@ -1,225 +1,4 @@ |
||||
Optical Flow {#tutorial_py_lucas_kanade} |
||||
============ |
||||
|
||||
Goal |
||||
---- |
||||
|
||||
In this chapter, |
||||
- We will understand the concepts of optical flow and its estimation using Lucas-Kanade |
||||
method. |
||||
- We will use functions like **cv.calcOpticalFlowPyrLK()** to track feature points in a |
||||
video. |
||||
|
||||
Optical Flow |
||||
------------ |
||||
|
||||
Optical flow is the pattern of apparent motion of image objects between two consecutive frames |
||||
caused by the movemement of object or camera. It is 2D vector field where each vector is a |
||||
displacement vector showing the movement of points from first frame to second. Consider the image |
||||
below (Image Courtesy: [Wikipedia article on Optical |
||||
Flow](http://en.wikipedia.org/wiki/Optical_flow)). |
||||
|
||||
![image](images/optical_flow_basic1.jpg) |
||||
|
||||
It shows a ball moving in 5 consecutive frames. The arrow shows its displacement vector. Optical |
||||
flow has many applications in areas like : |
||||
|
||||
- Structure from Motion |
||||
- Video Compression |
||||
- Video Stabilization ... |
||||
|
||||
Optical flow works on several assumptions: |
||||
|
||||
-# The pixel intensities of an object do not change between consecutive frames. |
||||
2. Neighbouring pixels have similar motion. |
||||
|
||||
Consider a pixel \f$I(x,y,t)\f$ in first frame (Check a new dimension, time, is added here. Earlier we |
||||
were working with images only, so no need of time). It moves by distance \f$(dx,dy)\f$ in next frame |
||||
taken after \f$dt\f$ time. So since those pixels are the same and intensity does not change, we can say, |
||||
|
||||
\f[I(x,y,t) = I(x+dx, y+dy, t+dt)\f] |
||||
|
||||
Then take taylor series approximation of right-hand side, remove common terms and divide by \f$dt\f$ to |
||||
get the following equation: |
||||
|
||||
\f[f_x u + f_y v + f_t = 0 \;\f] |
||||
|
||||
where: |
||||
|
||||
\f[f_x = \frac{\partial f}{\partial x} \; ; \; f_y = \frac{\partial f}{\partial y}\f]\f[u = \frac{dx}{dt} \; ; \; v = \frac{dy}{dt}\f] |
||||
|
||||
Above equation is called Optical Flow equation. In it, we can find \f$f_x\f$ and \f$f_y\f$, they are image |
||||
gradients. Similarly \f$f_t\f$ is the gradient along time. But \f$(u,v)\f$ is unknown. We cannot solve this |
||||
one equation with two unknown variables. So several methods are provided to solve this problem and |
||||
one of them is Lucas-Kanade. |
||||
|
||||
### Lucas-Kanade method |
||||
|
||||
We have seen an assumption before, that all the neighbouring pixels will have similar motion. |
||||
Lucas-Kanade method takes a 3x3 patch around the point. So all the 9 points have the same motion. We |
||||
can find \f$(f_x, f_y, f_t)\f$ for these 9 points. So now our problem becomes solving 9 equations with |
||||
two unknown variables which is over-determined. A better solution is obtained with least square fit |
||||
method. Below is the final solution which is two equation-two unknown problem and solve to get the |
||||
solution. |
||||
|
||||
\f[\begin{bmatrix} u \\ v \end{bmatrix} = |
||||
\begin{bmatrix} |
||||
\sum_{i}{f_{x_i}}^2 & \sum_{i}{f_{x_i} f_{y_i} } \\ |
||||
\sum_{i}{f_{x_i} f_{y_i}} & \sum_{i}{f_{y_i}}^2 |
||||
\end{bmatrix}^{-1} |
||||
\begin{bmatrix} |
||||
- \sum_{i}{f_{x_i} f_{t_i}} \\ |
||||
- \sum_{i}{f_{y_i} f_{t_i}} |
||||
\end{bmatrix}\f] |
||||
|
||||
( Check similarity of inverse matrix with Harris corner detector. It denotes that corners are better |
||||
points to be tracked.) |
||||
|
||||
So from the user point of view, the idea is simple, we give some points to track, we receive the optical |
||||
flow vectors of those points. But again there are some problems. Until now, we were dealing with |
||||
small motions, so it fails when there is a large motion. To deal with this we use pyramids. When we go up in |
||||
the pyramid, small motions are removed and large motions become small motions. So by applying |
||||
Lucas-Kanade there, we get optical flow along with the scale. |
||||
|
||||
Lucas-Kanade Optical Flow in OpenCV |
||||
----------------------------------- |
||||
|
||||
OpenCV provides all these in a single function, **cv.calcOpticalFlowPyrLK()**. Here, we create a |
||||
simple application which tracks some points in a video. To decide the points, we use |
||||
**cv.goodFeaturesToTrack()**. We take the first frame, detect some Shi-Tomasi corner points in it, |
||||
then we iteratively track those points using Lucas-Kanade optical flow. For the function |
||||
**cv.calcOpticalFlowPyrLK()** we pass the previous frame, previous points and next frame. It |
||||
returns next points along with some status numbers which has a value of 1 if next point is found, |
||||
else zero. We iteratively pass these next points as previous points in next step. See the code |
||||
below: |
||||
@code{.py} |
||||
import numpy as np |
||||
import cv2 as cv |
||||
|
||||
cap = cv.VideoCapture('slow.flv') |
||||
|
||||
# params for ShiTomasi corner detection |
||||
feature_params = dict( maxCorners = 100, |
||||
qualityLevel = 0.3, |
||||
minDistance = 7, |
||||
blockSize = 7 ) |
||||
|
||||
# Parameters for lucas kanade optical flow |
||||
lk_params = dict( winSize = (15,15), |
||||
maxLevel = 2, |
||||
criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03)) |
||||
|
||||
# Create some random colors |
||||
color = np.random.randint(0,255,(100,3)) |
||||
|
||||
# Take first frame and find corners in it |
||||
ret, old_frame = cap.read() |
||||
old_gray = cv.cvtColor(old_frame, cv.COLOR_BGR2GRAY) |
||||
p0 = cv.goodFeaturesToTrack(old_gray, mask = None, **feature_params) |
||||
|
||||
# Create a mask image for drawing purposes |
||||
mask = np.zeros_like(old_frame) |
||||
|
||||
while(1): |
||||
ret,frame = cap.read() |
||||
frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) |
||||
|
||||
# calculate optical flow |
||||
p1, st, err = cv.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params) |
||||
|
||||
# Select good points |
||||
good_new = p1[st==1] |
||||
good_old = p0[st==1] |
||||
|
||||
# draw the tracks |
||||
for i,(new,old) in enumerate(zip(good_new,good_old)): |
||||
a,b = new.ravel() |
||||
c,d = old.ravel() |
