pull/9778/head
Dmitry Kurtaev 7 years ago
parent bc7f649d68
commit e268606e26
  1. 11
      modules/dnn/src/caffe/caffe_importer.cpp
  2. 1
      modules/dnn/src/init.cpp
  3. 20
      modules/dnn/src/layers/convolution_layer.cpp
  4. 3
      modules/dnn/src/layers/scale_layer.cpp
  5. 23
      modules/dnn/test/test_caffe_importer.cpp
  6. 67
      samples/dnn/colorization.py

@ -293,14 +293,13 @@ public:
addedBlobs.reserve(layersSize + 1);
//setup input layer names
std::vector<String> netInputs(net.input_size());
{
std::vector<String> netInputs(net.input_size());
for (int inNum = 0; inNum < net.input_size(); inNum++)
{
addedBlobs.push_back(BlobNote(net.input(inNum), 0, inNum));
netInputs[inNum] = net.input(inNum);
}
dstNet.setInputsNames(netInputs);
}
for (int li = 0; li < layersSize; li++)
@ -317,6 +316,13 @@ public:
if (repetitions)
name += String("_") + toString(repetitions);
if (type == "Input")
{
addedBlobs.push_back(BlobNote(name, 0, netInputs.size()));
netInputs.push_back(name);
continue;
}
int id = dstNet.addLayer(name, type, layerParams);
for (int inNum = 0; inNum < layer.bottom_size(); inNum++)
@ -325,6 +331,7 @@ public:
for (int outNum = 0; outNum < layer.top_size(); outNum++)
addOutput(layer, id, outNum);
}
dstNet.setInputsNames(netInputs);
addedBlobs.clear();
}

@ -106,6 +106,7 @@ void initializeLayerFactory()
CV_DNN_REGISTER_LAYER_CLASS(MaxUnpool, MaxUnpoolLayer);
CV_DNN_REGISTER_LAYER_CLASS(Dropout, BlankLayer);
CV_DNN_REGISTER_LAYER_CLASS(Identity, BlankLayer);
CV_DNN_REGISTER_LAYER_CLASS(Silence, BlankLayer);
CV_DNN_REGISTER_LAYER_CLASS(Crop, CropLayer);
CV_DNN_REGISTER_LAYER_CLASS(Eltwise, EltwiseLayer);

@ -311,15 +311,15 @@ public:
Size kernel, Size pad, Size stride, Size dilation,
const ActivationLayer* activ, int ngroups, int nstripes )
{
CV_Assert( input.dims == 4 && output.dims == 4 &&
input.size[0] == output.size[0] &&
weights.rows == output.size[1] &&
weights.cols == (input.size[1]/ngroups)*kernel.width*kernel.height &&
input.type() == output.type() &&
input.type() == weights.type() &&
input.type() == CV_32F &&
input.isContinuous() &&
output.isContinuous() &&
CV_Assert( input.dims == 4 && output.dims == 4,
input.size[0] == output.size[0],
weights.rows == output.size[1],
weights.cols == (input.size[1]/ngroups)*kernel.width*kernel.height,
input.type() == output.type(),
input.type() == weights.type(),
input.type() == CV_32F,
input.isContinuous(),
output.isContinuous(),
biasvec.size() == (size_t)output.size[1]+2);
ParallelConv p;
@ -1237,7 +1237,6 @@ static void initConvDeconvLayerFromCaffe(Ptr<BaseConvolutionLayer> l, const Laye
l->pad.width, l->stride.height, l->stride.width, l->dilation.height,
l->dilation.width, l->padMode);
bool bias = params.get<bool>("bias_term", true);
l->numOutput = params.get<int>("num_output");
int ngroups = params.get<int>("group", 1);
@ -1245,7 +1244,6 @@ static void initConvDeconvLayerFromCaffe(Ptr<BaseConvolutionLayer> l, const Laye
l->adjustPad.width = params.get<int>("adj_w", 0);
CV_Assert(l->numOutput % ngroups == 0);
CV_Assert((bias && l->blobs.size() == 2) || (!bias && l->blobs.size() == 1));
CV_Assert(l->adjustPad.width < l->stride.width &&
l->adjustPad.height < l->stride.height);
}

@ -33,6 +33,7 @@ public:
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
CV_Assert(blobs.size() == 1 + hasBias);
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
return true;
}
@ -48,8 +49,6 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_Assert(blobs.size() == 1 + hasBias);
for (size_t ii = 0; ii < outputs.size(); ii++)
{
Mat &inpBlob = *inputs[ii];

