] = classifier->haar_feature->rect[l].r; |
|
|
|
|
//ipp_features[k].y = orig_window_size.height - ipp_features[k].y - ipp_features[k].height;
|
|
|
|
|
ipp_weights[k] = classifier->haar_feature->rect[l].weight*ipp_weight_scale; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( ippiHaarClassifierInitAlloc_32f( (IppiHaarClassifier_32f**)&out->ipp_stages[i], |
|
|
|
|
(const IppiRect*)ipp_features, ipp_weights, ipp_thresholds, |
|
|
|
|
ipp_val1, ipp_val2, ipp_counts, stage_classifier->count ) < 0 ) |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( i < cascade->count ) |
|
|
|
|
{ |
|
|
|
|
for( j = 0; j < i; j++ ) |
|
|
|
|
if( out->ipp_stages[i] ) |
|
|
|
|
ippiHaarClassifierFree_32f( (IppiHaarClassifier_32f*)out->ipp_stages[i] ); |
|
|
|
|
cvFree( &out->ipp_stages ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
cascade->hid_cascade = out; |
|
|
|
|
assert( (char*)haar_node_ptr - (char*)out <= datasize ); |
|
|
|
|
|
|
|
|
|
cvFree( &ipp_features ); |
|
|
|
|
cvFree( &ipp_weights ); |
|
|
|
|
cvFree( &ipp_thresholds ); |
|
|
|
|
cvFree( &ipp_val1 ); |
|
|
|
|
cvFree( &ipp_val2 ); |
|
|
|
|
cvFree( &ipp_counts ); |
|
|
|
|
|
|
|
|
|
return out; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -975,120 +890,54 @@ public: |
|
|
|
|
std::vector<int> rejectLevelsLocal; |
|
|
|
|
std::vector<double> levelWeightsLocal; |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_IPP |
|
|
|
|
if(CV_IPP_CHECK_COND && cascade->hid_cascade->ipp_stages ) |
|
|
|
|
{ |
|
|
|
|
IppiRect iequRect = {equRect.x, equRect.y, equRect.width, equRect.height}; |
|
|
|
|
CV_INSTRUMENT_FUN_IPP(ippiRectStdDev_32f_C1R, sum1.ptr<float>(y1), (int)sum1.step, |
|
|
|
|
sqsum1.ptr<double>(y1), (int)sqsum1.step, |
|
|
|
|
norm1->ptr<float>(y1), (int)norm1->step, |
|
|
|
|
ippiSize(ssz.width, ssz.height), iequRect); |
|
|
|
|
|
|
|
|
|
int positive = (ssz.width/ystep)*((ssz.height + ystep-1)/ystep); |
|
|
|
|
|
|
|
|
|
if( ystep == 1 ) |
|
|
|
|
(*mask1) = Scalar::all(1); |
|
|
|
|
else |
|
|
|
|
for( y = y1; y < y2; y++ ) |
|
|
|
|
{ |
|
|
|
|
uchar* mask1row = mask1->ptr(y); |
|
|
|
|
memset( mask1row, 0, ssz.width ); |
|
|
|
|
|
|
|
|
|
if( y % ystep == 0 ) |
|
|
|
|
for( x = 0; x < ssz.width; x += ystep ) |
|
|
|
|
mask1row[x] = (uchar)1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for( int j = 0; j < cascade->count; j++ ) |
|
|
|
|
for( y = y1; y < y2; y += ystep ) |
|
|
|
|
for( x = 0; x < ssz.width; x += ystep ) |
|
|
|
|
{ |
|
|
|
|
if (CV_INSTRUMENT_FUN_IPP(ippiApplyHaarClassifier_32f_C1R, |
|
|
|
|
sum1.ptr<float>(y1), (int)sum1.step, |
|
|
|
|
norm1->ptr<float>(y1), (int)norm1->step, |
|
|
|
|
mask1->ptr<uchar>(y1), (int)mask1->step, |
|
|
|
|
ippiSize(ssz.width, ssz.height), &positive, |
|
|
|
|