||||
mask = cv.line(mask, (a,b),(c,d), color[i].tolist(), 2) |
||||
frame = cv.circle(frame,(a,b),5,color[i].tolist(),-1) |
||||
img = cv.add(frame,mask) |
||||
|
||||
cv.imshow('frame',img) |
||||
k = cv.waitKey(30) & 0xff |
||||
if k == 27: |
||||
break |
||||
|
||||
# Now update the previous frame and previous points |
||||
old_gray = frame_gray.copy() |
||||
p0 = good_new.reshape(-1,1,2) |
||||
|
||||
cv.destroyAllWindows() |
||||
cap.release() |
||||
@endcode |
||||
(This code doesn't check how correct are the next keypoints. So even if any feature point disappears |
||||
in image, there is a chance that optical flow finds the next point which may look close to it. So |
||||
actually for a robust tracking, corner points should be detected in particular intervals. OpenCV |
||||
samples comes up with such a sample which finds the feature points at every 5 frames. It also run a |
||||
backward-check of the optical flow points got to select only good ones. Check |
||||
samples/python/lk_track.py). |
||||
|
||||
See the results we got: |
||||
|
||||
![image](images/opticalflow_lk.jpg) |
||||
|
||||
Dense Optical Flow in OpenCV |
||||
---------------------------- |
||||
|
||||
Lucas-Kanade method computes optical flow for a sparse feature set (in our example, corners detected |
||||
using Shi-Tomasi algorithm). OpenCV provides another algorithm to find the dense optical flow. It |
||||
computes the optical flow for all the points in the frame. It is based on Gunner Farneback's |
||||
algorithm which is explained in "Two-Frame Motion Estimation Based on Polynomial Expansion" by |
||||
Gunner Farneback in 2003. |
||||
|
||||
Below sample shows how to find the dense optical flow using above algorithm. We get a 2-channel |
||||
array with optical flow vectors, \f$(u,v)\f$. We find their magnitude and direction. We color code the |
||||
result for better visualization. Direction corresponds to Hue value of the image. Magnitude |
||||
corresponds to Value plane. See the code below: |
||||
@code{.py} |
||||
import cv2 as cv |
||||
import numpy as np |
||||
cap = cv.VideoCapture("vtest.avi") |
||||
|
||||
ret, frame1 = cap.read() |
||||
prvs = cv.cvtColor(frame1,cv.COLOR_BGR2GRAY) |
||||
hsv = np.zeros_like(frame1) |
||||
hsv[...,1] = 255 |
||||
|
||||
while(1): |
||||
ret, frame2 = cap.read() |
||||
next = cv.cvtColor(frame2,cv.COLOR_BGR2GRAY) |
||||
|
||||
flow = cv.calcOpticalFlowFarneback(prvs,next, None, 0.5, 3, 15, 3, 5, 1.2, 0) |
||||
|
||||
mag, ang = cv.cartToPolar(flow[...,0], flow[...,1]) |
||||
hsv[...,0] = ang*180/np.pi/2 |
||||
hsv[...,2] = cv.normalize(mag,None,0,255,cv.NORM_MINMAX) |
||||
bgr = cv.cvtColor(hsv,cv.COLOR_HSV2BGR) |
||||
|
||||
cv.imshow('frame2',bgr) |
||||
k = cv.waitKey(30) & 0xff |
||||
if k == 27: |
||||
break |
||||
elif k == ord('s'): |
||||
cv.imwrite('opticalfb.png',frame2) |
||||
cv.imwrite('opticalhsv.png',bgr) |
||||
prvs = next |
||||
|
||||
cap.release() |
||||
cv.destroyAllWindows() |
||||
@endcode |
||||
See the result below: |
||||
|
||||
![image](images/opticalfb.jpg) |
||||
|
||||
OpenCV comes with a more advanced sample on dense optical flow, please see |
||||
samples/python/opt_flow.py. |
||||
|
||||
Additional Resources |
||||
-------------------- |
||||
|
||||
Exercises |
||||
--------- |
||||
|
||||
-# Check the code in samples/python/lk_track.py. Try to understand the code. |
||||
2. Check the code in samples/python/opt_flow.py. Try to understand the code. |
||||
Tutorial content has been moved: @ref tutorial_optical_flow |
||||
|
@ -1,185 +1,4 @@ |
||||
Meanshift and Camshift {#tutorial_py_meanshift} |
||||
====================== |
||||
|
||||
Goal |
||||
---- |
||||
|
||||
In this chapter, |
||||
|
||||
- We will learn about Meanshift and Camshift algorithms to find and track objects in videos. |
||||
|
||||
Meanshift |
||||
--------- |
||||
|
||||
The intuition behind the meanshift is simple. Consider you have a set of points. (It can be a pixel |
||||
distribution like histogram backprojection). You are given a small window ( may be a circle) and you |
||||
have to move that window to the area of maximum pixel density (or maximum number of points). It is |
||||
illustrated in the simple image given below: |
||||
|
||||
![image](images/meanshift_basics.jpg) |
||||
|
||||
The initial window is shown in blue circle with the name "C1". Its original center is marked in blue |
||||
rectangle, named "C1_o". But if you find the centroid of the points inside that window, you will |
||||
get the point "C1_r" (marked in small blue circle) which is the real centroid of window. Surely |
||||
they don't match. So move your window such that circle of the new window matches with previous |
||||
centroid. Again find the new centroid. Most probably, it won't match. So move it again, and continue |
||||
the iterations such that center of window and its centroid falls on the same location (or with a |
||||
small desired error). So finally what you obtain is a window with maximum pixel distribution. It is |
||||
marked with green circle, named "C2". As you can see in image, it has maximum number of points. The |
||||
whole process is demonstrated on a static image below: |
||||
|
||||
![image](images/meanshift_face.gif) |
||||
|
||||
So we normally pass the histogram backprojected image and initial target location. When the object |
||||
moves, obviously the movement is reflected in histogram backprojected image. As a result, meanshift |
||||
algorithm moves our window to the new location with maximum density. |
||||
|
||||
### Meanshift in OpenCV |
||||
|
||||
To use meanshift in OpenCV, first we need to setup the target, find its histogram so that we can |
||||
backproject the target on each frame for calculation of meanshift. We also need to provide initial |
||||
location of window. For histogram, only Hue is considered here. Also, to avoid false values due to |
||||
low light, low light values are discarded using **cv.inRange()** function. |
||||
@code{.py} |
||||
import numpy as np |
||||
import cv2 as cv |
||||
|
||||
cap = cv.VideoCapture('slow.flv') |
||||
|
||||
# take first frame of the video |
||||
ret,frame = cap.read() |
||||
|
||||
# setup initial location of window |
||||
r,h,c,w = 250,90,400,125 # simply hardcoded the values |