@ -211,4 +211,27 @@ TEST(Reproducibility_GoogLeNet_fp16, Accuracy)
normAssert(out, ref, "", l1, lInf);
}
// https://github.com/richzhang/colorization
TEST(Reproducibility_Colorization, Accuracy)
{
const float l1 = 1e-5;
const float lInf = 3e-3;
Mat inp = blobFromNPY(_tf("colorization_inp.npy"));
Mat ref = blobFromNPY(_tf("colorization_out.npy"));
Mat kernel = blobFromNPY(_tf("colorization_pts_in_hull.npy"));
const string proto = findDataFile("dnn/colorization_deploy_v2.prototxt", false);
const string model = findDataFile("dnn/colorization_release_v2.caffemodel", false);
Net net = readNetFromCaffe(proto, model);
net.getLayer(net.getLayerId("class8_ab"))->blobs.push_back(kernel);
net.getLayer(net.getLayerId("conv8_313_rh"))->blobs.push_back(Mat(1, 313, CV_32F, 2.606));
net.setInput(inp);
Mat out = net.forward();
normAssert(out, ref, "", l1, lInf);
}
}

@ -0,0 +1,67 @@
# Script is based on https://github.com/richzhang/colorization/colorize.py
import numpy as np
import argparse
import cv2 as cv
def parse_args():
parser = argparse.ArgumentParser(description='iColor: deep interactive colorization')
parser.add_argument('--input', help='Path to image or video. Skip to capture frames from camera')
parser.add_argument('--prototxt', help='Path to colorization_deploy_v2.prototxt', default='./models/colorization_release_v2.prototxt')
parser.add_argument('--caffemodel', help='Path to colorization_release_v2.caffemodel', default='./models/colorization_release_v2.caffemodel')
parser.add_argument('--kernel', help='Path to pts_in_hull.npy', default='./resources/pts_in_hull.npy')
args = parser.parse_args()
return args
if __name__ == '__main__':
W_in = 224
H_in = 224
imshowSize = (640, 480)
args = parse_args()
# Select desired model
net = cv.dnn.readNetFromCaffe(args.prototxt, args.caffemodel)
pts_in_hull = np.load(args.kernel) # load cluster centers
# populate cluster centers as 1x1 convolution kernel
pts_in_hull = pts_in_hull.transpose().reshape(2, 313, 1, 1)
net.getLayer(long(net.getLayerId('class8_ab'))).blobs = [pts_in_hull.astype(np.float32)]
net.getLayer(long(net.getLayerId('conv8_313_rh'))).blobs = [np.full([1, 313], 2.606, np.float32)]
if args.input:
cap = cv.VideoCapture(args.input)
else:
cap = cv.VideoCapture(0)
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
cv.waitKey()
break
img_rgb = (frame[:,:,[2, 1, 0]] * 1.0 / 255).astype(np.float32)
img_lab = cv.cvtColor(img_rgb, cv.COLOR_RGB2Lab)
img_l = img_lab[:,:,0] # pull out L channel
(H_orig,W_orig) = img_rgb.shape[:2] # original image size
# resize image to network input size
img_rs = cv.resize(img_rgb, (W_in, H_in)) # resize image to network input size
img_lab_rs = cv.cvtColor(img_rs, cv.COLOR_RGB2Lab)
img_l_rs = img_lab_rs[:,:,0]
img_l_rs -= 50 # subtract 50 for mean-centering
net.setInput(cv.dnn.blobFromImage(img_l_rs))
ab_dec = net.forward('class8_ab')[0,:,:,:].transpose((1,2,0)) # this is our result
(H_out,W_out) = ab_dec.shape[:2]
ab_dec_us = cv.resize(ab_dec, (W_orig, H_orig))
img_lab_out = np.concatenate((img_l[:,:,np.newaxis],ab_dec_us),axis=2) # concatenate with original image L
img_bgr_out = np.clip(cv.cvtColor(img_lab_out, cv.COLOR_Lab2BGR), 0, 1)
frame = cv.resize(frame, imshowSize)
cv.imshow('origin', frame)
cv.imshow('gray', cv.cvtColor(frame, cv.COLOR_RGB2GRAY))
cv.imshow('colorized', cv.resize(img_bgr_out, imshowSize))
Loading…
Cancel
Save