cascade->hid_cascade->stage_classifier[j].threshold, |
|
|
|
|
(IppiHaarClassifier_32f*)cascade->hid_cascade->ipp_stages[j]) < 0 ) |
|
|
|
|
positive = 0; |
|
|
|
|
if( positive <= 0 ) |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
CV_IMPL_ADD(CV_IMPL_IPP|CV_IMPL_MT); |
|
|
|
|
|
|
|
|
|
if( positive > 0 ) |
|
|
|
|
for( y = y1; y < y2; y += ystep ) |
|
|
|
|
double gypWeight; |
|
|
|
|
int result = cvRunHaarClassifierCascadeSum( cascade, cvPoint(x,y), gypWeight, 0 ); |
|
|
|
|
if( rejectLevels ) |
|
|
|
|
{ |
|
|
|
|
uchar* mask1row = mask1->ptr(y); |
|
|
|
|
for( x = 0; x < ssz.width; x += ystep ) |
|
|
|
|
if( mask1row[x] != 0 ) |
|
|
|
|
{ |
|
|
|
|
vecLocal.push_back(Rect(cvRound(x*factor), cvRound(y*factor), |
|
|
|
|
winSize.width, winSize.height)); |
|
|
|
|
|
|
|
|
|
if (vecLocal.size() >= PARALLEL_LOOP_BATCH_SIZE) |
|
|
|
|
{ |
|
|
|
|
mtx->lock(); |
|
|
|
|
vec->insert(vec->end(), vecLocal.begin(), vecLocal.end()); |
|
|
|
|
mtx->unlock(); |
|
|
|
|
|
|
|
|
|
vecLocal.clear(); |
|
|
|
|
} |
|
|
|
|
if( --positive == 0 ) |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
if( positive == 0 ) |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
#endif // IPP
|
|
|
|
|
for( y = y1; y < y2; y += ystep ) |
|
|
|
|
for( x = 0; x < ssz.width; x += ystep ) |
|
|
|
|
{ |
|
|
|
|
double gypWeight; |
|
|
|
|
int result = cvRunHaarClassifierCascadeSum( cascade, cvPoint(x,y), gypWeight, 0 ); |
|
|
|
|
if( rejectLevels ) |
|
|
|
|
if( result == 1 ) |
|
|
|
|
result = -1*cascade->count; |
|
|
|
|
if( cascade->count + result < 4 ) |
|
|
|
|
{ |
|
|
|
|
if( result == 1 ) |
|
|
|
|
result = -1*cascade->count; |
|
|
|
|
if( cascade->count + result < 4 ) |
|
|
|
|
vecLocal.push_back(Rect(cvRound(x*factor), cvRound(y*factor), |
|
|
|
|
winSize.width, winSize.height)); |
|
|
|
|
rejectLevelsLocal.push_back(-result); |
|
|
|
|
levelWeightsLocal.push_back(gypWeight); |
|
|
|
|
|
|
|
|
|
if (vecLocal.size() >= PARALLEL_LOOP_BATCH_SIZE) |
|
|
|
|
{ |
|
|
|
|
vecLocal.push_back(Rect(cvRound(x*factor), cvRound(y*factor), |
|
|
|
|
winSize.width, winSize.height)); |
|
|
|
|
rejectLevelsLocal.push_back(-result); |
|
|
|
|
levelWeightsLocal.push_back(gypWeight); |
|
|
|
|
|
|
|
|
|
if (vecLocal.size() >= PARALLEL_LOOP_BATCH_SIZE) |
|
|
|
|
{ |
|
|
|
|
mtx->lock(); |
|
|
|
|
vec->insert(vec->end(), vecLocal.begin(), vecLocal.end()); |
|
|
|
|
rejectLevels->insert(rejectLevels->end(), rejectLevelsLocal.begin(), rejectLevelsLocal.end()); |
|
|
|
|
levelWeights->insert(levelWeights->end(), levelWeightsLocal.begin(), levelWeightsLocal.end()); |
|
|
|
|
mtx->unlock(); |
|
|
|
|
|
|
|
|
|
vecLocal.clear(); |
|
|
|
|
rejectLevelsLocal.clear(); |
|
|
|
|
levelWeightsLocal.clear(); |
|
|
|
|
} |
|
|
|
|
mtx->lock(); |
|
|
|
|