||||
track_window = (c,r,w,h) |
||||
|
||||
# set up the ROI for tracking |
||||
roi = frame[r:r+h, c:c+w] |
||||
hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV) |
||||
mask = cv.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.))) |
||||
roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180]) |
||||
cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX) |
||||
|
||||
# Setup the termination criteria, either 10 iteration or move by atleast 1 pt |
||||
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 ) |
||||
|
||||
while(1): |
||||
ret ,frame = cap.read() |
||||
|
||||
if ret == True: |
||||
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV) |
||||
dst = cv.calcBackProject([hsv],[0],roi_hist,[0,180],1) |
||||
|
||||
# apply meanshift to get the new location |
||||
ret, track_window = cv.meanShift(dst, track_window, term_crit) |
||||
|
||||
# Draw it on image |
||||
x,y,w,h = track_window |
||||
img2 = cv.rectangle(frame, (x,y), (x+w,y+h), 255,2) |
||||
cv.imshow('img2',img2) |
||||
|
||||
k = cv.waitKey(60) & 0xff |
||||
if k == 27: |
||||
break |
||||
else: |
||||
cv.imwrite(chr(k)+".jpg",img2) |
||||
|
||||
else: |
||||
break |
||||
|
||||
cv.destroyAllWindows() |
||||
cap.release() |
||||
@endcode |
||||
Three frames in a video I used is given below: |
||||
|
||||
![image](images/meanshift_result.jpg) |
||||
|
||||
Camshift |
||||
-------- |
||||
|
||||
Did you closely watch the last result? There is a problem. Our window always has the same size when |
||||
car is farther away and it is very close to camera. That is not good. We need to adapt the window |
||||
size with size and rotation of the target. Once again, the solution came from "OpenCV Labs" and it |
||||
is called CAMshift (Continuously Adaptive Meanshift) published by Gary Bradsky in his paper |
||||
"Computer Vision Face Tracking for Use in a Perceptual User Interface" in 1998. |
||||
|
||||
It applies meanshift first. Once meanshift converges, it updates the size of the window as, |
||||
\f$s = 2 \times \sqrt{\frac{M_{00}}{256}}\f$. It also calculates the orientation of best fitting ellipse |
||||
to it. Again it applies the meanshift with new scaled search window and previous window location. |
||||
The process is continued until required accuracy is met. |
||||
|
||||
![image](images/camshift_face.gif) |
||||
|
||||
### Camshift in OpenCV |
||||
|
||||
It is almost same as meanshift, but it returns a rotated rectangle (that is our result) and box |
||||
parameters (used to be passed as search window in next iteration). See the code below: |
||||
@code{.py} |
||||
import numpy as np |
||||
import cv2 as cv |
||||
|
||||
cap = cv.VideoCapture('slow.flv') |
||||
|
||||
# take first frame of the video |
||||
ret,frame = cap.read() |
||||
|
||||
# setup initial location of window |
||||
r,h,c,w = 250,90,400,125 # simply hardcoded the values |
||||
track_window = (c,r,w,h) |
||||
|
||||
# set up the ROI for tracking |
||||
roi = frame[r:r+h, c:c+w] |
||||
hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV) |
||||
mask = cv.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.))) |
||||
roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180]) |
||||
cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX) |
||||
|
||||
# Setup the termination criteria, either 10 iteration or move by atleast 1 pt |
||||
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 ) |
||||
|
||||
while(1): |
||||
ret ,frame = cap.read() |
||||
|
||||
if ret == True: |
||||
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV) |
||||
dst = cv.calcBackProject([hsv],[0],roi_hist,[0,180],1) |
||||
|
||||
# apply meanshift to get the new location |
||||
ret, track_window = cv.CamShift(dst, track_window, term_crit) |
||||
|
||||
# Draw it on image |
||||
pts = cv.boxPoints(ret) |
||||
pts = np.int0(pts) |
||||
img2 = cv.polylines(frame,[pts],True, 255,2) |
||||
cv.imshow('img2',img2) |
||||
|
||||
k = cv.waitKey(60) & 0xff |
||||
if k == 27: |
||||
break |
||||
else: |
||||
cv.imwrite(chr(k)+".jpg",img2) |
||||
|
||||
else: |
||||
break |
||||
|
||||
cv.destroyAllWindows() |
||||
cap.release() |
||||
@endcode |
||||
Three frames of the result is shown below: |
||||
|
||||
![image](images/camshift_result.jpg) |
||||
|
||||
Additional Resources |
||||
-------------------- |
||||
|
||||
-# French Wikipedia page on [Camshift](http://fr.wikipedia.org/wiki/Camshift). (The two animations |
||||
are taken from here) |
||||
2. Bradski, G.R., "Real time face and object tracking as a component of a perceptual user |
||||
interface," Applications of Computer Vision, 1998. WACV '98. Proceedings., Fourth IEEE Workshop |
||||
on , vol., no., pp.214,219, 19-21 Oct 1998 |
||||
|
||||
Exercises |
||||
--------- |
||||
|
||||
-# OpenCV comes with a Python sample on interactive demo of camshift. Use it, hack it, understand |
||||
it. |
||||
Tutorial content has been moved: @ref tutorial_meanshift |
||||
|
Before Width: | Height: | Size: 247 KiB After Width: | Height: | Size: 247 KiB |
Before Width: | Height: | Size: 34 KiB After Width: | Height: | Size: 34 KiB |
Before Width: | Height: | Size: 17 KiB After Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 176 KiB After Width: | Height: | Size: 176 KiB |
Before Width: | Height: | Size: 27 KiB After Width: | Height: | Size: 27 KiB |
@ -0,0 +1,118 @@ |
||||
Meanshift and Camshift {#tutorial_meanshift} |
||||
====================== |
||||
|
||||
Goal |
||||
---- |
||||
|
||||
In this chapter, |
||||
|
||||
- We will learn about the Meanshift and Camshift algorithms to track objects in videos. |
||||
|
||||
Meanshift |
||||
--------- |
||||
|
||||
The intuition behind the meanshift is simple. Consider you have a set of points. (It can be a pixel |
||||
distribution like histogram backprojection). You are given a small window (may be a circle) and you |
||||
have to move that window to the area of maximum pixel density (or maximum number of points). It is |
||||
illustrated in the simple image given below: |
||||
|
||||
![image](images/meanshift_basics.jpg) |
||||
|
||||
The initial window is shown in blue circle with the name "C1". Its original center is marked in blue |
||||
rectangle, named "C1_o". But if you find the centroid of the points inside that window, you will |
||||
get the point "C1_r" (marked in small blue circle) which is the real centroid of the window. Surely |
||||
they don't match. So move your window such that the circle of the new window matches with the previous |
||||
centroid. Again find the new centroid. Most probably, it won't match. So move it again, and continue |
||||
the iterations such that the center of window and its centroid falls on the same location (or within a |
||||
small desired error). So finally what you obtain is a window with maximum pixel distribution. It is |
||||
marked with a green circle, named "C2". As you can see in the image, it has maximum number of points. The |
||||
whole process is demonstrated on a static image below: |
||||
|
||||
![image](images/meanshift_face.gif) |
||||
|
||||
So we normally pass the histogram backprojected image and initial target location. When the object |
||||
moves, obviously the movement is reflected in the histogram backprojected image. As a result, the meanshift |
||||
algorithm moves our window to the new location with maximum density. |
||||
|
||||
### Meanshift in OpenCV |
||||
|
||||
To use meanshift in OpenCV, first we need to setup the target, find its histogram so that we can |
||||
backproject the target on each frame for calculation of meanshift. We also need to provide an initial |
||||
location of window. For histogram, only Hue is considered here. Also, to avoid false values due to |
||||
low light, low light values are discarded using **cv.inRange()** function. |
||||
|
||||
@add_toggle_cpp |
||||
- **Downloadable code**: Click |
||||
[here](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/video/meanshift/meanshift.cpp) |
||||
|
||||
- **Code at glance:** |
||||
@include samples/cpp/tutorial_code/video/meanshift/meanshift.cpp |
||||
@end_toggle |
||||
|
||||
@add_toggle_python |
||||
- **Downloadable code**: Click |
||||
[here](https://github.com/opencv/opencv/tree/master/samples/python/tutorial_code/video/meanshift/meanshift.py) |
||||
|
||||
- **Code at glance:** |
||||
@include samples/python/tutorial_code/video/meanshift/meanshift.py |
||||
@end_toggle |
||||
|
||||
Three frames in a video I used is given below: |
||||
|
||||
![image](images/meanshift_result.jpg) |
||||
|
||||
Camshift |
||||
-------- |
||||
|
||||
Did you closely watch the last result? There is a problem. Our window always has the same size whether |
||||
the car is very far or very close to the camera. That is not good. We need to adapt the window |
||||
size with size and rotation of the target. Once again, the solution came from "OpenCV Labs" and it |
||||
is called CAMshift (Continuously Adaptive Meanshift) published by Gary Bradsky in his paper |
||||
"Computer Vision Face Tracking for Use in a Perceptual User Interface" in 1998 @cite Bradski98 . |
||||
|
||||
It applies meanshift first. Once meanshift converges, it updates the size of the window as, |
||||
\f$s = 2 \times \sqrt{\frac{M_{00}}{256}}\f$. It also calculates the orientation of the best fitting ellipse |
||||
to it. Again it applies the meanshift with new scaled search window and previous window location. |
||||
The process continues until the required accuracy is met. |
||||
|
||||
![image](images/camshift_face.gif) |
||||
|
||||
### Camshift in OpenCV |
||||
|
||||
It is similar to meanshift, but returns a rotated rectangle (that is our result) and box |
||||
parameters (used to be passed as search window in next iteration). See the code below: |
||||
|
||||
@add_toggle_cpp |
||||
- **Downloadable code**: Click |
||||
[here](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/video/meanshift/camshift.cpp) |
||||
|
||||
- **Code at glance:** |
||||
@include samples/cpp/tutorial_code/video/meanshift/camshift.cpp |
||||
@end_toggle |
||||
|
||||
@add_toggle_python |
||||
- **Downloadable code**: Click |
||||
[here](https://github.com/opencv/opencv/tree/master/samples/python/tutorial_code/video/meanshift/camshift.py) |
||||
|
||||
- **Code at glance:** |
||||
@include samples/python/tutorial_code/video/meanshift/camshift.py |
||||
@end_toggle |
||||
|
||||
Three frames of the result is shown below: |
||||
|
||||
![image](images/camshift_result.jpg) |
||||
|
||||
Additional Resources |
||||
-------------------- |
||||
|
||||
-# French Wikipedia page on [Camshift](http://fr.wikipedia.org/wiki/Camshift). (The two animations |
||||
are taken from there) |
||||
2. Bradski, G.R., "Real time face and object tracking as a component of a perceptual user |
||||
interface," Applications of Computer Vision, 1998. WACV '98. Proceedings., Fourth IEEE Workshop |
||||
on , vol., no., pp.214,219, 19-21 Oct 1998 |
||||
|
||||
Exercises |
||||
--------- |
||||
|
||||
-# OpenCV comes with a Python [sample](https://github.com/opencv/opencv/blob/master/samples/python/camshift.py) for an interactive demo of camshift. Use it, hack it, understand |
||||
it. |
Before Width: | Height: | Size: 6.0 KiB After Width: | Height: | Size: 6.0 KiB |
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 22 KiB After Width: | Height: | Size: 22 KiB |
@ -0,0 +1,156 @@ |
||||
Optical Flow {#tutorial_optical_flow} |
||||
============ |
||||
|
||||
Goal |
||||
---- |
||||
|
||||
In this chapter, |
||||
- We will understand the concepts of optical flow and its estimation using Lucas-Kanade |
||||
method. |
||||
- We will use functions like **cv.calcOpticalFlowPyrLK()** to track feature points in a |
||||
video. |
||||
- We will create a dense optical flow field using the **cv.calcOpticalFlowFarneback()** method. |
||||
|
||||
Optical Flow |
||||
------------ |
||||
|
||||
Optical flow is the pattern of apparent motion of image objects between two consecutive frames |
||||
caused by the movemement of object or camera. It is 2D vector field where each vector is a |
||||
displacement vector showing the movement of points from first frame to second. Consider the image |
||||
below (Image Courtesy: [Wikipedia article on Optical Flow](http://en.wikipedia.org/wiki/Optical_flow)). |
||||
|
||||
![image](images/optical_flow_basic1.jpg) |
||||
|
||||
It shows a ball moving in 5 consecutive frames. The arrow shows its displacement vector. Optical |
||||
flow has many applications in areas like : |
||||
|
||||