vec->insert(vec->end(), vecLocal.begin(), vecLocal.end()); |
|
|
|
|
rejectLevels->insert(rejectLevels->end(), rejectLevelsLocal.begin(), rejectLevelsLocal.end()); |
|
|
|
|
levelWeights->insert(levelWeights->end(), levelWeightsLocal.begin(), levelWeightsLocal.end()); |
|
|
|
|
mtx->unlock(); |
|
|
|
|
|
|
|
|
|
vecLocal.clear(); |
|
|
|
|
rejectLevelsLocal.clear(); |
|
|
|
|
levelWeightsLocal.clear(); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
if( result > 0 ) |
|
|
|
|
{ |
|
|
|
|
if( result > 0 ) |
|
|
|
|
{ |
|
|
|
|
vecLocal.push_back(Rect(cvRound(x*factor), cvRound(y*factor), |
|
|
|
|
winSize.width, winSize.height)); |
|
|
|
|
vecLocal.push_back(Rect(cvRound(x*factor), cvRound(y*factor), |
|
|
|
|
winSize.width, winSize.height)); |
|
|
|
|
|
|
|
|
|
if (vecLocal.size() >= PARALLEL_LOOP_BATCH_SIZE) |
|
|
|
|
{ |
|
|
|
|
mtx->lock(); |
|
|
|
|
vec->insert(vec->end(), vecLocal.begin(), vecLocal.end()); |
|
|
|
|
mtx->unlock(); |
|
|
|
|
if (vecLocal.size() >= PARALLEL_LOOP_BATCH_SIZE) |
|
|
|
|
{ |
|
|
|
|
mtx->lock(); |
|
|
|
|
vec->insert(vec->end(), vecLocal.begin(), vecLocal.end()); |
|
|
|
|
mtx->unlock(); |
|
|
|
|
|
|
|
|
|
vecLocal.clear(); |
|
|
|
|
} |
|
|
|
|
vecLocal.clear(); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (rejectLevelsLocal.size()) |
|
|
|
|
{ |
|
|
|
@ -1283,12 +1132,6 @@ cvHaarDetectObjectsForROC( const CvArr* _img, |
|
|
|
|
if( flags & CV_HAAR_SCALE_IMAGE ) |
|
|
|
|
{ |
|
|
|
|
CvSize winSize0 = cascade->orig_window_size; |
|
|
|
|
#ifdef HAVE_IPP |
|
|
|
|
int use_ipp = CV_IPP_CHECK_COND && (cascade->hid_cascade->ipp_stages != 0); |
|
|
|
|
|
|
|
|
|
if( use_ipp ) |
|
|
|
|
normImg.reset(cvCreateMat( img->rows, img->cols, CV_32FC1)); |
|
|
|
|
#endif |
|
|
|
|
imgSmall.reset(cvCreateMat( img->rows + 1, img->cols + 1, CV_8UC1 )); |
|
|
|
|
|
|
|
|
|
for( factor = 1; ; factor *= scaleFactor ) |
|
|
|
@ -1330,15 +1173,7 @@ cvHaarDetectObjectsForROC( const CvArr* _img, |
|
|
|
|
int stripCount = ((sz1.width/ystep)*(sz1.height + ystep-1)/ystep + LOCS_PER_THREAD/2)/LOCS_PER_THREAD; |
|
|
|
|
stripCount = std::min(std::max(stripCount, 1), 100); |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_IPP |
|
|
|
|
if( use_ipp ) |
|
|
|
|
{ |
|
|
|
|
cv::Mat fsum(sum1.rows, sum1.cols, CV_32F, sum1.data.ptr, sum1.step); |
|
|
|
|
cv::cvarrToMat(&sum1).convertTo(fsum, CV_32F, 1, -(1<<24)); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
#endif |
|
|
|
|
cvSetImagesForHaarClassifierCascade( cascade, &sum1, &sqsum1, _tilted, 1. ); |
|
|
|
|
cvSetImagesForHaarClassifierCascade( cascade, &sum1, &sqsum1, _tilted, 1. ); |
|
|
|
|
|
|
|
|
|
cv::Mat _norm1 = cv::cvarrToMat(&norm1), _mask1 = cv::cvarrToMat(&mask1); |
|
|
|
|
cv::parallel_for_(cv::Range(0, stripCount), |
|
|
|
|