- Structure from Motion |
||||
- Video Compression |
||||
- Video Stabilization ... |
||||
|
||||
Optical flow works on several assumptions: |
||||
|
||||
-# The pixel intensities of an object do not change between consecutive frames. |
||||
2. Neighbouring pixels have similar motion. |
||||
|
||||
Consider a pixel \f$I(x,y,t)\f$ in first frame (Check a new dimension, time, is added here. Earlier we |
||||
were working with images only, so no need of time). It moves by distance \f$(dx,dy)\f$ in next frame |
||||
taken after \f$dt\f$ time. So since those pixels are the same and intensity does not change, we can say, |
||||
|
||||
\f[I(x,y,t) = I(x+dx, y+dy, t+dt)\f] |
||||
|
||||
Then take taylor series approximation of right-hand side, remove common terms and divide by \f$dt\f$ to |
||||
get the following equation: |
||||
|
||||
\f[f_x u + f_y v + f_t = 0 \;\f] |
||||
|
||||
where: |
||||
|
||||
\f[f_x = \frac{\partial f}{\partial x} \; ; \; f_y = \frac{\partial f}{\partial y}\f]\f[u = \frac{dx}{dt} \; ; \; v = \frac{dy}{dt}\f] |
||||
|
||||
Above equation is called Optical Flow equation. In it, we can find \f$f_x\f$ and \f$f_y\f$, they are image |
||||
gradients. Similarly \f$f_t\f$ is the gradient along time. But \f$(u,v)\f$ is unknown. We cannot solve this |
||||
one equation with two unknown variables. So several methods are provided to solve this problem and |
||||
one of them is Lucas-Kanade. |
||||
|
||||
### Lucas-Kanade method |
||||
|
||||
We have seen an assumption before, that all the neighbouring pixels will have similar motion. |
||||
Lucas-Kanade method takes a 3x3 patch around the point. So all the 9 points have the same motion. We |
||||
can find \f$(f_x, f_y, f_t)\f$ for these 9 points. So now our problem becomes solving 9 equations with |
||||
two unknown variables which is over-determined. A better solution is obtained with least square fit |
||||
method. Below is the final solution which is two equation-two unknown problem and solve to get the |
||||
solution. |
||||
|
||||
\f[\begin{bmatrix} u \\ v \end{bmatrix} = |
||||
\begin{bmatrix} |
||||
\sum_{i}{f_{x_i}}^2 & \sum_{i}{f_{x_i} f_{y_i} } \\ |
||||
\sum_{i}{f_{x_i} f_{y_i}} & \sum_{i}{f_{y_i}}^2 |
||||
\end{bmatrix}^{-1} |
||||
\begin{bmatrix} |
||||
- \sum_{i}{f_{x_i} f_{t_i}} \\ |
||||
- \sum_{i}{f_{y_i} f_{t_i}} |
||||
\end{bmatrix}\f] |
||||
|
||||
( Check similarity of inverse matrix with Harris corner detector. It denotes that corners are better |
||||
points to be tracked.) |
||||
|
||||
So from the user point of view, the idea is simple, we give some points to track, we receive the optical |
||||
flow vectors of those points. But again there are some problems. Until now, we were dealing with |
||||
small motions, so it fails when there is a large motion. To deal with this we use pyramids. When we go up in |
||||
the pyramid, small motions are removed and large motions become small motions. So by applying |
||||
Lucas-Kanade there, we get optical flow along with the scale. |
||||
|
||||
Lucas-Kanade Optical Flow in OpenCV |
||||
----------------------------------- |
||||
|
||||
OpenCV provides all these in a single function, **cv.calcOpticalFlowPyrLK()**. Here, we create a |
||||
simple application which tracks some points in a video. To decide the points, we use |
||||
**cv.goodFeaturesToTrack()**. We take the first frame, detect some Shi-Tomasi corner points in it, |
||||
then we iteratively track those points using Lucas-Kanade optical flow. For the function |
||||
**cv.calcOpticalFlowPyrLK()** we pass the previous frame, previous points and next frame. It |
||||
returns next points along with some status numbers which has a value of 1 if next point is found, |
||||
else zero. We iteratively pass these next points as previous points in next step. See the code |
||||
below: |
||||
|
||||
@add_toggle_cpp |
||||
- **Downloadable code**: Click |
||||
[here](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/video/optical_flow/optical_flow.cpp) |
||||
|
||||
- **Code at glance:** |
||||
@include samples/cpp/tutorial_code/video/optical_flow/optical_flow.cpp |
||||
@end_toggle |
||||
|
||||
@add_toggle_python |
||||
- **Downloadable code**: Click |
||||
[here](https://github.com/opencv/opencv/tree/master/samples/python/tutorial_code/video/optical_flow/optical_flow.py) |
||||
|
||||
- **Code at glance:** |
||||
@include samples/python/tutorial_code/video/optical_flow/optical_flow.py |
||||
@end_toggle |
||||
|
||||
(This code doesn't check how correct are the next keypoints. So even if any feature point disappears |
||||
in image, there is a chance that optical flow finds the next point which may look close to it. So |
||||
actually for a robust tracking, corner points should be detected in particular intervals. OpenCV |
||||
samples comes up with such a sample which finds the feature points at every 5 frames. It also run a |
||||
backward-check of the optical flow points got to select only good ones. Check |
||||
samples/python/lk_track.py). |
||||
|
||||
See the results we got: |
||||
|
||||
![image](images/opticalflow_lk.jpg) |
||||
|
||||
Dense Optical Flow in OpenCV |
||||
---------------------------- |
||||
|
||||
Lucas-Kanade method computes optical flow for a sparse feature set (in our example, corners detected |
||||
using Shi-Tomasi algorithm). OpenCV provides another algorithm to find the dense optical flow. It |
||||
computes the optical flow for all the points in the frame. It is based on Gunner Farneback's |
||||
algorithm which is explained in "Two-Frame Motion Estimation Based on Polynomial Expansion" by |
||||
Gunner Farneback in 2003. |
||||
|
||||
Below sample shows how to find the dense optical flow using above algorithm. We get a 2-channel |
||||
array with optical flow vectors, \f$(u,v)\f$. We find their magnitude and direction. We color code the |
||||
result for better visualization. Direction corresponds to Hue value of the image. Magnitude |
||||
corresponds to Value plane. See the code below: |
||||
|
||||
@add_toggle_cpp |
||||
- **Downloadable code**: Click |
||||
[here](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/video/optical_flow/optical_flow_dense.cpp) |
||||
|
||||
- **Code at glance:** |
||||
@include samples/cpp/tutorial_code/video/optical_flow/optical_flow_dense.cpp |
||||
@end_toggle |
||||
|
||||
@add_toggle_python |
||||
- **Downloadable code**: Click |
||||
[here](https://github.com/opencv/opencv/tree/master/samples/python/tutorial_code/video/optical_flow/optical_flow_dense.py) |
||||
|
||||
- **Code at glance:** |
||||
@include samples/python/tutorial_code/video/optical_flow/optical_flow_dense.py |
||||
@end_toggle |
||||
|
||||
|
||||
See the result below: |
||||
|
||||
![image](images/opticalfb.jpg) |
@ -0,0 +1,86 @@ |
||||
#include <iostream> |
||||
#include <opencv2/imgcodecs.hpp> |
||||
#include <opencv2/imgproc.hpp> |
||||
#include <opencv2/videoio.hpp> |
||||
#include <opencv2/highgui.hpp> |
||||
#include <opencv2/video.hpp> |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
int main(int argc, char **argv) |
||||
{ |
||||
const string about = |
||||
"This sample demonstrates the camshift algorithm.\n" |
||||
"The example file can be downloaded from:\n" |
||||
" https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4"; |
||||
const string keys = |
||||
"{ h help | | print this help message }" |
||||
"{ @image |<none>| path to image file }"; |
||||
CommandLineParser parser(argc, argv, keys); |
||||
parser.about(about); |
||||
if (parser.has("help")) |
||||
{ |
||||
parser.printMessage(); |
||||
return 0; |
||||
} |
||||
string filename = parser.get<string>("@image"); |
||||
if (!parser.check()) |
||||
{ |
||||
parser.printErrors(); |
||||
return 0; |
||||
} |
||||
|
||||
VideoCapture capture(filename); |
||||
if (!capture.isOpened()){ |
||||
//error in opening the video input
|
||||
cerr << "Unable to open file!" << endl; |
||||
return 0; |
||||
} |
||||
|
||||
Mat frame, roi, hsv_roi, mask; |
||||
// take first frame of the video
|
||||
capture >> frame; |
||||
|
||||
// setup initial location of window
|
||||
Rect track_window(300, 200, 100, 50); // simply hardcoded the values
|
||||
|
||||
// set up the ROI for tracking
|
||||
roi = frame(track_window); |
||||
cvtColor(roi, hsv_roi, COLOR_BGR2HSV); |
||||
inRange(hsv_roi, Scalar(0, 60, 32), Scalar(180, 255, 255), mask); |
||||
|
||||
float range_[] = {0, 180}; |
||||
const float* range[] = {range_}; |
||||
Mat roi_hist; |
||||
int histSize[] = {180}; |
||||
int channels[] = {0}; |
||||
calcHist(&hsv_roi, 1, channels, mask, roi_hist, 1, histSize, range); |
||||
normalize(roi_hist, roi_hist, 0, 255, NORM_MINMAX); |
||||
|
||||
// Setup the termination criteria, either 10 iteration or move by atleast 1 pt
|
||||
TermCriteria term_crit(TermCriteria::EPS | TermCriteria::COUNT, 10, 1); |
||||
|
||||
while(true){ |
||||
Mat hsv, dst; |
||||
capture >> frame; |
||||
if (frame.empty()) |
||||
break; |
||||
cvtColor(frame, hsv, COLOR_BGR2HSV); |
||||
calcBackProject(&hsv, 1, channels, roi_hist, dst, range); |
||||
|
||||
// apply camshift to get the new location
|
||||
RotatedRect rot_rect = CamShift(dst, track_window, term_crit); |
||||
|
||||
// Draw it on image
|
||||
Point2f points[4]; |
||||
rot_rect.points(points); |
||||
for (int i = 0; i < 4; i++) |
||||
line(frame, points[i], points[(i+1)%4], 255, 2); |
||||
imshow("img2", frame); |
||||
|
||||
int keyboard = waitKey(30); |
||||
if (keyboard == 'q' || keyboard == 27) |
||||
break; |
||||
} |
||||
} |
@ -0,0 +1,83 @@ |
||||
#include <iostream> |
||||
#include <opencv2/imgcodecs.hpp> |
||||
#include <opencv2/imgproc.hpp> |
||||
#include <opencv2/videoio.hpp> |
||||
#include <opencv2/highgui.hpp> |
||||
#include <opencv2/video.hpp> |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
int main(int argc, char **argv) |
||||
{ |
||||
const string about = |
||||
"This sample demonstrates the meanshift algorithm.\n" |
||||
"The example file can be downloaded from:\n" |
||||
" https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4"; |
||||
const string keys = |
||||
"{ h help | | print this help message }" |
||||
"{ @image |<none>| path to image file }"; |
||||
CommandLineParser parser(argc, argv, keys); |
||||
parser.about(about); |
||||
if (parser.has("help")) |
||||
{ |
||||
parser.printMessage(); |
||||
return 0; |
||||
} |
||||
string filename = parser.get<string>("@image"); |
||||
if (!parser.check()) |
||||
{ |
||||
parser.printErrors(); |
||||
return 0; |
||||
} |
||||
|
||||
VideoCapture capture(filename); |
||||
if (!capture.isOpened()){ |
||||
//error in opening the video input
|
||||
cerr << "Unable to open file!" << endl; |
||||
return 0; |
||||
} |
||||
|
||||
Mat frame, roi, hsv_roi, mask; |
||||
// take first frame of the video
|
||||
capture >> frame; |
||||
|
||||
// setup initial location of window
|
||||
Rect track_window(300, 200, 100, 50); // simply hardcoded the values
|
||||
|
||||
// set up the ROI for tracking
|
||||
roi = frame(track_window); |
||||
cvtColor(roi, hsv_roi, COLOR_BGR2HSV); |
||||
inRange(hsv_roi, Scalar(0, 60, 32), Scalar(180, 255, 255), mask); |
||||
|
||||
float range_[] = {0, 180}; |
||||
const float* range[] = {range_}; |
||||
Mat roi_hist; |
||||
int histSize[] = {180}; |
||||
int channels[] = {0}; |
||||
calcHist(&hsv_roi, 1, channels, mask, roi_hist, 1, histSize, range); |
||||
normalize(roi_hist, roi_hist, 0, 255, NORM_MINMAX); |
||||
|
||||
// Setup the termination criteria, either 10 iteration or move by atleast 1 pt
|
||||
TermCriteria term_crit(TermCriteria::EPS | TermCriteria::COUNT, 10, 1); |
||||
|
||||
while(true){ |
||||
Mat hsv, dst; |
||||
capture >> frame; |
||||
if (frame.empty()) |
||||
break; |
||||
cvtColor(frame, hsv, COLOR_BGR2HSV); |
||||
calcBackProject(&hsv, 1, channels, roi_hist, dst, range); |
||||
|
||||
// apply meanshift to get the new location
|
||||
meanShift(dst, track_window, term_crit); |
||||
|
||||
// Draw it on image
|
||||
rectangle(frame, track_window, 255, 2); |
||||
imshow("img2", frame); |
||||
|
||||
int keyboard = waitKey(30); |
||||
if (keyboard == 'q' || keyboard == 27) |
||||
break; |
||||
} |
||||
} |
@ -0,0 +1,101 @@ |
||||
#include <iostream> |
||||
#include <opencv2/core.hpp> |
||||
#include <opencv2/highgui.hpp> |
||||
#include <opencv2/imgproc.hpp> |
||||
#include <opencv2/videoio.hpp> |
||||
#include <opencv2/video.hpp> |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
int main(int argc, char **argv) |
||||
{ |
||||
const string about = |
||||
"This sample demonstrates Lucas-Kanade Optical Flow calculation.\n" |
||||
"The example file can be downloaded from:\n" |
||||
" https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4"; |
||||
const string keys = |
||||
"{ h help | | print this help message }" |
||||
"{ @image |<none>| path to image file }"; |
||||
CommandLineParser parser(argc, argv, keys); |
||||
parser.about(about); |
||||
if (parser.has("help")) |
||||
{ |
||||
parser.printMessage(); |
||||
return 0; |
||||
} |
||||
string filename = parser.get<string>("@image"); |
||||
if (!parser.check()) |
||||
{ |
||||
parser.printErrors(); |
||||
return 0; |
||||
} |
||||
|
||||
VideoCapture capture(filename); |
||||
if (!capture.isOpened()){ |
||||
//error in opening the video input
|
||||
cerr << "Unable to open file!" << endl; |
||||
return 0; |
||||
} |
||||
|
||||
// Create some random colors
|
||||
vector<Scalar> colors; |
||||
RNG rng; |
||||
for(int i = 0; i < 100; i++) |
||||
{ |
||||
int r = rng.uniform(0, 256); |
||||
int g = rng.uniform(0, 256); |
||||
int b = rng.uniform(0, 256); |
||||
colors.push_back(Scalar(r,g,b)); |
||||
} |
||||
|
||||
Mat old_frame, old_gray; |
||||
vector<Point2f> p0, p1; |
||||
|
||||
// Take first frame and find corners in it
|
||||
capture >> old_frame; |
||||
cvtColor(old_frame, old_gray, COLOR_BGR2GRAY); |
||||
goodFeaturesToTrack(old_gray, p0, 100, 0.3, 7, Mat(), 7, false, 0.04); |
||||
|
||||
// Create a mask image for drawing purposes
|
||||
Mat mask = Mat::zeros(old_frame.size(), old_frame.type()); |
||||
|
||||
while(true){ |
||||
Mat frame, frame_gray; |
||||
|
||||
capture >> frame; |
||||
if (frame.empty()) |
||||
break; |
||||
cvtColor(frame, frame_gray, COLOR_BGR2GRAY); |
||||
|
||||
// calculate optical flow
|
||||
vector<uchar> status; |
||||
vector<float> err; |
||||
TermCriteria criteria = TermCriteria((TermCriteria::COUNT) + (TermCriteria::EPS), 10, 0.03); |
||||
calcOpticalFlowPyrLK(old_gray, frame_gray, p0, p1, status, err, Size(15,15), 2, criteria); |
||||
|
||||
vector<Point2f> good_new; |
||||
for(uint i = 0; i < p0.size(); i++) |
||||
{ |
||||
// Select good points
|
||||
if(status[i] == 1) { |
||||
good_new.push_back(p1[i]); |
||||
// draw the tracks
|
||||
line(mask,p1[i], p0[i], colors[i], 2); |
||||
circle(frame, p1[i], 5, colors[i], -1); |
||||
} |
||||
} |
||||
Mat img; |
||||
add(frame, mask, img); |
||||
|
||||
imshow("Frame", img); |
||||
|
||||
int keyboard = waitKey(30); |
||||
if (keyboard == 'q' || keyboard == 27) |
||||
break; |
||||
|
||||
// Now update the previous frame and previous points
|
||||
old_gray = frame_gray.clone(); |
||||
p0 = good_new; |
||||
} |
||||
} |
@ -0,0 +1,59 @@ |
||||
#include <iostream> |
||||
#include <opencv2/core.hpp> |
||||
#include <opencv2/highgui.hpp> |
||||
#include <opencv2/imgproc.hpp> |
||||
#include <opencv2/videoio.hpp> |
||||
#include <opencv2/video.hpp> |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
int main() |
||||
{ |
||||
VideoCapture capture(samples::findFile("vtest.avi")); |
||||
if (!capture.isOpened()){ |
||||
//error in opening the video input
|
||||
cerr << "Unable to open file!" << endl; |
||||
return 0; |
||||
} |
||||
|
||||
Mat frame1, prvs; |
||||
capture >> frame1; |
||||
cvtColor(frame1, prvs, COLOR_BGR2GRAY); |
||||
|
||||
while(true){ |
||||
Mat frame2, next; |
||||
capture >> frame2; |
||||
if (frame2.empty()) |
||||
break; |
||||
cvtColor(frame2, next, COLOR_BGR2GRAY); |
||||
|
||||
Mat flow(prvs.size(), CV_32FC2); |
||||
calcOpticalFlowFarneback(prvs, next, flow, 0.5, 3, 15, 3, 5, 1.2, 0); |
||||
|
||||
// visualization
|
||||
Mat flow_parts[2]; |
||||
split(flow, flow_parts); |
||||
Mat magnitude, angle, magn_norm; |
||||
cartToPolar(flow_parts[0], flow_parts[1], magnitude, angle, true); |
||||
normalize(magnitude, magn_norm, 0.0f, 1.0f, NORM_MINMAX); |
||||
angle *= ((1.f / 360.f) * (180.f / 255.f)); |
||||
|
||||
//build hsv image
|
||||
Mat _hsv[3], hsv, hsv8, bgr; |
||||
_hsv[0] = angle; |
||||
_hsv[1] = Mat::ones(angle.size(), CV_32F); |
||||
_hsv[2] = magn_norm; |
||||
merge(_hsv, 3, hsv); |
||||
hsv.convertTo(hsv8, CV_8U, 255.0); |
||||
cvtColor(hsv8, bgr, COLOR_HSV2BGR); |
||||
|
||||
imshow("frame2", bgr); |
||||
|
||||
int keyboard = waitKey(30); |
||||
if (keyboard == 'q' || keyboard == 27) |
||||
break; |
||||
|
||||
prvs = next; |
||||
} |
||||
} |
@ -0,0 +1,50 @@ |
||||
import numpy as np |
||||
import cv2 as cv |
||||
import argparse |
||||
|
||||
parser = argparse.ArgumentParser(description='This sample demonstrates the camshift algorithm. \ |
||||
The example file can be downloaded from: \ |
||||
https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4') |
||||
parser.add_argument('image', type=str, help='path to image file') |
||||
args = parser.parse_args() |
||||
|
||||
cap = cv.VideoCapture(args.image) |
||||
|
||||
# take first frame of the video |
||||
ret,frame = cap.read() |
||||
|
||||
# setup initial location of window |
||||
x, y, w, h = 300, 200, 100, 50 # simply hardcoded the values |
||||
track_window = (x, y, w, h) |
||||
|
||||
# set up the ROI for tracking |
||||
roi = frame[y:y+h, x:x+w] |
||||
hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV) |
||||
mask = cv.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.))) |
||||
roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180]) |
||||
cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX) |
||||
|
||||
# Setup the termination criteria, either 10 iteration or move by atleast 1 pt |
||||
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 ) |
||||
|
||||
while(1): |
||||
ret, frame = cap.read() |
||||
|
||||
if ret == True: |
||||
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV) |
||||
dst = cv.calcBackProject([hsv],[0],roi_hist,[0,180],1) |
||||
|
||||
# apply camshift to get the new location |
||||
ret, track_window = cv.CamShift(dst, track_window, term_crit) |
||||
|
||||
# Draw it on image |
||||
pts = cv.boxPoints(ret) |
||||
pts = np.int0(pts) |
||||
img2 = cv.polylines(frame,[pts],True, 255,2) |
||||
cv.imshow('img2',img2) |
||||
|
||||
k = cv.waitKey(30) & 0xff |
||||
if k == 27: |
||||
break |
||||
else: |
||||
break |
@ -0,0 +1,49 @@ |
||||
import numpy as np |
||||
import cv2 as cv |
||||
import argparse |
||||
|
||||
parser = argparse.ArgumentParser(description='This sample demonstrates the meanshift algorithm. \ |
||||
The example file can be downloaded from: \ |
||||
https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4') |
||||
parser.add_argument('image', type=str, help='path to image file') |
||||
args = parser.parse_args() |
||||
|
||||
cap = cv.VideoCapture(args.image) |
||||
|
||||
# take first frame of the video |
||||
ret,frame = cap.read() |
||||
|
||||
# setup initial location of window |
||||
x, y, w, h = 300, 200, 100, 50 # simply hardcoded the values |
||||
track_window = (x, y, w, h) |
||||
|
||||
# set up the ROI for tracking |
||||
roi = frame[y:y+h, x:x+w] |
||||
hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV) |
||||
mask = cv.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.))) |
||||
roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180]) |
||||
cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX) |
||||
|
||||
# Setup the termination criteria, either 10 iteration or move by atleast 1 pt |
||||
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 ) |
||||
|
||||
while(1): |
||||
ret, frame = cap.read() |
||||
|
||||
if ret == True: |
||||
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV) |
||||
dst = cv.calcBackProject([hsv],[0],roi_hist,[0,180],1) |
||||
|
||||
# apply meanshift to get the new location |
||||
ret, track_window = cv.meanShift(dst, track_window, term_crit) |
||||
|
||||
# Draw it on image |
||||
x,y,w,h = track_window |
||||
img2 = cv.rectangle(frame, (x,y), (x+w,y+h), 255,2) |
||||
cv.imshow('img2',img2) |
||||
|
||||
k = cv.waitKey(30) & 0xff |
||||
if k == 27: |
||||
break |
||||
else: |
||||
break |
@ -0,0 +1,61 @@ |
||||
import numpy as np |
||||
import cv2 as cv |
||||
import argparse |
||||
|
||||
parser = argparse.ArgumentParser(description='This sample demonstrates Lucas-Kanade Optical Flow calculation. \ |
||||
The example file can be downloaded from: \ |
||||
https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4') |
||||
parser.add_argument('image', type=str, help='path to image file') |
||||
args = parser.parse_args() |
||||
|
||||
cap = cv.VideoCapture(args.image) |
||||
|
||||
# params for ShiTomasi corner detection |
||||
feature_params = dict( maxCorners = 100, |
||||
qualityLevel = 0.3, |
||||
minDistance = 7, |
||||
blockSize = 7 ) |
||||
|
||||
# Parameters for lucas kanade optical flow |
||||
lk_params = dict( winSize = (15,15), |
||||
maxLevel = 2, |
||||
criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03)) |
||||
|
||||
# Create some random colors |
||||
color = np.random.randint(0,255,(100,3)) |
||||
|
||||
# Take first frame and find corners in it |
||||
ret, old_frame = cap.read() |
||||
old_gray = cv.cvtColor(old_frame, cv.COLOR_BGR2GRAY) |
||||
p0 = cv.goodFeaturesToTrack(old_gray, mask = None, **feature_params) |
||||
|
||||
# Create a mask image for drawing purposes |
||||
mask = np.zeros_like(old_frame) |
||||
|
||||
while(1): |
||||
ret,frame = cap.read() |
||||
frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) |
||||
|
||||
# calculate optical flow |
||||
p1, st, err = cv.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params) |
||||
|
||||
# Select good points |
||||
good_new = p1[st==1] |
||||
good_old = p0[st==1] |
||||
|
||||
# draw the tracks |
||||
for i,(new,old) in enumerate(zip(good_new, good_old)): |
||||
a,b = new.ravel() |
||||
c,d = old.ravel() |
||||
mask = cv.line(mask, (a,b),(c,d), color[i].tolist(), 2) |
||||
frame = cv.circle(frame,(a,b),5,color[i].tolist(),-1) |
||||
img = cv.add(frame,mask) |
||||
|
||||
cv.imshow('frame',img) |
||||
k = cv.waitKey(30) & 0xff |
||||
if k == 27: |
||||
break |
||||
|
||||
# Now update the previous frame and previous points |
||||
old_gray = frame_gray.copy() |
||||
p0 = good_new.reshape(-1,1,2) |
@ -0,0 +1,23 @@ |
||||
import numpy as np |
||||
import cv2 as cv |
||||
cap = cv.VideoCapture(cv.samples.findFile("vtest.avi")) |
||||
ret, frame1 = cap.read() |
||||
prvs = cv.cvtColor(frame1,cv.COLOR_BGR2GRAY) |
||||
hsv = np.zeros_like(frame1) |
||||
hsv[...,1] = 255 |
||||
while(1): |
||||
ret, frame2 = cap.read() |
||||
next = cv.cvtColor(frame2,cv.COLOR_BGR2GRAY) |
||||
flow = cv.calcOpticalFlowFarneback(prvs,next, None, 0.5, 3, 15, 3, 5, 1.2, 0) |
||||
mag, ang = cv.cartToPolar(flow[...,0], flow[...,1]) |
||||
hsv[...,0] = ang*180/np.pi/2 |
||||
hsv[...,2] = cv.normalize(mag,None,0,255,cv.NORM_MINMAX) |
||||
bgr = cv.cvtColor(hsv,cv.COLOR_HSV2BGR) |
||||
cv.imshow('frame2',bgr) |
||||
k = cv.waitKey(30) & 0xff |
||||
if k == 27: |
||||
break |
||||
elif k == ord('s'): |
||||
cv.imwrite('opticalfb.png',frame2) |
||||
cv.imwrite('opticalhsv.png',bgr) |
||||
prvs = next |
@ -0,0 +1,31 @@ |
||||
# Utility function: adds sample executable target with name "example_<group>_<file_name>" |
||||
# Usage: |
||||
# ocv_define_sample(<output target> <relative filename> <group>) |
||||
function(ocv_define_sample out_target source sub) |
||||
get_filename_component(name "${source}" NAME_WE) |
||||
set(the_target "example_${sub}_${name}") |
||||
add_executable(${the_target} "${source}") |
||||
if(TARGET Threads::Threads AND NOT OPENCV_EXAMPLES_DISABLE_THREADS) |
||||
target_link_libraries(${the_target} LINK_PRIVATE Threads::Threads) |
||||
endif() |
||||
set_target_properties(${the_target} PROPERTIES PROJECT_LABEL "(sample) ${name}") |
||||
if(ENABLE_SOLUTION_FOLDERS) |
||||
set_target_properties(${the_target} PROPERTIES FOLDER "samples/${sub}") |
||||
endif() |
||||
if(WIN32 AND MSVC AND NOT BUILD_SHARED_LIBS) |
||||
set_target_properties(${the_target} PROPERTIES LINK_FLAGS "/NODEFAULTLIB:atlthunk.lib /NODEFAULTLIB:atlsd.lib /DEBUG") |
||||
endif() |
||||
if(WIN32) |
||||
install(TARGETS ${the_target} RUNTIME DESTINATION "samples/${sub}" COMPONENT samples) |
||||
endif() |
||||
# Add single target to build all samples in the group: 'make opencv_samples_cpp' |
||||
set(parent_target opencv_samples_${sub}) |
||||
if(NOT TARGET ${parent_target}) |
||||
add_custom_target(${parent_target}) |
||||
if(TARGET opencv_samples) |
||||
add_dependencies(opencv_samples ${parent_target}) |
||||
endif() |
||||
endif() |
||||
add_dependencies(${parent_target} ${the_target}) |
||||
set(${out_target} ${the_target} PARENT_SCOPE) |
||||
endfunction() |